186 W(82 Se, 81 Se γ) **2005**Sh26

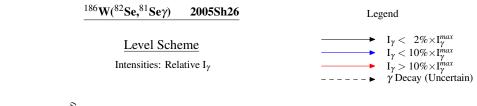
Type Author Citation Literature Cutoff Date

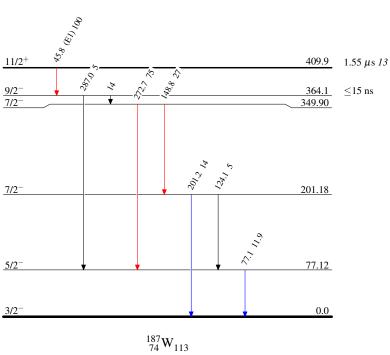
Full Evaluation M. S. Basunia NDS 110, 999 (2009) 1-Nov-2008

Target: 98.2% enriched 186 W; Projectile: 82 Se, E=630–MeV, 187 W produced by one-neutron transfer reaction; Detectors: 3 HPGe detectors placed at 90° with respect to the beam direction and silicon detector; Measured: E γ , I γ , $\gamma\gamma$ coin, and T $_{1/2}$.

¹⁸⁷W Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments				
0.0 77.12 <i>16</i> 201.18 <i>16</i> 349.90 <i>20</i>	3/2 ⁻ 5/2 ⁻ 7/2 ⁻ 7/2 ⁻						
364.1 <i>4</i> 409.9 <i>5</i>	9/2 ⁻ 11/2 ⁺	≤15 ns 1.55 µs 13	$T_{1/2}$: An upper limit determined by 2005Sh26. J^{π} : 45.8 γ (E1) to 9/2 ⁻ state and from the systematics of the neighboring ¹⁸³ W (K $^{\pi}$ =11/2 ⁺ isomer at 309 keV level) and ¹⁸⁵ W (K $^{\pi}$ =11/2 ⁺ isomer at 197-keV level), the 11/2 ⁺ assignment can be considered to be based on the 11/2 ⁺ [615] Nilson configuration. $T_{1/2}$: Quoted by the authors from an weighted average of the measured values of 1.59 μ s 24 (46 γ -t) and 1.53 μ s 13 (273 γ -t) (2005Sh26).				


 $^{^\}dagger$ Deduced by the evaluator from a least-squares adjustment to the γ -ray energies.


[‡] From Adopted Levels, except otherwise noted.

$\underline{\gamma(^{187}\mathrm{W})}$											
$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^{\ddagger}$	Comments			
(14)		364.1	9/2-	349.90	7/2-			I _{γ} : \approx 0.54, deduced from the estimated ratio of Ti(287 γ)/Ti(14 γ)= 0.038 26 (2005Sh26) and α (assuming 14 γ M1)=264 and α (assuming 287 γ E2)=0.097.			
45.8 <i>3</i>	100	409.9	11/2+	364.1	9/2-	(E1)	0.594 14	Mult.: Assignment from extracted $\alpha(\exp)=0.8\ I$ data, assuming both the 148.8 γ and 272.7 γ of the M1 character (2005Sh26).			
77.1 2	11.9 25	77.12	$5/2^{-}$	0.0	$3/2^{-}$						
124.1 2	5 3	201.18	$7/2^{-}$	77.12	5/2-						
148.8 2	27 18	349.90	$7/2^{-}$	201.18	$7/2^{-}$						
201.2 2	14 3	201.18	$7/2^{-}$	0.0	$3/2^{-}$						
272.7 2	75 <i>14</i>	349.90	$7/2^{-}$	77.12	,						
287.0 <i>3</i>	5 3	364.1	$9/2^{-}$	77.12	5/2-						

[†] From 2005Sh26

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

