186 W(18 O, 17 O γ) 2008Sh12

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	M. S. Basunia	NDS 110, 999 (2009)	1-Nov-2008			

2008Sh12: One neutron transfer reaction. Target: 99.2% enriched ¹⁸⁶W; Projectile: ¹⁸O, E=180 MeV; Detector: two Δ E-E telescopes for charged particle identification, an array of seven HPGe detectors; Measured: E γ , I γ , $\gamma\gamma$ coin, γ -particle coin, γ -ray anisotropy, deduced level scheme.

¹⁸⁷ W	Levels
------------------	--------

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 [@]	3/2-		
77.26 [@] 8	5/2-		
145.70 [#] 9	$1/2^{-}$		
201.28 [@] 8	7/2-		Experimental absolute(g_{K} - g_{R})=0.25 3.
204.86 [#] 13	3/2-		
302.98 [#] 8	5/2-		
330.40 [@] 10	9/2-		Experimental absolute $(g_K-g_R)=0.21$ 4.
350.02 ^{&} 10	7/2-	5 ns 1	$T_{1/2}$: from Adopted Levels.
364.0 ^{<i>a</i>} 5	9/2-		
410.0 ⁰ 7	$11/2^{+}$	1.55 μs <i>13</i>	$T_{1/2}$: from 2005Sh26 (by the same group as 2008Sh12).
431.85 [#] 11	7/2-		
521.38 ^{&} 14	9/2-		
538.28 [@] 13	$11/2^{-}$		
573.9 ^{<i>u</i>} 5	11/2-		
597.2 ⁰ 7	$13/2^{+}$		
613.02 [#] 12	9/2 ⁻		Dend
039.32.14	5/2 12/2		Band assignment= $3/2[303]$.
710.40 - 14	15/2		Examine the late $(z_1, z_2) = 0.50 \ I_0$
727.10^{-1} 13	11/2		Experimental absolute $(g_{\rm K}-g_{\rm R})=0.50\ 10.$
790.02" 12 798.2 <mark>°</mark> 7	$\frac{11/2}{(9/2^+)}$		
809.6 ^{<i>a</i>} 5	$(3/2^{-})$ 13/2 ⁻		Experimental absolute(g_{K} - g_{R})=0.12 4.
815.5 ^b 7	$15/2^{+}$		Experimental absolute($g_{K}-g_{R}$)=0.42 5.
964.22 <mark>&</mark> 20	$(13/2^{-})$		Experimental absolute($g_{K}-g_{R}$)=0.68 9.
978.5 [°] 7	$(11/2^+)$		
1006.28 [@] 16	$15/2^{-}$		
1055.2 ^b 7	$17/2^{+}$		Experimental absolute(g_{K} - g_{R})=0.51 8.
1063.02 [#] 24	13/2-		
1072.4 ^{<i>a</i>} 5	$(15/2^{-})$		
1205.5° 7	$(13/2^+)$		Experimental absolute $(g_{\rm K}-g_{\rm R})=0.68$ 11.
1213.20 25	$(17/2^{-})$		
1228.66 ^{cc} 25	$(15/2^{-})$		
1233.18" 24	$(15/2^{-})$		
$1311.8^{\circ} 8$ 1350.0 ^{<i>a</i>} 5	$(19/2^{+})$ $(17/2^{-})$		
1359.9 5 1450.6 [°] 8	(17/2) $(15/2^+)$		
1596.78 [@] 19	$(19/2^{-})$		
$1650.0^{\#}$ 11	$(17/2^{-})$		
100010 11	(1//2)		

186 W(18 O, 17 O γ) 2008Sh12 (continued)

¹⁸⁷W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$
1784.0 [#] 3	(19/2 ⁻)
1832.2 [@] 11	$(21/2^{-})$

[†] From a least-squares adjustment to the γ -ray energies.

[±] Assigned by authors from rotational band structure, γ -ray multipole order (determined from γ -ray anisotropy measurement – not reported) and earlier studies.

reported) and # $v1/2^{-}[510]$. @ $v3/2^{-}[512]$. & $v7/2^{-}[503]$. a $v9/2^{-}[505]$. b $v11/2^{+}[615]$. c $v9/2^{+}[624]$.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments	
(14)		364.0	9/2-	350.02	$7/2^{-}$			
46.0 5	3.9 5	410.0	$11/2^{+}$	364.0	9/2-			
59 [‡]		204.86	$3/2^{-}$	145.70	$1/2^{-}$			
77.2 1	13.7 14	77.26	5/2-	0.0	3/2-			
98 [‡]		302.98	$5/2^{-}$	204.86	$3/2^{-}$			
101.8 <i>1</i>	5.3 4	302.98	5/2-	201.28	7/2-			
124.1 <i>I</i>	27.5 20	201.28	$7/2^{-}$	77.26	$5/2^{-}$			
127.6 <i>1</i>	2.7 11	204.86	$3/2^{-}$	77.26	5/2-			
128.9 <i>1</i>	5.6 5	431.85	$7/2^{-}$	302.98	$5/2^{-}$			
129.1 2	2.1 4	330.40	9/2-	201.28	$7/2^{-}$			
145.7 <i>1</i>	13.7 14	145.70	$1/2^{-}$	0.0	3/2-	D+Q	γ -ray anisotropy 0.7 2.	
148.8 <i>1</i>	12.6 6	350.02	$7/2^{-}$	201.28	$7/2^{-}$	D+Q	γ -ray anisotropy 1.1 <i>I</i> .	
157.3 2	1.9 <i>3</i>	302.98	5/2-	145.70	$1/2^{-}$			
171.4 <i>1</i>	12.1 6	521.38	9/2-	350.02	$7/2^{-}$	D+Q	γ -ray anisotropy 0.4 <i>1</i> .	
180.1 <i>I</i>	4.6 <i>3</i>	978.5	$(11/2^+)$	798.2	$(9/2^+)$	D+Q	γ -ray anisotropy 0.4 1.	
187.2 <i>I</i>	89 8	597.2	$13/2^{+}$	410.0	$11/2^{+}$	D+Q	γ -ray anisotropy 0.3 1.	
200.7 2	2.3 3	798.2	$(9/2^+)$	597.2	$13/2^{+}$			
201.3 <i>1</i>	96 12	201.28	7/2-	0.0	3/2-	Q	γ -ray anisotropy 1.4 <i>l</i> .	
205.7 1	5.5 4	727.16	$11/2^{-}$	521.38	9/2-	D+Q	γ -ray anisotropy 0.4 1.	
209.8 <i>1</i>	13.9 7	573.9	$11/2^{-}$	364.0	9/2-	D+Q	γ -ray anisotropy 0.2 1.	
218.2 <i>I</i>	12.8 7	815.5	$15/2^{+}$	597.2	$13/2^{+}$	D+Q	γ -ray anisotropy 0.3 1.	
225.7 1	6.9 10	302.98	5/2-	77.26	5/2-			
227.0 1	2.5 5	1205.5	$(13/2^+)$	978.5	$(11/2^+)$			
230.2 5	≈0.1	431.85	$7/2^{-}$	201.28	$7/2^{-}$			
235.7 1	2.7 3	809.6	$13/2^{-}$	573.9	$11/2^{-}$	D+Q	γ -ray anisotropy 0.3 1.	
236.6 2	1.6 2	964.22	$(13/2^{-})$	727.16	$11/2^{-}$	D+Q	γ -ray anisotropy 0.2 1.	
239.5 1	3.8 8	1055.2	$17/2^{+}$	815.5	$15/2^{+}$	D+Q	γ -ray anisotropy 0.3 1.	
245.1 2	0.7 1	1450.6	$(15/2^+)$	1205.5	$(13/2^+)$			
253.2 1	41 3	330.40	9/2-	77.26	5/2-	Q	γ -ray anisotropy 1.8 <i>l</i> .	
272.7 1	100 5	350.02	$7/2^{-}$	77.26	5/2-	D+Q	γ -ray anisotropy 1.1 <i>l</i> .	
282.5 2	0.8 2	613.02	9/2-	330.40	9/2-			
286.8 5	< 0.1	364.0	9/2-	77.26	5/2-			
289.5 1	4.0 4	639.52	5/2-	350.02	$7/2^{-}$			

 $\gamma(^{187}\mathrm{W})$

186 W(18 O, 17 O γ) 2008Sh12 (continued)

$\gamma(^{187}W)$ (continued) Mult.[†] Eγ I_{γ} E_i(level) J_i^{π} E_f J_f^{π} Comments 303.1 2 2.7 8 302.98 $5/2^{-}$ 0.0 $3/2^{-}$ D+Q γ -ray anisotropy 0.4 *I*. 9/2-310.1 1 3.9 4 613.02 302.98 5/2-337.0 1 20.8 10 538.28 $11/2^{-1}$ 201.28 7/2-Q γ -ray anisotropy 2.2 1. 354.2 2 8.8 19 431.85 $7/2^{-}$ 77.26 5/2-364.7 1 2.1 2 796.62 $11/2^{-}$ 431.85 7/2-Q γ -ray anisotropy 1.7 2. 350.02 7/2-4.67 $11/2^{-}$ Q γ -ray anisotropy 2.7 6. 377.0 2 727.16 330.40 9/2-380.0 1 9.4 6 710.40 $13/2^{-}$ Q γ -ray anisotropy 1.9 2. γ -ray anisotropy 1.2 *1*. 388.0 1 28 5 798.2 $(9/2^+)$ 410.0 $11/2^{+}$ 5.5 11 Q 405.1 2 815.5 $15/2^{+}$ 410.0 $11/2^{+}$ γ -ray anisotropy 1.8 2. 407.3 2 0.7 1 1205.5 $(13/2^+)$ $(9/2^+)$ 798.2 410.8 5 613.02 $9/2^{-}$ 201.28 7/2-≈0.1 521.38 9/2-443.3 2 964.22 1.7 3 $(13/2^{-})$ 445.7 2 8.2 5 809.6 $13/2^{-}$ 364.0 $9/2^{-}$ γ -ray anisotropy 1.9 3. $0.8\ 2$ 450.0 2 1063.02 $13/2^{-}$ 613.02 9/2- γ -ray anisotropy 2.1 4. Q 13/2+ 458.1 *1* 2.7 5 1055.2 $17/2^+$ Õ 597.2 γ -ray anisotropy 1.4 2. 466.3 1 2.7 3 796.62 $11/2^{-}$ 330.40 9/2- γ -ray anisotropy 1.7 2. 468.0 1 3.1 3 1006.28 $15/2^{-}$ 538.28 $11/2^{-1}$ 496.3 2 1.4 2 1311.8 $(19/2^+)$ 815.5 $15/2^{+}$ 498.5 1 2.1 3 $(15/2^{-})$ 573.9 1072.4 $11/2^{-1}$ $(15/2^{-})$ 501.5 2 0.7 2 1228.66 727.16 11/2-502.8 2 0.8 2 $(17/2^{-})$ 710.40 13/2-1213.20 550.3 2 $1.0\ 2$ 1359.9 $(17/2^{-})$ 809.6 $13/2^{-}$ 1.8 6 $11/2^+$ 568.7 1 978.5 $(11/2^+)$ 410.0 D+Q γ -ray anisotropy 0.4 1. 587 1650.0 $(17/2^{-})$ 1063.02 13/2- $(19/2^{-})$ 590.5 1 0.2 1 1596.78 1006.28 15/2-619 ≈0.1 1832.2 $(21/2^{-})$ 1213.20 (17/2-) 694.9 2 0.8 21233.18 $(15/2^{-})$ 538.28 11/2- $(19/2^{-})$ 777.7 2 0.2 1 1784.0 1006.28 15/2-

[†] From γ -ray anisotrophy (obtained from Dr. Toshiyuki Shizuma through a private communication – not reported in 2008Sh12). The γ -ray anisotropy was obtained from the γ -ray intensity ratio R=I γ (in-plane)/I γ (out-plane). The in-plane I γ is defined by the measured I γ at the incoming and outgoing ions plane. For R, a value greater than unity the γ -ray multipolarity is expected to be stretched quadrupole Q (Δ J=2) and unstretched (pure) dipole D (Δ J=0), while for R less than unity stretched dipole D (Δ =1) is expected by 2008Sh12.

[‡] Placement of transition in the level scheme is uncertain.

Legend

 $^{187}_{74}W_{113}$