187 Au ε decay 1983Gn01,1992Ro15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 110, 999 (2009)	1-Nov-2008

Parent: ¹⁸⁷Au: E=0.0; $J^{\pi}=1/2^{(+)}$; $T_{1/2}=8.3 \text{ min } 2$; $Q(\varepsilon)=3710 \ 40$; $\%\varepsilon+\%\beta^+$ decay=100.0

Other: 1979Be51, 1986RoZI, 1986AbZZ, 1975Ho03, 1970Du09. 1983Gn01: Mass separated ¹⁸⁷Au was produced from ¹⁸¹Ta(12 C,6n) and ¹⁷⁸Hf(14 N,5n) reactions; Detectors: large volume Ge(Li), HPGe, Si(Li); Measured: $E\gamma$, $I\gamma$, $\gamma\gamma$ t, x- γ -t, e-x-t.

1992Ro15,1986RoZI: ¹⁸⁷Au produced from Pt(p,xn)Au, E=200 MeV, reactions, ¹⁸⁷Au mass separated online and collected on myler/aluminum tape; Detector: 4 n-type HPGe; Measured: Eγ, deduced angular correlation coefficients, δ, assigned level spin. 1986RoZI also studied ¹⁸⁷Pt from the ¹⁷⁶Yb(¹⁶O,5nγ) reaction, E=93 MeV.
 1979Be51: On-line mass separation of ¹⁸⁷Au, produced through Pb(P,3pxn) spallation reaction and ¹⁸⁷Hg decay, E=157 MeV;

Detector: Ge(Li), HPGe, Si(Li), Magnetic spectrometer; Measured: E γ , I γ , ce, γ -x coin, ce- γ coin, γ -Ce(t), ce-ce-t.

1986AbZZ: ¹⁸⁷Au ε Decay; Measured E γ , I γ , ce.

1975Ho03, 1970Du09: Measured total absorption spectrum of 187 Au ε decay.

¹⁸⁷Pt Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	Comments
0.0	3/2-		
9.27 8	3/2-	≤1 ns	J^{π} : From the analysis of experimental and theoretical A2 values for the 914.7 γ -235.7 γ and 235.7 γ -181.1 γ cascades. J^{π} =1/2 ⁻ was ruled out from the cascade analysis (1992Ro15).
25.53 11	$(5/2^{-})$	0.7 ns 1	
51.23 11	$(1/2,3/2)^{-}$	0.30 ns 8	
57.11 <i>14</i>	7/2-	18 ns 2	
74.57 10	3/2-	0.50 ns 6	J^{π} : From the cascade analysis of 706.1 γ -609.4 γ , 706.1 γ -374.4 γ , and 374.4 γ -185.8 γ including the experimental and theoretical A2 values. The cascade analysis of 1189.4 γ -213.6 γ also leads to the same assignment (1992Ro15).
174.32 24	$(11/2^+)$		
190.43 11	3/2-#		J^{π} : 115.9 γ to 3/2 ⁻ state. $J^{\pi}=5/2^{-}$ was ruled out from the analysis of 590.6 γ -181.1 γ correlation, constraining the range of measured mixing ratio and the experimental and theoretical A ₂ values (1992Ro15).
203.4 3	$(13/2^+)$		
242.36 21	$(9/2^+)$	≤0.5 ns	
260.49 12	3/2-	148 ps 7	J^{π} : From the cascade analysis of 706.1 γ -609.4 γ , 706.1 γ -374.4 γ , and 374.4 γ -185.8 γ including the experimental and theoretical A2 values (1992Ro15). T _{1/2} : From 2004Om01 (148 ps $\delta_{syst} 3_{stat}$): delayed $\gamma\gamma$ coincidence – average of 142 ps β (direct deconvolution) and 154 ps 4 (reconvolution). Other: 163 ps 6 (1996Om01).
288.33 13	5/2 ^{-#}		J^{π} : From the cascade analysis of 1189.4 γ -213.6 γ including the experimental and theoretical A2 values (1992Ro15).
426.34 11	(3/2 ⁻) [#]		J^{π} : The 369.2 γ and 375.1 γ with α (K)exp values of 0.04 2 and 0.04 3, respectively, from this level have dominant E2 contribution. The 369.2 γ feeds 7/2 ⁻ state and 375.1 γ feeds (1/2,3/2) ⁻ state. Assuming a 914.6 γ E1 feeding from the 1341-keV level J^{π} =1/2 ⁺ to this level, J^{π} =3/2 ⁻ is assigned, 1983Gn01 assigned J^{π} =5/2 ⁻ for this state.
426.53 24	$(9/2^+)$		
474.42 16			
480.65 15	$(1/2^{-}, 3/2^{-})$		
507.92 13	1/2-		J^{π} : 247.4 γ M1+E2 to 3/2 ⁻ state. A possible 3/2 ⁻ assignment is ruled out from the analysis of 833.0 γ -247.4 γ and 247.4 γ -185.8 γ cascade correlations including the experimental and theoretical A2 values (1992Ro15).
510.42 18			
525.06 16	$(3/2^{-})$		J^{π} : 467.9 γ E2 to 7/2 ⁻ state, 473.8 γ M1+E2 to (1/2,3/2) ⁻ state.
572.79 <i>16</i> 588.05 <i>22</i>	$(1/2^-, 3/2^-)$ $7/2^+$		

Continued on next page (footnotes at end of table)

187 Au ε decay 1983Gn01,1992Ro15 (continued)

¹⁸⁷Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
599.11 14	$(5/2^{-})$	
620.77 14 632.88 16	(1/2, 3/2) $(5/2^+, 7/2^+)$	J^{π} : 390.5 γ E2 to (9/2 ⁺), 206.3 γ M1+E2 to (9/2 ⁺). Assignment in 1983Gn01 is 5/2 ⁺ .
635.02 <i>13</i> 688.68 <i>18</i>	3/2-#	J^{π} : 609.5 γ M1+E2 to (5/2 ⁻), 706 γ E1 from 1/2 ⁺ state.
781.28 <i>13</i> 845.0 <i>3</i>	3/2-#	J^{π} : 590.9 γ M1+E2 to 3/2 ⁻ state, 559.8 γ (E1) from 1/2 ⁺ state.
883.17 23 968.7 3 1101.65 25 1114.9 3 1179.1 5 1304 09 25	5/2+	J^{π} : 294.9 γ M1+E2 to 7/2 ⁺ state, 456.7 γ E2 to (9/2 ⁺) state.
1328.29 <i>18</i> 1335.0 5	1/2+,3/2+	J^{π} : also 5/2 ⁺ ; 1319 γ E1 to 3/2 ⁻ state.
1341.07 <i>12</i>	1/2+	J ^{π} : Cascade analysis of the 706.1 γ -609.4 γ , 706.1 γ -374.4 γ , and 374.4 γ -185.8 γ including the experimental and theoretical A2 values supports the J ^{π} =1/2 ⁺ assignment (1992Ro15).
1364.90 22 1388.07 24 1398 8 5		
1433.76 <i>15</i> 1478.02 <i>15</i>	3/2 ⁺ 3/2 ⁺	J^{π} : 1408 γ E1 to (5/2 ⁻). J^{π} : From a cascade analysis of the 1189.4 γ -213.6 γ including the experimental and theoretical A2 values (1992Ro15).
1570.7 4		
1398.0 3 1777.86 23 1886.0 3 1891.3 4 1970 4 3		E(level): From 1986RoZI.
2016.77 14 2027.98 16 2038.62 15 2082.06 16 2094.65 16 2157.9 5 2170.46 22 2570.9 3	(3/2+,5/2+)	J ^π : and 3/2 ⁻ ,7/2 ⁻ in 1986RoZI.

[†] From a least-squares adjustment to the γ-ray energies. [‡] From Adopted Levels, except otherwise noted. [#] From $\gamma\gamma(\theta)$ (1992Ro15) and deduced γ-ray multipolarities. [@] From ce-Ce(t) and ce- $\gamma(t)$ (1979Be51), except otherwise noted.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ #	$\mathrm{I}\varepsilon^{\#}$	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\#}$	Comments
$(1.14 \times 10^3 4)$	2570.9		0.39 5	6.59	0.39 5	εK=0.8023 8; εL=0.1495 6; εM+=0.04812 21
$(1.54 \times 10^3 \ 4)$	2170.46	0.0010 4	0.95 6	6.48	0.95 6	av E β =253 18; ε K=0.8067 2; ε L=0.1457 4; ε M+=0.04664 12
$(1.55 \times 10^3 \ 4)$	2157.9	0.00022 9	0.19 4	7.19	0.19 4	av E β =259 18; ε K=0.8067 2; ε L=0.1456 4; ε M+=0.04661 12

Continued on next page (footnotes at end of table)

¹⁸⁷Au ε decay **1983Gn01,1992Ro15** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ #	Iɛ#	Log ft‡	$I(\varepsilon + \beta^+)^{\text{#}}$	Comments
$(1.62 \times 10^3 \ 4)$	2094.65	0.0061 18	3.39 12	5.97	3.40 12	av E β =287 18; ε K=0.8067 1; ε L=0.1451 4; ε M+=0.04642 12
$(1.63 \times 10^3 \ 4)$	2082.06	0.0067 19	3.43 13	5.97	3.44 13	av E β =292 18; ε K=0.8067 2; ε L=0.1450 4; ε M+=0.04639 12
$(1.67 \times 10^3 \ 4)$	2038.62	0.010 3	4.01 13	5.93	4.02 13	av E β =312 18; ε K=0.8066 3; ε L=0.1446 4; ε M+=0.04626 12
$(1.68 \times 10^3 \ 4)$	2027.98	0.0058 15	2.13 9	6.21	2.14 9	av E β =316 18; ε K=0.8065 3; ε L=0.1445 4; ε M+=0.04623 12
$(1.69 \times 10^3 4)$	2016.77	0.020 5	6.73 17	5.72	6.75 17	av E β =321 18; ε K=0.8064 3; ε L=0.1444 4; ε M+=0.04620 12
$(1.74 \times 10^3 \ 4)$	1970.4	0.0023 6	0.61 6	6.79	0.61 6	av $E\beta$ =342 18; ε K=0.8061 4; ε L=0.1441 4; ε M+=0.04606 12
$(1.82 \times 10^3 \ 4)$	1891.3	0.0028 6	0.50 4	6.91	0.50 4	av E β =377 18; ε K=0.8052 7; ε L=0.1434 4; ε M+=0.04583 13
$(1.82 \times 10^3 4)$	1886.0	0.0026 6	0.46 5	6.95	0.46 5	av E β =379 18; ε K=0.8051 7; ε L=0.1434 4; ε M+=0.04582 13
$(1.93 \times 10^3 4)$	1777.86	0.0043	0.48	7.0	0.48	av E β =426 18; ε K=0.8031 10; ε L=0.1424 4; ε M+=0.04548 13
$(2.11 \times 10^3 4)$	1598.0	0.010 1	0.59 4	6.97	0.60 4	av $E\beta$ =505 18; ε K=0.7976 17; ε L=0.1406 5; ε M+=0.04486 16
$(2.14 \times 10^3 4)$	1570.7	0.0078 12	0.41 4	7.14	0.42 4	av Eβ=517 18; εK=0.7965 18; εL=0.1403 5; εM+=0.04475 16
$(2.23 \times 10^3 4)$	1478.02	0.116 14	4.67 16	6.12	4.79 16	av E β =558 18; ε K=0.7923 21; ε L=0.1392 5; ε M+=0.04438 17
$(2.28 \times 10^3 \ 4)$	1433.76	0.19 2	6.8 <i>3</i>	5.98	7.0 3	av Eβ=577 18; εK=0.7900 23; εL=0.1386 6; εM+=0.04420 18
$(2.31 \times 10^3 4)$	1398.8	0.013 2	0.42 5	7.21	0.43 5	av E β =593 18; ε K=0.7881 24; ε L=0.1382 6; ε M+=0.04404 19
$(2.32 \times 10^3 4)$	1388.07	0.024 3	0.75 6	6.96	0.77 6	av $E\beta$ =597 18; ε K=0.7874 25; ε L=0.1380 6; ε M+=0.04399 19
$(2.35 \times 10^3 4)$	1364.90	0.031 4	0.92 8	6.88	0.95 8	av $E\beta$ =607 18; ε K=0.786 3; ε L=0.1377 6; ε M+=0.04389 19
$(2.37 \times 10^3 4)$	1341.07	0.84 9	23.8 6	5.47	24.6 6	av Eβ=618 18; εK=0.785 3; εL=0.1374 6; εM+=0.04378 20
$(2.38 \times 10^3 4)$	1335.0	0.0073 13	0.20 3	7.54	0.21 3	av E β =620 18; ε K=0.784 3; ε L=0.1373 6; ε M+=0.04375 20
$(2.38 \times 10^3 4)$	1328.29	0.104 11	2.84 14	6.40	2.94 14	av E β =623 18; ε K=0.784 3; ε L=0.1372 6; ε M+=0.04372 20
$(2.41 \times 10^3 4)$	1304.09	0.025 3	0.64 5	7.06	0.66 5	av $E\beta$ =634 18; ε K=0.782 3; ε L=0.1368 6; ε M+=0.04360 20
$(2.60 \times 10^3 \ 4)$	1114.9	0.021 3	0.35 5	7.39	0.37 5	av E β =717 18; ε K=0.768 4; ε L=0.1338 8; ε M+=0.04260 24
$(2.61 \times 10^3 \ 4)$	1101.65	0.011 5	0.19 8	7.66	0.20 8	av Eβ=723 18; εK=0.767 4; εL=0.1335 8; εM+=0.04252 24
$(2.74 \times 10^3 4)$	968.7	0.053 6	0.68 6	7.15	0.73 6	av E β =782 18; ε K=0.754 4; ε L=0.1311 8; ε M+=0.0417 3
$(2.83 \times 10^3 4)$	883.17	0.061 8	0.66 7	7.19	0.72 8	av E β =819 18; ϵ K=0.745 5; ϵ L=0.1293 9; ϵ M+=0.0412 3
$(2.93 \times 10^3 4)$	781.28	0.15 3	1.4 3	6.91	1.5 3	av E β =864 18; ε K=0.734 5; ε L=0.1271 9; ε M+=0.0404 3
$(3.02 \times 10^3 4)$	688.68	0.058 11	0.46 8	7.40	0.52 9	av E β =905 18; ε K=0.723 5; ε L=0.1250 10; ε M+=0.0398 3
$(3.07 \times 10^3 4)$	635.02	0.20 3	1.45 18	6.92	1.65 21	av E β =929 18; ε K=0.716 6; ε L=0.1238 10; ε M+=0.0394 4
$(3.09 \times 10^3 4)$	620.77	0.30 3	2.16 18	6.75	2.46 21	av E β =936 18; ε K=0.714 6; ε L=0.1234 10;
			Co	ntinued on	next page (f	ootnotes at end of table)

			187 Au ε d	lecay 19	83Gn01,199	2Ro15 (continued)
				ϵ, β^+ rad	diations (cont	inued)
E(decay)	E(level)	Ιβ ⁺ #	Ιε [#]	Log <i>ft</i> ‡	$I(\varepsilon + \beta^+)^{\#}$	Comments
(3.11×10 ³ 4)	599.11	0.063 7	1.41 11	8.49 ¹ <i>u</i>	1.47 12	εM+=0.0392 4 av Eβ=938 17; εK=0.7729 21; εL=0.1396 6; εM+=0.04471 18
$(3.14 \times 10^3 4)$	572.79	0.177 17	1.17 10	7.03	1.35 11	av $E\beta$ =957 18; ε K=0.708 6; ε L=0.1222 10; ε M = -0.0389 4
$(3.18 \times 10^3 4)$	525.06	0.13 2	0.79 9	7.21	0.92 10	av E β =978 18; ε K=0.701 6; ε L=0.1211 11; ε M+=0.0385 4
$(3.20 \times 10^3 4)$	510.42	0.057 10	0.34 6	7.58	0.40 7	av E β =985 18; ε K=0.699 6; ε L=0.1207 11; ε M+-0.0384 4
$(3.20 \times 10^3 \ 4)$	507.92	0.24 4	1.5 3	6.95	1.7 3	av $E\beta = 986 \ 18; \ \varepsilon K = 0.699 \ 6; \ \varepsilon L = 0.1206 \ 11;$
$(3.23 \times 10^3 \ 4)$	480.65	0.239 22	1.39 <i>11</i>	6.98	1.63 <i>13</i>	av E β =998 18; ε K=0.695 6; ε L=0.1199 11; ε M+=0.0381 4
$(3.24 \times 10^3 4)$	474.42	0.154 17	0.89 9	7.18	1.04 10	av $E\beta$ =1001 18; ε K=0.694 6; ε L=0.1198 11; ε M+=0.0381 4
$(3.28 \times 10^3 \ 4)$	426.34	1.1 <i>1</i>	5.9 8	6.37	7.0 9	av $E\beta$ =1022 18; ε K=0.688 6; ε L=0.1185 11; ε M+=0.0377 4
$(3.42 \times 10^3 \ 4)$	288.33	0.09 3	1.2 4	8.73 ¹ <i>u</i>	1.3 4	av $E\beta$ =1071 17; ϵ K=0.754 3; ϵ L=0.1351 7; ϵ M+=0.04321 21
$(3.45 \times 10^3 \ 4)$	260.49	0.37 13	1.6 6	6.97	2.0 7	av $E\beta$ =1096 18; ε K=0.663 7; ε L=0.1141 11; ε M+=0.0362 4
$(3.52 \times 10^3 \ 4)$	190.43	0.80 18	3.2 7	6.69	4.0 9	av $E\beta$ =1127 18; ε K=0.652 7; ε L=0.1121 12; ε M+=0.0356 4
$(3.66 \times 10^3 \ 4)$	51.23	0.2 5	0.6 15	7.4	0.8 20	av $E\beta$ =1190 18; ε K=0.630 7; ε L=0.1081 12; ε M+=0.0344 4
$(3.70 \times 10^3 @ 4)$	9.27	<1	<4	>6.7	<5 [†]	av $E\beta$ =1209 18; ε K=0.623 7; ε L=0.1069 12; ε M+=0.0340 4
$(3.71 \times 10^3 @ 4)$	0.0	<1	<4	>6.7	<5 [†]	av E β =1213 18; ϵ K=0.622 7; ϵ L=0.1067 12; ϵ M+=0.0339 4

[†] 1983Gn01 estimate that 5% of the decay goes to the g.s.+9.3 keV levels based on observed x-ray intensities (unreported). [‡] Approximate beta strength function derived from the total absorption spectrum measurement of ¹⁸⁷Au ε decay by 1975H003 and

1970Du09 indicates level population upto \approx 3.2 MeV and \approx 3.9 MeV, respectively. So the calculated log *ft* values should be

Absolute intensity per 100 decays.
@ Existence of this branch is questionable.

 $\gamma(^{187}{\rm Pt})$

I γ normalization: from sum Ti(g.s.+9.3 keV)=95. 1983Gn01 estimate 5% β feeding to the g.s.+9.3 keV levels. Low energy γ -ray intensities are not well known and calculated I(γ +ce) values (hence I γ) are used for normalization. For 49 γ , I γ =6.5 7 was used for intensity balance. ε + β ⁺ feeding to the 190, 260, and 599 keV levels were readjusted to 4.0, 2.0, and 1.47 from 3.3, 2.2, and 0.65, respectively, to make ε + β ⁺ feeding \approx 100.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{b}	α^{e}	$I_{(\gamma+ce)}^{d}$	Comments
9.3 1		9.27	3/2-	0.0	3/2-	M1		304 11	331 [@] 27	ce(M)/(γ +ce)=0.770 <i>19</i> ; ce(N+)/(γ +ce)=0.227 <i>10</i> ce(N)/(γ +ce)=0.191 <i>9</i> ; ce(O)/(γ +ce)=0.0342 <i>17</i> ; ce(P)/(γ +ce)=0.00230 <i>12</i> Mult.: The half-life is only consistent with M1 (RUL).
25.6 5		25.53	(5/2 ⁻)	0.0	3/2-	M1+E2	≈0.5	≈6.8×10 ²	375 [@] 21	ce(L)/(γ +ce)≈0.75; ce(M)/(γ +ce)≈0.191; ce(N+)/(γ +ce)≈0.054 ce(N)/(γ +ce)≈0.046; ce(O)/(γ +ce)≈0.0072; ce(P)/(γ +ce)≈4.6×10 ⁻⁵ Mult.; ce(M1)=135.
25.7 5		51.23	(1/2,3/2)-	25.53	(5/2 ⁻)	[E2]		3.1×10 ³ 4	≈3	ce(L)/(γ +ce)=0.75 6; ce(M)/(γ +ce)=0.19 3; ce(N+)/(γ +ce)=0.054 8 ce(N)/(γ +ce)=0.047 7; ce(O)/(γ +ce)=0.0072 11; ce(P)/(γ +ce)=5.7×10 ⁻⁶ 9
29.0 5		203.4	(13/2+)	174.32	(11/2+)	[M1]		44.7 25	≈9	$\begin{array}{l} ce(L)/(\gamma+ce)=0.75 \ 3; \ ce(M)/(\gamma+ce)=0.174 \ 12; \\ ce(N+)/(\gamma+ce)=0.051 \ 4 \\ ce(N)/(\gamma+ce)=0.043 \ 4; \ ce(O)/(\gamma+ce)=0.0077 \ 6; \\ ce(P)/(\gamma+ce)=0.00052 \ 4 \\ E_{\gamma}: \ uncertainty \ not \ reported. \ 0.5 \ keV \ assumed \ by \\ the \ evaluator. \end{array}$
31.6 4		57.11	7/2-	25.53	(5/2 ⁻)	M1		34.7 15	95 [@] 15	ce(L)/(γ +ce)=0.748 21; ce(M)/(γ +ce)=0.173 9; ce(N+)/(γ +ce)=0.051 3 ce(N)/(γ +ce)=0.0428 24; ce(O)/(γ +ce)=0.0077 5; ce(P)/(γ +ce)=0.00052 3 Mult.: L1:L2:M1=146:13:44.
39.1 <i>4</i>		242.36	(9/2 ⁺)	203.4	(13/2+)	[E2]		386 21	≈7 ^{‡@}	ce(L)/(γ +ce)=0.75 3; ce(M)/(γ +ce)=0.193 14; ce(N+)/(γ +ce)=0.054 4 ce(N)/(γ +ce)=0.047 4; ce(O)/(γ +ce)=0.0072 6; ce(P)/(γ +ce)=6.0×10 ⁻⁶ 5
49.0 <i>4</i>	5.0 [‡] 7	74.57	3/2-	25.53	(5/2 ⁻)	M1+E2	0.25 6	16 4		$\begin{array}{l} \alpha(\text{L})=13 \ 3; \ \alpha(\text{M})=3.0 \ 7; \ \alpha(\text{N}+)=0.88 \ 19 \\ \alpha(\text{N})=0.75 \ 17; \ \alpha(\text{O})=0.13 \ 3; \ \alpha(\text{P})=0.00482 \ 19 \\ \text{Mult.:} \ \alpha(\text{L}1)\exp=6.4 \ (1979\text{Be51}); \\ \text{L}1:\text{L}2:\text{L}3=3.5:2.9:2.6 \ (1986\text{AbZZ}). \end{array}$
51.2 4	12.0 [‡] 20	51.23	$(1/2, 3/2)^{-}$	0.0	3/2-	M1+E2	0.10 1	9.3 4		$\alpha(L)=7.1$ 3; $\alpha(M)=1.67$ 7; $\alpha(N+)=0.490$ 18

 $^{187}_{78} Pt_{109}\text{--}5$

S

1							¹⁸⁷ Au ε d	ecay 1983G	n01,1992Ro	15 (continu	ed)
								$\gamma(^{187}\text{Pt})$	(continued)		
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. ^{&}	δ^{b}	α^{e}	$I_{(\gamma+ce)}^{d}$	Comments
											α (N)=0.412 <i>15</i> ; α (O)=0.073 <i>3</i> ; α (P)=0.00442 <i>12</i> Mult.: L1:L2:L3:M1=211:34:16:43.
	65.3 4		74.57	3/2-	9.27	3/2-	M1+E2	0.18 2	4.96 23	78# 26	$\begin{aligned} & \text{ce}(\text{L})/(\gamma + \text{ce}) = 0.637 \ 20; \ \text{ce}(\text{M})/(\gamma + \text{ce}) = 0.151 \ 9; \\ & \text{ce}(\text{N}+)/(\gamma + \text{ce}) = 0.044 \ 3 \\ & \text{ce}(\text{N})/(\gamma + \text{ce}) = 0.0372 \ 23; \ \text{ce}(\text{O})/(\gamma + \text{ce}) = 0.0065 \ 4; \\ & \text{ce}(\text{P})/(\gamma + \text{ce}) = 0.000356 \ 17 \\ & \text{Mult.: } \text{L1:L2:L3:M1=125:32:18:30.} \end{aligned}$
	68.1 <i>4</i>		242.36	(9/2+)	174.32	(11/2+)	M1+E2	0.45 8	7.4 12	≈11 ^{‡@}	ce(L)/(γ+ce)=0.67 7; ce(M)/(γ+ce)=0.17 4; ce(N+)/(γ+ce)=0.047 10 ce(N)/(γ+ce)=0.040 9; ce(O)/(γ+ce)=0.0067 14; ce(P)/(γ+ce)=0.00020 3 Mult.: L1:L2:M1:M2:M3=30:15:11:8:5 from 1986AbZZ.
	74.5 4	4.8 9	74.57	3/2-	0.0	3/2-	M1+E2	0.11 5	2.95 20	19 [#] 6	ce(L)/(γ +ce)=0.574 25; ce(M)/(γ +ce)=0.134 11; ce(N+)/(γ +ce)=0.039 4 ce(N)/(γ +ce)=0.033 3; ce(O)/(γ +ce)=0.0059 5; ce(P)/(γ +ce)=0.000372 21 Mult.: L1:L2:L3=27: \approx 3: \approx 1.3. I(γ +ce): uncertainty not reported, 10% assumed by the evaluator.
	^x 84.7 <i>4</i> 97.7 <i>4</i>	1.9 <i>3</i> 1.5 <i>3</i>	288.33	5/2-	190.43	3/2-	M1+E2	1.0 +11-5	6.3 6		$\alpha(K)=3.3 \ 17; \ \alpha(L)=2.2 \ 8; \ \alpha(M)=0.57 \ 22; \ \alpha(N+)=0.16 \ 6 \ \alpha(N)=0.14 \ 6; \ \alpha(O)=0.022 \ 8; \ \alpha(P)=0.00038 \ 19 \ Multiple (K)=0.00038 \ 19$
	115.9 4	3.7 2	190.43	3/2-	74.57	3/2-	M1+E2 ^c	+0.405 ^c 15	4.13 8		Mult.: $\alpha(K)\exp\approx5.3$, $\alpha(L1)\exp=0.42$. $\alpha(K)=3.17$ 6; $\alpha(L)=0.736$ 17; $\alpha(M)=0.176$ 4; $\alpha(N+)=0.0513$ 12 $\alpha(N)=0.0434$ 10; $\alpha(O)=0.00747$ 17; $\alpha(P)=0.000364$ 7 Mult.: $\alpha(K)\exp\approx2.6$.
	117.2 4	1.0 3	174.32	(11/2+)	57.11	7/2-	M2+E3	0.47 19	35.2 22		δ: Other: 0.5 2. $\alpha(K)=18$ 3; $\alpha(L)=13$ 4; $\alpha(M)=3.3$ 10; $\alpha(N+)=1.0$ 3 $\alpha(N)=0.82$ 24; $\alpha(O)=0.14$ 4; $\alpha(P)=0.0041$ 5 Mult.: $\alpha(K)exp=20.7$. Other: $\alpha(K)exp=18$ 4 from I(117 γ) and I(delayed K x rays), assuming that all delayed platinum K x rays were due to conversion of the 117.3 γ (¹⁸⁶ Os(α ,3n γ)–1976Pi03). I _{γ} : from 1979Be51. This value agrees better with the intensity balance through the 174 level. Other value: 1.4 1 (1983Gn01).
	133.2 5	2.2 5	190.43	3/2-	57.11	7/2-	[E2]		1.56 4		α (K)=0.443 8; α (L)=0.842 19; α (M)=0.217 5; α (N+)=0.0613 14 α (N)=0.0530 12; α (O)=0.00831 19; α (P)=4.32×10 ⁻⁵ 8

From ENSDF

 $^{187}_{78}\text{Pt}_{109}\text{-}6$

					¹⁸⁷ Au ε d	ecay 1983	3Gn01,1992Ro15	(continued)	
						γ (¹⁸⁷ P	t) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	J_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^{&}	$\delta^{m{b}}$	α^{e}	Comments
									α (L)=0.842 <i>19</i> ; α (M)=0.217 <i>5</i> ; α (N+)=0.0613 <i>14</i> α (N)=0.0530 <i>12</i> ; α (O)=0.00831 <i>19</i> ; α (P)=4.32×10 ⁻⁵ 8
138.1 5	2.6 6	426.34	(3/2 ⁻)	288.33	5/2-	[M1]		2.65 5	$\alpha(K)=2.18 4; \alpha(L)=0.361 7; \alpha(M)=0.0835 15; \alpha(N+)=0.0246 5$
140.3 5	1.1 2	620.77	(1/2 ⁻ ,3/2 ⁻)	480.65	(1/2 ⁻ ,3/2 ⁻)	[M1]		2.53 5	$\alpha(N)=0.0207 4; \alpha(O)=0.00371 7; \alpha(P)=0.000250 5$ $\alpha(K)=2.09 4; \alpha(L)=0.345 6; \alpha(M)=0.0798 14;$ $\alpha(N+)=0.0235 4$
161.4 <i>4</i>	1.9 <i>1</i>	588.05	7/2+	426.53	(9/2+)	E2(+M1)	>4	0.79 <i>3</i>	$ \begin{array}{l} \alpha(\mathrm{N})=0.01974; \ \alpha(\mathrm{O})=0.003557; \ \alpha(\mathrm{P})=0.0002395\\ \alpha(\mathrm{K})=0.324; \ \alpha(\mathrm{L})=0.3558; \ \alpha(\mathrm{M})=0.090920;\\ \alpha(\mathrm{N}+)=0.02576 \end{array} $
164.9 <i>3</i>	4.0 4	190.43	3/2-	25.53	(5/2 ⁻)	M1+E2 ^C	-0.245 ^c 25	1.55 3	$\alpha(N)=0.0222 \ 5; \ \alpha(O)=0.00351 \ 7; \ \alpha(P)=3.1\times10^{-5} \ 4$ Mult.: $\alpha(K)$ exp=0.92, $\alpha(L1)$ exp ≈ 0.23 . $\alpha(K)=1.261 \ 23; \ \alpha(L)=0.224 \ 4; \ \alpha(M)=0.0523 \ 9; \ \alpha(N+)=0.0154 \ 3$ $\alpha(N)=0.01292 \ 22; \ \alpha(O)=0.00230 \ 4; \ \alpha(P)=0.000144$
									Mult.: $\alpha(K)\exp=1.3$, $\alpha(L1)\exp=0.3$, $\alpha(L2)\exp=0.07$, $\alpha(L3)\exp=0.08$. The $\alpha(K)\exp$ is consistent with M1, but $\alpha(L1)\exp$, $\alpha(L2)\exp$, and $\alpha(L3)\exp$ are significantly too large
165.8 5	1.0 3	426.34	(3/2 ⁻)	260.49	3/2-	[M1,E2]		1.1 5	$\alpha(K)=0.8 \ 6; \ \alpha(L)=0.27 \ 6; \ \alpha(M)=0.066 \ 17; \ \alpha(N+)=0.019 \ 5$
172.7 4	1.6 <i>1</i>	599.11	(5/2 ⁻)	426.34	(3/2 ⁻)	M1+E2	0.6 3	1.19 <i>15</i>	$\begin{aligned} &\alpha(N) = 0.016 \ 4; \ \alpha(O) = 0.0027 \ 5; \ \alpha(P) = 9.E - 5 \ 7 \\ &\alpha(K) = 0.92 \ 17; \ \alpha(L) = 0.211 \ 15; \ \alpha(M) = 0.051 \ 5; \\ &\alpha(N+) = 0.0147 \ 12 \\ &\alpha(N) = 0.0125 \ 11; \ \alpha(O) = 0.00215 \ 13; \ \alpha(P) = 0.000104 \end{aligned}$
X170.0.4	150								20 Mult.: α (K)exp=1, α (L1)exp<0.9, α (L2)exp \approx 0.1.
19.04 181.2 <i>3</i>	1.5 <i>2</i> 17.1 <i>12</i>	190.43	3/2-	9.27	3/2-	M1+E2 ^C	+4.8 ^c +23-12	0.536 24	α (K)=0.250 25; α (L)=0.215 4; α (M)=0.0548 10; α (N+)=0.0156 3
									α (N)=0.01340 25; α (O)=0.00213 4; α (P)=2.5×10 ⁻⁵
									Mult.: α (K)exp=0.17, α (L1)exp=0.028, α (L2)exp=0.11, α (L3)exp=0.08.
184.2 <i>4</i>	1.3 4	426.53	(9/2+)	242.36	(9/2+)	[M1,E2]		0.8 4	$\alpha(K)=0.6 4; \alpha(L)=0.181 22; \alpha(M)=0.044 8; \alpha(N+)=0.0128 19$
185.1 <i>4</i>	11.0 [‡] <i>10</i>	242.36	(9/2+)	57.11	7/2-	E1		0.0852 13	$\begin{aligned} \alpha(K) = 0.0698 \ 11; \ \alpha(L) = 0.0182 \ 13; \ \alpha(M) = 0.00273 \\ 5; \ \alpha(N+) = 0.000788 \ 12 \\ \alpha(N) = 0.000667 \ 10; \ \alpha(O) = 0.0001150 \ 18; \end{aligned}$

 \neg

					187 Au ε	decay 19	83Gn01,1992Ro15	(continued)	
						$\gamma(^{187}$	Pt) (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	$\delta^{\boldsymbol{b}}$	α ^e	Comments
106.0.4	24.0 [†] .15	260.40	2/2-		2/0-		0.0(α (P)=6.02×10 ⁻⁶ 9 Mult.: α (K)exp≈0.15 is consistent with E1 or E2. E1 is consistent with the level scheme.
186.0 4	24.9* 15	260.49	3/2	/4.5/	3/2	MI+E2°	-0.8° +/-4	0.9 3	$\alpha(\mathbf{K})=0.73; \alpha(\mathbf{L})=0.17075; \alpha(\mathbf{M})=0.0416; \alpha(\mathbf{N}+)=0.011914 \alpha(\mathbf{N})=0.010113; \alpha(\mathbf{O})=0.0017213; \alpha(\mathbf{P})=7.\mathrm{E}-546; \mathrm{Other:}\ 1.2+4-3.516$
190.4 <i>3</i>	18.8 <i>11</i>	190.43	3/2-	0.0	3/2-	M1+E2 ^c	>-17 ^c	0.426 7	Mult.: α (K)exp=0.51. α (K)=0.193 3; α (L)=0.176 3; α (M)=0.0449 7; α (N+)=0.01272 20 α (N)=0.01096 17; α (O)=0.00174 3; α (P)=1.84×10 ⁻⁵ 3
194.4 <i>4</i>	1.0 2	620.77	(1/2 ⁻ ,3/2 ⁻)	426.34	(3/2 ⁻)	(M1+E2)	<1.5	0.80 22	δ: -35 + 18-∞. Mult.: $α(K)exp=0.20$, $α(L1)exp=0.03$, $α(L2)exp=0.09$. α(K)=0.61 23; $α(L)=0.145 9$; $α(M)=0.035 4$; α(N+)=0.0101 9 α(N)=0.0086 8; $α(O)=0.00147 7$; $α(P)=7.E-5 3$
^x 204.5 4 206.3 4	3.6 <i>3</i> 1.9 2	632.88	(5/2 ⁺ ,7/2 ⁺)	426.53	(9/2+)	M1+E2	1.3 5	0.52 13	Mult.: $\alpha(K)\exp\approx0.7$. $\alpha(K)\exp\leq0.23$. $\alpha(K)=0.36\ 13;\ \alpha(L)=0.122\ 3;\ \alpha(M)=0.0300\ 13;\ \alpha(N+)=0.0086\ 3$ $\alpha(N+)=0.0074\ 3;\ \alpha(Q)=0.001225\ 23;\ \alpha(P)=3.0\times10^{-5}\ 16$
208.7 4	1.7‡ 2	635.02	3/2-	426.34	(3/2 ⁻)	M1(+E2)	<0.9	0.71 12	$\begin{array}{l} \alpha(N) = 0.0074 \ \text{S}, \ \alpha(O) = 0.001225 \ \text{25}, \ \alpha(1) = 5.9 \times 10^{-10} \\ \text{Mult.:} \ \alpha(K) = 0.37. \\ \alpha(K) = 0.56 \ 12; \ \alpha(L) = 0.1139 \ 24; \ \alpha(M) = 0.0270 \ 11; \\ \alpha(N+) = 0.00788 \ 25 \\ \alpha(N) = 0.00665 \ 25; \ \alpha(O) = 0.001162 \ 10; \ \alpha(D) = 6.4 \times 10^{-5} \\ \end{array}$
209.3 <i>3</i>	6.4 [‡] 5	260.49	3/2-	51.23	(1/2,3/2)-	M1+E2 ^c	-3.2 ^c 3	0.354 11	$a(K)=0.00005$ 25, $a(C)=0.001102$ 19, $a(T)=0.4\times10$ I5 Mult.: $\alpha(K)$ exp=0.62. $\alpha(K)=0.198$ 10; $\alpha(L)=0.1174$ 18; $\alpha(M)=0.0297$ 5;
									α (N+)=0.00845 <i>13</i> α (N)=0.00726 <i>12</i> ; α (O)=0.001170 <i>18</i> ; α (P)=2.01×10 ⁻⁵ <i>12</i> δ : +59 + ∞ -30 or -16 + 8 - ∞ if J(51.2)=1/2; δ =-3.2 <i>3</i> if J(51.2)=3/2 (1992Ro15). From α (K)exp=0.17 assuming 5% uncertainty yields δ =5.2 <i>11</i> .
213.6 3	9.3 6	288.33	5/2-	74.57	3/2-	M1+E2 ^C	-5.2 ^c 3	0.305	Mult.: $\alpha(K)\exp=0.17$. $\alpha(K)=0.162 4; \alpha(L)=0.1083 17; \alpha(M)=0.0275 5;$ $\alpha(N+)=0.00782 12$ $\alpha(N)=0.00672 11; \alpha(O)=0.001078 17;$ $\alpha(P)=1.60\times10^{-5} 4$ Mult.: $\alpha(K)\exp=0.12$ (1979Be51); $\alpha(K)\exp=0.10 5$
223.0 4	1.1 <i>1</i>	426.53	(9/2+)	203.4	(13/2+)	[E2]		0.249	(1983Gn01). $\alpha(K)=0.1290 \ 19; \ \alpha(L)=0.0908 \ 15; \ \alpha(M)=0.0231 \ 4; \ \alpha(N+)=0.00656 \ 11$

 ∞

From ENSDF

 $^{187}_{78}\mathrm{Pt}_{109}\text{-}8$

					187 Au ε decay	1983Gn01,1992Ro	15 (continued	1)
						$\gamma(^{187}\text{Pt})$ (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f J ²	\int_{f}^{π} Mult. $\&$	δ^b	α^{e}	Comments
				<u> </u>	<u> </u>			$\alpha(N)=0.00564\ 9;\ \alpha(O)=0.000903\ 15;\ \alpha(P)=1.249\times10^{-5}$
231.5 4	1.0 1	1114.9		883.17 5/2+				19
234.9 4	1.5 [‡] 2	260.49	3/2-	25.53 (5/2-)) [M1]		0.597	α (K)=0.492 8; α (L)=0.0808 12; α (M)=0.0187 3; α (N+)=0.00550 9
235.8 4	6.9 6	426.34	(3/2 ⁻)	190.43 3/2-	M1+E2 ^{<i>c</i>}	+0.30 ^c +6-5	0.559 15	α (N)=0.00462 7; α (O)=0.000831 13; α (P)=5.61×10 ⁻⁵ 9 α (K)=0.456 14; α (L)=0.0793 12; α (M)=0.0184 3; α (N+)=0.00543 8
								$\alpha(N)=0.00456$ 7; $\alpha(O)=0.000814$ 13; $\alpha(P)=5.18\times10^{-5}$
								Mult.: $\alpha(K)\exp=0.35$ (1979Be51); $\alpha(K)\exp=0.29$ 8 (1983Gn01).
236.6 4	3.0 [‡] 4	525.06	(3/2 ⁻)	288.33 5/2-				α (K)=0.1111 <i>17</i> ; α (L)=0.0714 <i>12</i> ; α (M)=0.0181 <i>3</i> ; α (N+)=0.00515 <i>8</i>
								α (N)=0.00443 7; α (O)=0.000711 11; α (P)=1.083×10 ⁻⁵ 16
007.1.4	10 1 10	200.22	5/2-	51.02 (1/0.2	(2)= (E2)		0.204	Mult.: $\alpha(K) \exp \approx 0.05$; $\alpha(K) \exp value supports E1.$
237.14	10.4+ 10	288.33	5/2	51.23 (1/2,3)	(E2)		0.204	$\alpha(K)=0.1105 \ I/; \ \alpha(L)=0.0708 \ II; \ \alpha(M)=0.0179 \ 3; \ \alpha(N+)=0.00510 \ 8$
								α (N)=0.00439 7; α (O)=0.000705 11; α (P)=1.078×10 ⁻⁵ 16
								Mult.: <i>α</i> (K)exp≈0.05 (1979Be51); <i>α</i> (K)exp=0.08 <i>3</i> (1983Gn01).
								δ: pure E2 if J(51.2)=1/2, -9.5 +4.5-73.1 if J(51.2)=3/2 (1992Ro15).
247.4 3	17.9 [‡] 14	507.92	1/2-	260.49 3/2-	M1+E2 ^{<i>c</i>}	+0.29 ^c 1	0.491 8	α (K)=0.401 6; α (L)=0.0691 10; α (M)=0.01607 24; α (N+)=0.00473 7
								$\alpha(N)=0.003976; \alpha(O)=0.00071071; \alpha(P)=4.56\times10^{-57}$ Mult.: $\alpha(K)\exp=0.30, \alpha(L1)\exp=0.05, \alpha(L3)\exp<0.01.$
250.2 4	1.2 3	883.17	5/2+	632.88 (5/2+,	,7/2 ⁺) [M1,E2]		0.34 17	$\alpha(K)=0.26\ 16;\ \alpha(L)=0.062\ 6;\ \alpha(M)=0.0150\ 7;\ \alpha(N+)=0.0044\ 3$
			o /o					α (N)=0.00370 <i>18</i> ; α (O)=0.00063 <i>7</i> ; α (P)=2.8×10 ⁻⁵ <i>19</i>
251.3 4	14.04 14	260.49	3/2-	9.27 3/2-	M1+E2 ^c	-13° +4-11	0.172 4	$\alpha(K)=0.0972\ 25;\ \alpha(L)=0.0561\ 9;\ \alpha(M)=0.01418\ 22;\ \alpha(N+)=0.00404\ 7$
								$\alpha(N)=0.003476; \alpha(O)=0.0005609; \alpha(P)=9.6\times10^{-6}3$ Mult., δ : $\alpha(K)\exp=0.12$ (1979Be51) assuming 5% uncertainty yields $\delta=3.43$.
252.2 4	6.8 [‡] 7	426.53	(9/2+)	174.32 (11/2*	+) [M1]		0.491	α (K)=0.405 6; α (L)=0.0663 10; α (M)=0.01531 23; α (N+)=0.00452 7
256 5 1	104	1101 65		845.0				α (N)=0.00379 6; α (O)=0.000682 10; α (P)=4.61×10 ⁻⁵ 7
260.6 3	5.6 4	260.49	3/2-	0.0 3/2-	E0+M1+E	2	≈3.9	Mult.: α (K)exp=3.4.

I

					187 Au ε decay	1983G	n01,1992Ro1	5 (continue	<u>d)</u>
						$\gamma(^{187}\text{Pt})$	(continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	J_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	δ^{b}	α ^e	$I_{(\gamma+ce)}d$	Comments
	_								δ: %E0≈74 (1979Be51); X(E0/E2)=0.3 +12-0.1 with δ=-0.6 +4-5 for M1+E2 (1992Ro15); penetration parameter λ ≈-80 with δ=-0.41 16 or λ ≈213 with δ=-0.96 17 (1992Ro15). α: ≈3.9 – Estimated by the evaluator using δ=-0.6 +4-5 and the Ω(E0) values for K,L1,L2 shells (obtained using Bricc).
262.7 4	2.5 2	288.33	5/2-	25.53 (5/2	⁻) E0+M1+E	2	≈6.3		Mult.: α (K)exp=5.4 (1979Be51); α (K)exp=5.7 14 (1983Gn01). δ: %E0≈83 (1979Be51); X(E0/E2)>0.17 with δ^2 <5 (1992Ro15); penetration parameter λ <-80 or>160 (1992Ro15). α : ≈6.3 – Estimated by the evaluator using δ ≈2.2 and the Ω(E0) values for K,L1,L2 shells (obtained using Bricc).
270.8 5	0.9 2	781.28	3/2-	510.42	[M1,E2]		0.27 14		$\alpha(K)=0.21 \ 13; \ \alpha(L)=0.048 \ 7; \ \alpha(M)=0.0116 \ 11; \ \alpha(N+)=0.0034 \ 4$
278.8 4	2.0 2	288.33	5/2-	9.27 3/2-	[M1]		0.373		$\alpha(N)=0.0028 \ 3; \ \alpha(O)=0.00049 \ 8; \ \alpha(P)=2.3\times10^{-5} \ 15 \ \alpha(K)=0.308 \ 5; \ \alpha(L)=0.0503 \ 8; \ \alpha(M)=0.01161 \ 17; \ \alpha(N+)=0.00343 \ 5$
×280.6.4	102								α (N)=0.00287 5; α (O)=0.000517 8; α (P)=3.50×10 ⁻³ 5
284.5 4	2.0 2	572.79	(1/2 ⁻ ,3/2 ⁻)	288.33 5/2-	[M1,E2]		0.23 12		$\alpha(K)=0.18 \ 11; \ \alpha(L)=0.041 \ 7; \ \alpha(M)=0.0098 \ 12; \ \alpha(N+)=0.0029 \ 4$
288.2 4	1.9 2	288.33	5/2-	0.0 3/2-	M1+E2		0.23 12		$\begin{aligned} &\alpha(N) = 0.0024 \ 3; \ \alpha(O) = 0.00042 \ 8; \ \alpha(P) = 2.0 \times 10^{-5} \ 13 \\ &\alpha(K) = 0.17 \ 11; \ \alpha(L) = 0.039 \ 7; \ \alpha(M) = 0.0094 \ 12; \\ &\alpha(N+) = 0.0027 \ 4 \end{aligned}$
294.9 <i>3</i>	4.5 3	883.17	5/2+	588.05 7/2+	M1+E2		0.21 11		$\alpha(N)=0.0023 \ 3; \ \alpha(O)=0.00040 \ 8; \ \alpha(P)=1.9\times10^{-5} \ 13$ Mult.: $\alpha(K)\exp\approx0.2.$ $\alpha(K)=0.16 \ 10; \ \alpha(L)=0.037 \ 7; \ \alpha(M)=0.0088 \ 12;$ $\alpha(N+)=0.0025 \ 4$
306.8 5	0.9 2	781.28	3/2-	474.42	[M1,E2]		0.19 10		$\begin{aligned} &\alpha(N)=0.0022 \ 3; \ \alpha(O)=0.00037 \ 8; \ \alpha(P)=1.8\times 10^{-5} \ 12 \\ &Mult.: \ \alpha(K)exp=0.2. \\ &\alpha(K)=0.15 \ 9; \ \alpha(L)=0.032 \ 7; \ \alpha(M)=0.0077 \ 13; \\ &\alpha(N+)=0.0022 \ 4 \end{aligned}$
312.1 4	3.8 <i>3</i>	572.79	(1/2 ⁻ ,3/2 ⁻)	260.49 3/2-	[M1]		0.274		$\alpha(N)=0.0019 \ 3; \ \alpha(O)=0.00033 \ 7; \ \alpha(P)=1.6\times10^{-5} \ 11$ $\alpha(K)=0.226 \ 4; \ \alpha(L)=0.0369 \ 6; \ \alpha(M)=0.00852 \ 13;$ $\alpha(N+)=0.00251 \ 4$
317.5 3	2.9 3	507.92	1/2-	190.43 3/2-	[M1,E2]		0.17 9		$\alpha(N)=0.00211 \ 3; \ \alpha(O)=0.000379 \ 6; \ \alpha(P)=2.57\times10^{-5} \ 4$ $\alpha(K)=0.13 \ 9; \ \alpha(L)=0.029 \ 7; \ \alpha(M)=0.0069 \ 12;$ $\alpha(N+)=0.0020 \ 4$ $\alpha(N)=0.0017 \ 3; \ \alpha(Q)=0.00030 \ 7; \ \alpha(P)=1.5\times10^{-5} \ 10$
334.1 4	0.8 <i>3</i>	1179.1		845.0					$\alpha(19) = 0.00175; \alpha(0) = 0.000507; \alpha(P) = 1.5 \times 10^{-5}10$
345.8 <i>3</i>	4.1 3	588.05	7/2+	242.36 (9/2	+) M1+E2	1.5 3	0.109 15		α (K)=0.083 <i>14</i> ; α (L)=0.0202 <i>12</i> ; α (M)=0.00487 <i>25</i> ; α (N+)=0.00141 <i>8</i>

					¹⁸⁷ Au a	e decay 19	983Gn01,1992	2Ro15 (cont	inued)
						$\gamma(^{18}$	⁷ Pt) (continue	ed)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^{&}	$\delta^{\boldsymbol{b}}$	α^{e}	Comments
351.7 3	11.7 6	426.34	(3/2 ⁻)	74.57	3/2-	M1+E2 ^c	+0.22 ^c 4	0.192 4	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.00120 \ 6; \ \alpha(\mathrm{O}) = 0.000205 \ 13; \ \alpha(\mathrm{P}) = 9.0 \times 10^{-6} \ 16 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.08 \ (1986 \mathrm{RoZI}); \ \alpha(\mathrm{K}) \exp \approx 0.2 \\ (1979 \mathrm{Be51}). \\ \alpha(\mathrm{K}) = 0.158 \ 3; \ \alpha(\mathrm{L}) = 0.0262 \ 5; \ \alpha(\mathrm{M}) = 0.00605 \ 10; \\ \alpha(\mathrm{N}+) = 0.00178 \ 3 \end{array} $
354.9 <i>4</i>	4.2 4	781.28	3/2-	426.34	(3/2 ⁻)	[M1,E2]		0.13 7	$\alpha(N)=0.001496\ 24;\ \alpha(O)=0.000269\ 5;\ \alpha(P)=1.79\times10^{-5}\ 4$ Mult.: $\alpha(K)$ exp=0.13. $\alpha(K)=0.10\ 6;\ \alpha(L)=0.021\ 6;\ \alpha(M)=0.0049\ 11;$ $\alpha(N+)=0.0014\ 4$ $\alpha(N)=0.0012\ 3;\ \alpha(O)=0.00021\ 6;\ \alpha(P)=1.1\times10^{-5}\ 7$
x356.1 4 369.2 3	1.1 <i>1</i> 10.2 7	426.34	(3/2 ⁻)	57.11	7/2-	E2		0.0544	$\alpha(K) = 0.0368 \ 6; \ \alpha(L) = 0.01333 \ 19; \ \alpha(M) = 0.00330 \ 5; \\ \alpha(N+) = 0.000947 \ 14 \\ \alpha(N) = 0.000810 \ 12; \ \alpha(O) = 0.0001338 \ 20; \ \alpha(P) = 3.79 \times 10^{-6} \\ 6 \\ M \ b = 0.004 \ (1070P, 51) \ (W) = 0.044 \ 2 \\ 0.0$
374.5 4	5.3 [‡] 5	635.02	3/2-	260.49	3/2-	M1+E2 ^C	+0.52 ^c 10	0.143 8	Mult.: α (K)exp=0.04 (1979Be51); α (K)exp=0.04 2 (1983Gn01). α (K)=0.117 7; α (L)=0.0204 7; α (M)=0.00475 15; α (N+)=0.00140 5 α (N)=0.00117 4; α (O)=0.000209 8; α (P)=1.31×10 ⁻⁵ 8
375.1 4	6.6 7	426.34	(3/2 ⁻)	51.23	(1/2,3/2)-	(M1+E2)	≈4.6	≈0.0572	Mult.: $\alpha(K)\exp<0.07$. $\alpha(K)\approx0.0400; \ \alpha(L)\approx0.01306; \ \alpha(M)\approx0.00321; \ \alpha(N+)\approx0.000924$ $\alpha(N)\approx0.000789; \ \alpha(O)\approx0.0001313; \ \alpha(P)\approx4.20\times10^{-6}$ Mult.: $\alpha(K)\exp=0.04 \ 3 \ (1983Gn01).$
x379.9 4 382.4 5	1.1 2 0.9 2	572.79	(1/2 ⁻ ,3/2 ⁻)	190.43	3/2-	[M1]		0.1587	$\alpha(K)=0.1311 \ 19; \ \alpha(L)=0.0213 \ 3; \ \alpha(M)=0.00490 \ 7; \\ \alpha(N+)=0.001446 \ 21 \\ \alpha(N)=0.001213 \ 18; \ \alpha(O)=0.000218 \ 4; \ \alpha(P)=1.481\times10^{-5}$
390.5 <i>3</i>	21.9 <i>15</i>	632.88	(5/2 ⁺ ,7/2 ⁺)	242.36	(9/2+)	E2		0.0467	22 $\alpha(K)=0.0322 5; \alpha(L)=0.01099 16; \alpha(M)=0.00271 4;$ $\alpha(N+)=0.000779 11$ $\alpha(N)=0.000665 10; \alpha(O)=0.0001104 16; \alpha(P)=3.34\times10^{-6}$ 5 M k = (K) = 0.022
x398.9 4 400.8 4	1.1 2 9.7 <i>11</i>	426.34	(3/2 ⁻)	25.53	(5/2-)	M1+E2 ^c	-0.37 ^c 7	0.128 5	$\alpha(K)=0.105 4; \alpha(L)=0.0177 5; \alpha(M)=0.00410 10; \alpha(N+)=0.00121 3 \alpha(N)=0.001013 24; \alpha(O)=0.000181 5; \alpha(P)=1.19×10-5 5 δ: or -7 +2-6 (1992Ro15); Other: 1.1 4 from \alpha(K)exp=0.07 2. Mult.: α(K)exp=0.07 2 (1983Gn01); α(K)exp=0.07 (1979Be51).$

						¹⁸⁷ Au	ε decay	1983Gn01,19	992Ro15 (conti	inued)
							$\underline{\gamma}(1)$	¹⁸⁷ Pt) (contir	nued)	
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. ^{&}	$\delta^{\boldsymbol{b}}$	$\alpha^{\boldsymbol{e}}$	Comments
	405.9 4	3.8 3	480.65	(1/2 ⁻ ,3/2 ⁻)	74.57	3/2-	M1		0.1353	$\alpha(K)=0.1118 \ 16; \ \alpha(L)=0.0181 \ 3; \ \alpha(M)=0.00417 \ 6; \ \alpha(N+)=0.001232 \ 18 \ \alpha(N+)=0.001232 $
	408.7 4	1.8 2	599.11	(5/2 ⁻)	190.43	3/2-	[M1]		0.1329	$\alpha(N)=0.001033 \ I5; \ \alpha(O)=0.000186 \ 3; \ \alpha(P)=1.262\times10^{-3} \ I8$ Mult.: $\alpha(K)=0.12 \ (1986RoZI).$ $\alpha(K)=0.1098 \ I6; \ \alpha(L)=0.0178 \ 3; \ \alpha(M)=0.00410 \ 6;$ $\alpha(N+)=0.001209 \ I8$
	413.7 3	6.2 5	588.05	7/2+	174.32	(11/2 ⁺)	(E2)		0.0400	$\alpha(N)=0.001014 \ 15; \ \alpha(O)=0.000183 \ 3; \ \alpha(P)=1.239\times10^{-3} \ 18 \ \alpha(K)=0.0281 \ 4; \ \alpha(L)=0.00905 \ 13; \ \alpha(M)=0.00222 \ 4; \ \alpha(N+)=0.000640 \ 9$
	416.9 <i>4</i>	2.0 2	426.34	(3/2 ⁻)	9.27	3/2-	(M1+E2)	≈0.2	≈0.1227	$\alpha(N)=0.000546 \ 8; \ \alpha(O)=9.10\times10^{-5} \ I3; \ \alpha(P)=2.93\times10^{-6} \ 5$ Mult.: $\alpha(K)\exp=0.06 \ (1986RoZI) \ implies \ M1+E2 \ (\delta=1.2)$ 3), decay scheme requires E2. $\alpha(K)\approx0.1012; \ \alpha(L)\approx0.01654; \ \alpha(M)\approx0.00382; \ \alpha(N+)\approx0.001126$ $\alpha(N)\approx0.0001651; \ \alpha(D)\approx0.0001608; \ \alpha(P)\approx1.140\times10^{-5}$
12	417.2 <i>4</i> 423.2 <i>4</i> 426.4 <i>3</i>	4.7 [‡] 5 3.2 3 27.0 14	474.42 474.42 426.34	(3/2 ⁻)	57.11 51.23 0.0	7/2 ⁻ (1/2,3/2) ⁻ 3/2 ⁻	M1+E2 ^c	+0.23 ^c 3	0.1146 20	$\alpha(K) = 0.0945 \ 17; \ \alpha(L) = 0.01547 \ 24; \ \alpha(M) = 0.00357 \ 6;$
										α (N+)=0.001054 1/ α (N)=0.000884 14; α (O)=0.0001589 25; α (P)=1.064×10 ⁻⁵ 19 Mult.: α (K)exp=0.11 (1979Be51); α (K)exp=0.09 3 (1983Gn01)
	429.4 3	9.0 7	480.65	(1/2 ⁻ ,3/2 ⁻)	51.23	(1/2,3/2) ⁻	M1(+E2)	<0.8	0.101 16	$\alpha(K)=0.083 \ 14; \ \alpha(L)=0.0141 \ 15; \ \alpha(M)=0.0033 \ 4; \ \alpha(N+)=0.00096 \ 10$
	433.5 4	2.6 4	507.92	1/2-	74.57	3/2-	[M1]		0.1136	$\alpha(N)=0.00081 \ 8; \ \alpha(O)=0.000144 \ 16; \ \alpha(P)=9.3\times10^{-6} \ 16$ Mult.: $\alpha(K)=0.0939 \ 14; \ \alpha(L)=0.01517 \ 22; \ \alpha(M)=0.00350 \ 5; \ \alpha(N+)=0.001032 \ 15$ $\alpha(N)=0.000866 \ 13; \ \alpha(O)=0.0001559 \ 23; \ \alpha(P)=1.058\times10^{-5}$
	435.8 <i>4</i> 444.7 <i>4</i>	1.0 2 0.9 2	510.42 635.02	3/2-	74.57 190.43	3/2 ⁻ 3/2 ⁻	[M1,E2]		0.07 4	$\alpha(K)=0.06 \ 4; \ \alpha(L)=0.011 \ 4; \ \alpha(M)=0.0025 \ 8; \\ \alpha(N+)=0.00073 \ 23 \\ \alpha(N)=0.00062 \ 49; \ \alpha(D)=0.00011 \ 4; \ \alpha(P)=6 \ F=6 \ 4$
	448.7 <i>4</i> 450.5 <i>4</i>	4.3 <i>3</i> 2.2 <i>3</i>	474.42 525.06	(3/2 ⁻)	25.53 74.57	(5/2 ⁻) 3/2 ⁻	[M1]		0.1026	$\alpha(K) = 0.0848 \ 12; \ \alpha(L) = 0.01369 \ 20; \ \alpha(M) = 0.00316 \ 5; \\ \alpha(N+) = 0.000931 \ 14 \\ \alpha(N) = 0.000781 \ 11; \ \alpha(O) = 0.0001406 \ 20; \ \alpha(P) = 0.55 \times 10^{-6} \ 14$
	450.7 <i>5</i> 453.4 <i>4</i>	1.0 <i>3</i> 1.9 <i>2</i>	507.92 510.42	1/2-	57.11 57.11	7/2 ⁻ 7/2 ⁻				$a_{(11)} - 0.000701711, a_{(0)} - 0.000140020; a_{(1)} = 9.33 \times 10^{-5} 14$
	456.5 4	4.0 [‡] 5	507.92	1/2-	51.23	(1/2,3/2)-	M1		0.0991	$\alpha(K)=0.0819$ 12; $\alpha(L)=0.01322$ 19; $\alpha(M)=0.00305$ 5;

				187	Au ε decay 19	83Gn01,1992	Ro15 (contin	nued)
					$\gamma(^{187}$	Pt) (continue	ed)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\boldsymbol{b}}$	α^{e}	Comments
								α (N+)=0.000899 <i>13</i> α (N)=0.000754 <i>11</i> ; α (O)=0.0001357 <i>20</i> ; α (P)=9.22×10 ⁻⁶ <i>13</i>
456.7 4	3.3 [‡] 4	883.17	5/2+	426.53 (9/2+)	E2		0.0310	Mult.: α (K)exp=0.09 for doublet (1979Be51). α (K)=0.0224 4; α (L)=0.00656 10; α (M)=0.001602 23;
								$\alpha(N+)=0.000462 / \alpha(N)=0.000393 6; \alpha(O)=6.60\times10^{-5} 10; \alpha(P)=2.35\times10^{-6} 4$ Mult: From $\alpha(K)$ exp=0.02 1 (1983Gn01), Other:
465.3 4	1.0.3	474.42		9.27 3/2-				$\alpha(\mathbf{K})\exp=0.09$ for doublet (1979Be51).
467.9 4	3.5 [‡] 4	525.06	(3/2 ⁻)	57.11 7/2-	E2		0.0292	α (K)=0.0212 <i>3</i> ; α (L)=0.00607 <i>9</i> ; α (M)=0.001481 22; α (N+)=0.000427 <i>6</i>
								α (N)=0.000364 6; α (O)=6.12×10 ⁻⁵ 9; α (P)=2.22×10 ⁻⁶ 4 Mult.: α (K)exp≈0.023 (1979Be51).
468.8 <i>4</i> 471.4 <i>3</i>	4.5 [‡] 5 9.8 7	1101.65 480.65	(1/2 ⁻ ,3/2 ⁻)	632.88 (5/2 ⁺ ,7/2 9.27 3/2 ⁻	2 ⁺) M1		0.0910	$\alpha(K)=0.0753 \ 11; \ \alpha(L)=0.01213 \ 18; \ \alpha(M)=0.00280 \ 4; \ \alpha(N+)=0.000825 \ 12$
								$\alpha(N)=0.000692 \ I0; \ \alpha(O)=0.0001246 \ I8; \ \alpha(P)=8.4/\times10^{-6}$ I2 Mult : $\alpha(K)=0.08$
473.8 4	2.3 [‡] 3	525.06	(3/2-)	51.23 (1/2,3/2)	- M1+E2	1.0 +4-3	0.059 11	$\alpha(K)=0.047 \ 10; \ \alpha(L)=0.0089 \ 11; \ \alpha(M)=0.00209 \ 23; \ \alpha(N+)=0.00061 \ 7$
								$\alpha(N)=0.00052 \ 6; \ \alpha(O)=9.1\times10^{-5} \ 11; \ \alpha(P)=5.3\times10^{-6} \ 11$ Mult.: $\alpha(K)$ exp=0.05.
474.3 4	3.2 [‡] 4	474.42		0.0 3/2-				
480.4 5	1.1 2	480.65	(1/2 ⁻ ,3/2 ⁻)	0.0 3/2-	[M1,E2]		0.06 3	$\alpha(K)=0.05 \ 3; \ \alpha(L)=0.009 \ 3; \ \alpha(M)=0.0020 \ 7; \ \alpha(N+)=0.00059 \ 20$
18231	20^{\ddagger}	111/ 0		632 88 (5/2+ 7/2	+)			$u(\mathbf{N})=0.00050\ 17;\ u(\mathbf{O})=9.\mathrm{E}-5\ 4;\ u(\mathbf{P})=5.\mathrm{E}-6\ 5$
482.3 4	$3.5^{\ddagger} 5$	507.92	1/2-	25.53 (5/2 ⁻)	[E2]		0.0270	$\alpha(K)=0.0198 \ 3; \ \alpha(L)=0.00552 \ 8; \ \alpha(M)=0.001343 \ 20; \ \alpha(N+_{*})=0.000388 \ 6$
484.8 3	6.0 4	510.42		25.53 (5/2 ⁻)				α (N)=0.000330 5; α (O)=5.56×10 ⁻⁵ 8; α (P)=2.08×10 ⁻⁶ 3 Mult.: α (K)exp=0.06.
492.9 <i>4</i>	2.2 5	781.28	3/2-	288.33 5/2-	[M1,E2]		0.05 3	$\alpha(K)=0.043\ 24;\ \alpha(L)=0.008\ 3;\ \alpha(M)=0.0019\ 7;$ $\alpha(N+)=0.00055\ 19$
100 2 4	152	600 60		100 42 2/2-	а			α (N)=0.00046 <i>16</i> ; α (O)=8.E-5 <i>3</i> ; α (P)=5.E-6 <i>3</i>
498.2 <i>4</i> 498.3 <i>4</i>	1.3 5 0.9 <i>4</i>	572.79	(1/2 ⁻ ,3/2 ⁻)	74.57 3/2 ⁻	(M1+E2) ^a		>0.67	Mult.: $\alpha(K)\exp>0.58$ (1979Be51); $\alpha(K)\exp=0.8 \ 3$ (1983Gn01); $\alpha(K)\exp=1.7$ for doublet (1986RoZI). 1979Be51 and 1983Gn01 expected E0 component (%E0 \approx 60 (1979Be51)) for the 498 γ due to high $\alpha(K)\exp$ value. Either of the E0 component or abnormal

From ENSDF

					¹⁸⁷ Au ε decay 19	83Gn01	,1992Ro15 (cor	ntinued)	
					$\gamma(^{18}$	⁷ Pt) (cor	ntinued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	E_{f}	J_f^{π} Mult. $\&$	$\delta^{\boldsymbol{b}}$	α^{e}	$I_{(\gamma+ce)}^{d}$	Comments
									M1 conversion in the mass region for this element is possible, however 1992Ro15 states it is difficult to determine unambiguously. Without a specific J^{π} assignment for this level, (M1+E2) is assigned by the evaluator. α : Estimated by the evaluator from α (K)exp>0.58.
498.6 <i>4</i>	0.9 4	507.92	1/2-	9.27 3/2-	- (M1+E2) ^{<i>a</i>}		>1.1		E _γ : 498.8 keV in 1979Be51 and 1992Ro15. Mult.: α (K)exp>0.95 (1979Be51). E0+M1+E2 proposed by 1979Be51 and 1983Gn01, %E0≈60 (1979Be51). 1992Ro15 ruled out E0 component from the spin assignments and attributed the large α (K)exp to an anomaly in the M1 conversion. Other: α (K)exp=1.7 for doublet (1986RoZI). α : Estimated by the evaluator from α (K)exp>0.95.
500.1 5	2.9 3	525.06	(3/2 ⁻)	25.53 (5/2	(⁻)				a. Estimated by the evaluator from a (R)exp> 0.55.
507.8 4	1.8 3	507.92	$1/2^{-}$	0.0 3/2	-				
515.8 4 x519.6 4	4.5 3	525.06	$(3/2^{-})$	9.27 3/2	-				
521.6 4	3.3 3	572.79	$(1/2^{-}, 3/2^{-})$	51.23 (1/2	,3/2) ⁻				
524.5 4	2.4 3	599.11	(5/2-)	74.57 3/2-	_				
526.9 <i>4</i>	1.1 2	1114.9		588.05 7/2*	÷				
542.1.3	1.4 3 6.2 4	599.11	$(5/2^{-})$	57.11 7/2	- (M1+E2)	< 0.8	0.055.9		$\alpha(K) = 0.045 \ 8: \ \alpha(L) = 0.0075 \ 9: \ \alpha(M) = 0.00174$
0.2110	0.2 1			<i></i>	(0.022 5		20; $\alpha(N+.)=0.00051 \ 6$ $\alpha(N)=0.00043 \ 5$; $\alpha(O)=7.7\times10^{-5} \ 10$; $\alpha(P)=5.0\times10^{-6} \ 9$ Mult.: $\alpha(K)\exp=0.05 \ (1979Be51)$; $\alpha(K)\exp=0.03$
546.3 <i>3</i>	10.5 6	620.77	(1/2 ⁻ ,3/2 ⁻)	74.57 3/2-	M1+E2	>0.7	0.034 14		(1930R021). $\alpha(K)=0.027 \ 13; \ \alpha(L)=0.0053 \ 15; \ \alpha(M)=0.0012$ $4; \ \alpha(N+)=0.00036 \ 10$ $\alpha(N)=0.00031 \ 9; \ \alpha(O)=5.4\times10^{-5} \ 16;$
									α (P)=3.0×10 ⁻⁶ 14 Mult.: α (K)exp=0.03 (1979Be51); α (K)exp=0.04 (1986BoZI)
547.6 5 ^x 552.4 3	1.6 2 1.6 3	599.11	(5/2 ⁻)	51.23 (1/2	,3/2)-				(
559.8 4	21.0 21	1341.07	1/2+	781.28 3/2	- (E1)		0.00652 10		$\begin{split} &\alpha{=}0.00652 \ 10; \ \alpha(\text{K}){=}0.00544 \ 8; \ \alpha(\text{L}){=}0.000832 \\ &I2 \ \alpha(\text{M}){=}0.000190 \ 3; \ \alpha(\text{N}{+}){=}5.57{\times}10^{-5} \ 8 \\ &\alpha(\text{N}){=}4.68{\times}10^{-5} \ 7; \ \alpha(\text{O}){=}8.31{\times}10^{-6} \ I2; \\ &\alpha(\text{P}){=}5.22{\times}10^{-7} \ 8 \\ &\text{Mult.:} \ \alpha(\text{K}){exp}{\approx}0.015, \text{ includes contamination} \\ &\text{from 560.5 transition.} \end{split}$

 $^{187}_{78}\text{Pt}_{109}\text{-}14$

From ENSDF

 $^{187}_{78}\text{Pt}_{109}\text{-}14$

					¹⁸⁷ Au	ε decay	1983Gn01,1992Ro1	5 (continued)	
						<u> </u>	(continued)		
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\boldsymbol{b}}$	α^{e}	Comments
	560.5 <i>4</i> 563.5 <i>4</i> 578.0 <i>4</i> 583.5 <i>5</i>	8.5 9 6.0 4 3.5 3 1.4 4	635.02 572.79 635.02 635.02	3/2 ⁻ (1/2 ⁻ ,3/2 ⁻) 3/2 ⁻ 3/2 ⁻	74.57 3/2 ⁻ 9.27 3/2 ⁻ 57.11 7/2 ⁻ 51.23 (1/2,3/2) ⁻	M1+E2	1.6 4	0.027 5	$\alpha(K)=0.021 4; \alpha(L)=0.0042 5; \alpha(M)=0.00099 11; \alpha(N+)=0.00029 4$
	590.9 <i>3</i>	7.1 5	781.28	3/2-	190.43 3/2-	M1+E2 ^c	+56 ^c +40-16	0.01668	$\begin{aligned} \alpha(N) &= 0.00024 \text{ s}, \ \alpha(O) = 4.3 \times 10^{-5} \text{ s}, \ \alpha(P) = 2.3 \times 10^{-5} \text{ s} \\ \text{Mult.: } \ \alpha(K) &= 0.01272 \ 18; \ \alpha(L) = 0.00302 \ 5; \ \alpha(M) = 0.000726 \\ 11; \ \alpha(N+) &= 0.000211 \ 3 \\ \alpha(N) &= 0.000179 \ 3; \ \alpha(O) &= 3.05 \times 10^{-5} \ 5; \\ \alpha(P) &= 1.346 \times 10^{-6} \ 19 \\ \text{Mult.: } \ \alpha(K) &= 0.022 \ (1979\text{Be}51); \ \alpha(K) &= 0.03 \\ (19986\text{RoZI}). \end{aligned}$
	595.3 4	4.3 <i>3</i>	620.77	(1/2 ⁻ ,3/2 ⁻)	25.53 (5/2 ⁻)	M1+E2	1.3 +6-4	0.029 6	δ: α (K)exp=0.022 gives δ≈1.5. α (K)=0.023 6; α (L)=0.0043 7; α (M)=0.00101 15; α (N+)=0.00029 5 α (N)=0.00025 4; α (O)=4.4×10 ⁻⁵ 7; α (P)=2.5×10 ⁻⁶ 6 Mult.: α (K)exp=0.024.
15	599.1 <i>3</i> 602.5 <i>3</i> 609.5 <i>3</i>	2.0 2 2.2 2 4.4 5	599.11 845.0 635.02	(5/2 ⁻) 3/2 ⁻	0.0 3/2 ⁻ 242.36 (9/2 ⁺) 25.53 (5/2 ⁻)	M1+E2 ^c	-0.66 ^c +19-23	0.037 5	$\alpha(K)=0.030 \ 4; \ \alpha(L)=0.0051 \ 5; \ \alpha(M)=0.00119 \ 11; \ \alpha(N+)=0.00035 \ 4 \ \alpha(N)=0.00029 \ 3; \ \alpha(O)=5.2\times10^{-5} \ 5; \ \alpha(P)=3.4\times10^{-6} \ 5 \ Mult.: \ \alpha(K)exp=0.036 \ (1979Be51); \ \alpha(K)exp=0.017 \ (1986RoZI). \ \delta: \ or \ -2.6 \ +8-18 \ (1992Ro15). \ \delta\approx0.3 \ from$
	611.3 <i>4</i> 614.1 <i>4</i> 620.8 <i>3</i>	2.0 <i>3</i> 4.0 <i>3</i> 25.6 <i>15</i>	620.77 688.68 620.77	(1/2 ⁻ ,3/2 ⁻) (1/2 ⁻ ,3/2 ⁻)	9.27 3/2 ⁻ 74.57 3/2 ⁻ 0.0 3/2 ⁻	M1+E2	<1.5	0.034 11	α (K)exp=0.036. α (K)=0.028 9; α (L)=0.0047 12; α (M)=0.00110 25; α (N+)=0.00032 8 α (N)=0.00027 7; α (O)=4.9×10 ⁻⁵ 12; α (P)=3.1×10 ⁻⁶ 10 δ : +0.24 3 if J(620)=3/2, 0 ±1.5 if J(620)=1/2
	625.8 <i>4</i> 635.0 <i>3</i>	1.3 <i>4</i> 15.2 <i>9</i>	635.02 635.02	3/2 ⁻ 3/2 ⁻	9.27 3/2 ⁻ 0.0 3/2 ⁻	M1+E2 ^c	+0.51 ^c 6	0.0361 12	(1992Ro15). Mult.: α (K)exp=0.030 (1979Be51); α (K)exp=0.032 (1986RoZI). α (K)=0.0297 <i>11</i> ; α (L)=0.00490 <i>14</i> ; α (M)=0.00113 <i>3</i> ; α (N+)=0.000333 <i>10</i> α (N)=0.000280 <i>8</i> ; α (O)=5.02×10 ⁻⁵ <i>15</i> ; α (P)=3.31×10 ⁻⁶ <i>12</i> Mult.: α (K)exp=0.028 (1979Be51); α (K)exp=0.036 (1986RoZI).

¹⁸⁷ Au ε decay 1983Gn01,1992Ro15 (continued)												
							$\gamma(^{187}\text{Pt})$	(continued)				
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	$\delta^{\boldsymbol{b}}$	α ^e	Comments			
x640.0 5 x642.8 5 663.2 4 683.3 4 688.6 4 697.1 4 706.0 3	$ \begin{array}{c} 1.5 \ 3 \\ 2.1 \ 4 \\ 2.4 \ 4 \\ 3.6 \ 4 \\ 1.4 \ 4 \\ 2.0 \ 4 \\ 22.0^{\ddagger} \ 15 \end{array} $	688.68 1304.09 688.68 1478.02 1341.07	3/2 ⁺ 1/2 ⁺	25.53 (5/ 620.77 (1/ 0.0 3/2 781.28 3/2 635.02 3/2	(2 ⁻) (2 ⁻ ,3/2 ⁻) 2 ⁻ 2 ⁻	E1		0.00409 6	α =0.00409 6; α (K)=0.00342 5; α (L)=0.000514 8; α (M)=0.0001173 17; α (N+)=3.44×10 ⁻⁵ 5			
706.7 4	8.0 [‡] 12	781.28	3/2-	74.57 3/2	2-				$\alpha(N)=2.89\times10^{-3} 4$; $\alpha(O)=5.15\times10^{-6} 8$; $\alpha(P)=3.32\times10^{-7} 5$ Mult.: $\alpha(K)\exp=0.0034$ (1979Be51); $\alpha(K)\exp=0.0034$ (1986RoZI).			
708.0 4 720.4 3	2.0 4 18.1 <i>13</i>	1341.07 1341.07	1/2* 1/2*	632.88 (5/ 620.77 (1/	/2 ⁻ ,7/2 ⁻) /2 ⁻ ,3/2 ⁻)	E1		0.00393 6	α =0.00393 6; α (K)=0.00329 5; α (L)=0.000493 7; α (M)=0.0001126 16; α (N+)=3.30×10 ⁻⁵ 5 α (N)=2.77×10 ⁻⁵ 4; α (O)=4.94×10 ⁻⁶ 7; α (P)=3.19×10 ⁻⁷ 5 Mult.: α (K)exp<0.006 (1979Be51); α (K)exp<0.003 (1986RoZI).			
724.3 <i>4</i> 730.3 <i>4</i>	1.4 2 8.5 7	781.28 781.28	3/2 ⁻ 3/2 ⁻	57.11 7/2 51.23 (1/	2 ⁻ '2,3/2) ⁻	M1+E2 ^C	<3.5 ^C	0.020 9	$\alpha(K)=0.017 \ 8; \ \alpha(L)=0.0029 \ 10; \ \alpha(M)=0.00066 \ 23; \ \alpha(N+)=0.00019 \ 7 \ \alpha(N)=0.00016 \ 6; \ \alpha(O)=2.9\times10^{-5} \ 11; \ \alpha(P)=1.8\times10^{-6} \ 9 \ \delta: +1.8 \ +3-2 \ or \ -0.01 \ 6 \ if \ J(51.2)=1/2; \ +2.3 \ +12-6 \ or \ +0.78 \ +25-19 \ if \ J(51.2)=3/2 \ (1992Ro15). \ \delta\approx0.4 \ from \ \alpha(K)exp=0.02. \ Mult.: \ \alpha(K)exp=0.02 \ (1979Be51); \ \alpha(K)exp=0.019 \ (1986RoZI).$			
x752.9 4 768.2 4 772.0 4 781.3 4 798.9 4 801.0 4 830.6 4	2.2 3 2.1 4 2.5 4 2.6 3 2.5 3 1.0 3	1341.07 781.28 781.28 1433.76 1433.76 1341.07	1/2 ⁺ 3/2 ⁻ 3/2 ⁺ 3/2 ⁺ 3/2 ⁺ 1/2 ⁺	572.79 (1/ 9.27 3/2 0.0 3/2 635.02 3/2 632.88 (5/ 510 42	$(2^{-},3/2^{-})$ $(2^{-},2^{-})$ $(2^{-},2^{-})$ $(2^{+},7/2^{+})$							
833.4 3	19.9 <i>12</i>	1341.07	1/2+	507.92 1/2	2-	E1		0.00297 5	α =0.00297 5; α (K)=0.00249 4; α (L)=0.000370 6; α (M)=8.44×10 ⁻⁵ 12; α (N+)=2.47×10 ⁻⁵ 4 α (N)=2.08×10 ⁻⁵ 3; α (O)=3.71×10 ⁻⁶ 6; α (P)=2.43×10 ⁻⁷ 4 Mult.: α (K)exp=0.0025 (1986RoZI); Others: α (K)exp<0.003 (1983Gn01), α (K)exp=0.008 (1979Be51).			
843.0 <i>4</i> 845.4 <i>4</i> ^x 856.2 <i>3</i>	2.1 <i>3</i> 1.2 <i>3</i> 1.4 2	1478.02 1478.02	3/2 ⁺ 3/2 ⁺	635.02 3/2 632.88 (5/	2 ⁻ (2 ⁺ ,7/2 ⁺)							
861.0 4 *872.8 4 890.4 4 *897.3 4	2.0 <i>4</i> 1.3 2 1.0 2 1.3 2	1433.76 1478.02	3/2 ⁺ 3/2 ⁺	572.79 (1/ 588.05 7/2	(2 ⁻ ,3/2 ⁻) 2 ⁺				α (K)exp=0.019 (1986RoZI).			

 $^{187}_{78}\text{Pt}_{109}\text{--}16$

	¹⁸⁷ Au ε decay 1983Gn01,1992Ro15 (continued)													
						$\gamma(^{18}$	⁷ Pt) (continued)							
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	J_i^π	E_{f}	J_f^π	Mult.&	$\alpha^{\boldsymbol{e}}$	Comments						
901.8 4	1.2.3	1328.29	$1/2^+, 3/2^+$	426.34	$(3/2^{-})$									
908.7 4	2.3 3	1335.0	1)-1	426.34	$(3/2^{-})$									
913.6 4	1.5 3	1388.07		474.42										
914.6 3	43.2 17	1341.07	1/2+	426.34	(3/2 ⁻)	E1	0.00250 4	$ \begin{array}{l} \alpha = 0.00250 \; 4; \; \alpha(\mathrm{K}) = 0.00210 \; 3; \; \alpha(\mathrm{L}) = 0.000309 \; 5; \; \alpha(\mathrm{M}) = 7.05 \times 10^{-5} \\ 10; \; \alpha(\mathrm{N}+) = 2.07 \times 10^{-5} \; 3 \\ \alpha(\mathrm{N}) = 1.737 \times 10^{-5} \; 25; \; \alpha(\mathrm{O}) = 3.11 \times 10^{-6} \; 5; \; \alpha(\mathrm{P}) = 2.05 \times 10^{-7} \; 3 \\ \mathrm{Mult.:} \; \alpha(\mathrm{K}) \mathrm{exp} = 0.0025 \; (1986 \mathrm{RoZI}); \; \mathrm{Other:} \; \alpha(\mathrm{K}) \mathrm{exp} < 0.005 \\ (1979 \mathrm{Be} 51). \end{array} $						
924.4 <i>4</i>	4.8 5	1398.8		474.42				Mult.: $\alpha(K) \exp = 0.02$.						
926.3 4	1.5 3	2027.98		1101.65										
937.8 3	4.74	1570.7	2/2+	632.88	$(5/2^+, 7/2^+)$									
959.2 4	1.5 3	1433.76	3/21	4/4.42	2/2-									
939.3 4 x063 5 4	5.0 J 1 5 3	908.7		9.27	5/2									
968 7 4	313	968 7		0.0	3/2-									
992.8.5	184	2094.65		1101.65	512									
997.4 4	1.0.3	1478.02	$3/2^{+}$	480.65	$(1/2^{-}, 3/2^{-})$									
^x 1002.9.3	1.2.2	1.,0102	0/=	100100	(1/2 ,0/2)									
1007.5 4	2.0 2	1433.76	$3/2^{+}$	426.34	$(3/2^{-})$									
^x 1015.2 4	1.5 2		- 1											
^x 1056.2 4	1.5 2													
^x 1065.6 5	1.6 3													
1067.8 5	1.6 2	1328.29	$1/2^+, 3/2^+$	260.49	3/2-									
1080.4 4	4.3 4	1341.07	$1/2^{+}$	260.49	3/2-									
^x 1085.6 4	1.2 3													
^x 1113.9 5	2.7 3													
^x 1124.6 4	2.5 3													
1151.0 5	1.0 3	1341.07	1/2+	190.43	3/2-									
^x 1160.8 3	1.6 2													
^1168.8 4	1.1 2	1500.0		106.24	(2/2-)									
11/1.03	3.33	1598.0		426.34	(3/2)									
11/0.0 3	$1.0 \ 2$ 12 2 7	1478.02	2/2+	200 22	5/2-	E 1		Mult: $\alpha(K) \approx 0.0010 (1096 \text{ p}_{\circ} \text{ T})$						
x1205 A A	173	14/0.02	5/2	200.33	5/2	EI		Mult $a(\mathbf{K}) \exp[-0.0019 (1980 \text{KOZ1})]$.						
1205.4 4	1.7 5	2094 65		883 17	5/2+									
x1217.8 3	2.6.3	2074.03		005.17	512									
1229.2.4	1.3 2	1304.09		74.57	$3/2^{-}$									
x1243.0 3	1.4 2	100 1107		, 1.07	-/-									
1253.2 4	2.4 2	1304.09		51.23	$(1/2,3/2)^{-}$									
^x 1263.2 4	1.6 3													
1266.5 3	34.4 21	1341.07	1/2+	74.57	3/2-	E1	0.001433 20	α =0.001433 20; α (K)=0.001171 17; α (L)=0.0001699 24; α (M)=3.86×10 ⁻⁵ 6; α (N+)=5.35×10 ⁻⁵						

From ENSDF

 $^{187}_{78}\text{Pt}_{109}\text{--}17$

					¹⁸⁷ Au ε de	cay 198	3Gn01,1992Ro1	15 (continued)
						γ (¹⁸⁷ I	Pt) (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult.&	α^{e}	Comments
1075.0.4		1220.20	1/2+ 2/2+	51.00	(1/2.2/2)-			$\alpha(N)=9.52\times10^{-6} \ 14; \ \alpha(O)=1.709\times10^{-6} \ 24; \ \alpha(P)=1.156\times10^{-7} \ 17; \\ \alpha(IPF)=4.21\times10^{-5} \ 6 \\ Mult.: \ \alpha(K)exp=0.001 \ (1979Be51); \ \alpha(K)exp=0.001 \ (1986RoZI).$
1277.2 4 1289.7 4 1290.6 5 1212 0 4	2.7 3 1.9 3 1.5 3	1328.29 1341.07 1364.90	1/2+,3/2+ 1/2+	51.23 51.23 74.57	$(1/2,3/2)^{-}$ $(1/2,3/2)^{-}$ $3/2^{-}$ $(1/2,2/2)^{-}$			
1319.0 3	25.7 <i>13</i>	1328.29	1/2+,3/2+	9.27	(1/2,3/2) 3/2 ⁻	E1	0.001361 <i>19</i>	$\begin{aligned} &\alpha = 0.001361 \ 19; \ \alpha(\text{K}) = 0.001091 \ 16; \ \alpha(\text{L}) = 0.0001581 \ 23; \\ &\alpha(\text{M}) = 3.59 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 7.61 \times 10^{-5} \\ &\alpha(\text{N}) = 8.86 \times 10^{-6} \ 13; \ \alpha(\text{O}) = 1.590 \times 10^{-6} \ 23; \ \alpha(\text{P}) = 1.078 \times 10^{-7} \ 16; \\ &\alpha(\text{IPF}) = 6.56 \times 10^{-5} \ 10 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp < 0.0014. \end{aligned}$
1328.0 4	1.5 5	2016.77	$(3/2^+, 5/2^+)$	688.68	2/2-			
1328.3 4 1331.9 3	1.5 5 100 5	1328.29	1/2 ⁺ ,5/2 ⁺ 1/2 ⁺	9.27	3/2 3/2 ⁻	E1	0.001346 <i>19</i>	α =0.001346 <i>19</i> ; α (K)=0.001073 <i>15</i> ; α (L)=0.0001554 <i>22</i> ; α (M)=3.53×10 ⁻⁵ <i>5</i> ; α (N+)=8.26×10 ⁻⁵ α (N)=8.71×10 ⁻⁶ <i>13</i> ; α (O)=1.563×10 ⁻⁶ <i>22</i> ; α (P)=1.061×10 ⁻⁷ <i>15</i> ; α (IPF)=7.22×10 ⁻⁵ <i>11</i> Mult : α (K)exp=0.001 (1979Be51); α (K)exp=0.001 (1986Bo7I)
1339.3 4	2.0 3	2027.98		688.68				
1341.0 <i>4</i>	2.0 4	1341.07	$1/2^{+}$	0.0	3/2-			
~1345.5 <i>3</i> 1355 4 <i>4</i>	3.4 5 4 1 6	1364 90		9 27	3/2-			
1359.0 4	10.2 6	1433.76	$3/2^{+}$	74.57	$3/2^{-}$			
1364.7 4	1.7 2	1364.90		0.0	3/2-			
1379.2 4	5.2 5	1388.07	(2/2 + 5/2 +)	9.27	$3/2^{-}$			
1383.04 138774	4.84	2016.77	$(3/2^{+}, 5/2^{+})$	0.0	$(5/2^{-}, 1/2^{-})$ $3/2^{-}$			
1403.3 5	2.3 4	1478.02	$3/2^{+}$	74.57	$3/2^{-}$			
1408.1 <i>4</i>	43.7 <i>31</i>	1433.76	3/2+	25.53	(5/2 ⁻)	E1	0.001275 18	$\begin{aligned} &\alpha = 0.001275 \ I8; \ \alpha(\mathbf{K}) = 0.000976 \ I4; \ \alpha(\mathbf{L}) = 0.0001409 \ 20; \\ &\alpha(\mathbf{M}) = 3.20 \times 10^{-5} \ 5; \ \alpha(\mathbf{N}+) = 0.000126 \\ &\alpha(\mathbf{N}) = 7.89 \times 10^{-6} \ II; \ \alpha(\mathbf{O}) = 1.418 \times 10^{-6} \ 20; \ \alpha(\mathbf{P}) = 9.65 \times 10^{-8} \ I4; \\ &\alpha(\mathbf{IPF}) = 0.0001172 \ I7 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.001. \end{aligned}$
1417.6 <i>4</i>	6.2 6	2016.77	$(3/2^+, 5/2^+)$	599.11	(5/2 ⁻)			
1424.5 5	3.0 3	1433.76	$3/2^+$	9.27	3/2-			
1426.6 4 x1429 7 4	7.16	1478.02	3/21	51.23	$(1/2,3/2)^{-}$			
1433.8 3	11.7 7	1433.76	$3/2^{+}$	0.0	3/2-			
1439.4 4	1.3 2	2038.62		599.11	(5/2 ⁻)			
1449.0 4	1.5 3	2082.06	2/2+	632.88	$(5/2^+, 7/2^+)$			
1452.5 4	20.5 12	2094.65	3/2	23.33 632.88	$(5/2^+, 7/2^+)$			
1477.9 4	2.8 3	1478.02	3/2+	0.0	3/2-			

 $^{187}_{78}\mathrm{Pt}_{109}\text{--}18$

¹⁸⁷Au ε decay **1983Gn01,1992Ro15** (continued)

$\gamma(^{187}\text{Pt})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
1483.0 4	1.5 3	2082.06		599.11	$(5/2^{-})$	
1491.9 4	5.5 5	2016.77	$(3/2^+, 5/2^+)$	525.06	$(3/2^{-})$	
1502.9 4	3.1 3	2027.98		525.06	$(3/2^{-})$	
1509.0 4	1.9 <i>3</i>	2016.77	$(3/2^+, 5/2^+)$	507.92	$1/2^{-}$	
1519.6 4	1.9 <i>3</i>	2027.98		507.92	$1/2^{-}$	
1535.8 4	1.7 2	2016.77	$(3/2^+, 5/2^+)$	480.65	$(1/2^{-}, 3/2^{-})$	
1547.1 5	1.2 3	2027.98		480.65	$(1/2^{-}, 3/2^{-})$	
1573.9 4	1.8 <i>3</i>	2082.06		507.92	$1/2^{-}$	
1584.2 4	2.3 3	2094.65		510.42		
1586.4 5	1.4 3	2094.65		507.92	$1/2^{-}$	
1598.1 5	1.2 3	1598.0		0.0	3/2-	
1601.8 4	2.4 3	2027.98		426.34	$(3/2^{-})$	
1612.3 4	2.4 3	2038.62		426.34	$(3/2^{-})$	
^x 1643.6 5	2.2 3					
^x 1666.8 4	2.2 3					
1726.8 <i>3</i>	2.6	1777.86		51.23	$(1/2, 3/2)^{-}$	E_{γ} , I_{γ} : From 1986RoZI. I γ normalized to I_{γ} =100 (1341 γ).
^x 1727.2 4	2.7 4					
1728.2 4	3.7 4	2016.77	$(3/2^+, 5/2^+)$	288.33	$5/2^{-}$	
1750.2 4	2.1 2	2038.62		288.33	5/2-	
1756.4 4	10.3 6	2016.77	$(3/2^+, 5/2^+)$	260.49	3/2-	
1767.6 5	5.3 4	2027.98		260.49	3/2-	
1768.4 <i>3</i>	2.7	1777.86		9.27	3/2-	E_{γ} , I_{γ} : From 1986RoZI. I γ normalized to I_{γ} =100 (1341 γ).
1778.2 4	6.1 4	2038.62		260.49	3/2-	
1806.2 4	6.4 4	2094.65		288.33	5/2-	
1821.8 4	2.5 3	2082.06		260.49	3/2-	
1826.1 4	3.0 3	2016.77	$(3/2^+, 5/2^+)$	190.43	3/2-	
1834.6 4	2.1 4	1886.0		51.23	$(1/2,3/2)^{-}$	
1837.8 5	2.3 4	2027.98		190.43	3/2-	
^x 1844.1 3	4.0 8			100 10	a /a_	
1848.0 4	3.6 4	2038.62		190.43	3/2-	
18/6.8 4	3.0 4	1886.0		9.27	3/2-	
1882.2.5	2.0 3	1891.3		9.27	3/2	
1891.2 4	3.5 3	1891.3		0.0	3/2	
1904.3 4	3.5 4	2094.65		190.43	3/2	
1910.1 3	1.2.5	21/0.46		260.49	3/2	
1961.1 4	4.8 3	1970.4		9.27	3/2	
1964.3 3	13.08	2038.62		/4.57	3/2 2/2-	
19/0.4 4	2.0 5	1970.4		0.0	$\frac{3}{2}$	
198/.5 3	14.8 9	2038.02	(2/2 + 5/2 +)	51.23 25.52	(1/2, 3/2)	
1991.4 4	212	2010.//	(3/2 , 3/2)	23.33	(3/2)	
2002.5 4	2.12	2027.98	(3/2+5/2+)	23.33 0.27	(3/2)	
2007.6 4	0.3 J 11 2 7	2010.77	(3/2, 3/2) (3/2+5/2+)	9.27	$\frac{3}{2}$	
2017.04	11.2 /	2010.77	(3 2,3 2)	0.0	5/2	

From ENSDF

γ ⁽¹⁸⁷Pt) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π
2020.2 4	3.2 3	2094.65		74.57	3/2-	2069.2 4	4.3 3	2094.65		25.53	$(5/2^{-})$	2106.7 4	2.1 4	2157.9	_	51.23	$(1/2, 3/2)^{-}$
2028.1 4	2.0 3	2027.98		0.0	$3/2^{-}$	2073.0 5	1.3 2	2082.06		9.27	$3/2^{-}$	2161.0 4	1.0 3	2170.46		9.27	3/2-
2030.7 <i>3</i>	14.2 9	2082.06		51.23	$(1/2, 3/2)^{-}$	2082.2 5	1.5 3	2082.06		0.0	3/2-	2519.6 4	1.1 2	2570.9		51.23	$(1/2, 3/2)^{-}$
2038.5 5	1.4 2	2038.62		0.0	3/2-	2085.7 4	11.4 7	2094.65		9.27	3/2-	2561.3 5	0.7 2	2570.9		9.27	3/2-
2056.6 4	13.9 8	2082.06		25.53	$(5/2^{-})$	2095.8 4	2.4 3	2170.46		74.57	3/2-	2571.2 5	2.5 4	2570.9		0.0	3/2-

[†] From 1983Gn01.

20

[‡] From analysis of coincidence data.

[#] From ce intensities renormalized to γ data of 1983Gn01.

[@] From intensity balance.

& From $\alpha(K)\exp$ data of 1979Be51, except otherwise noted. The evaluator has assigned a 20% uncertainty to the ce intensities (50% uncertainty for approximate values) for determining mixing ratios. For multipolarity assignment, 1983Gn01 relies on the ce values of 1979Be51 (high resolution). The 1983Gn01 ce data are in good agreement with 1979Be51. Only a couple of $\alpha(K)\exp$ values are listed along with 1979Be51 $\alpha(K)\exp$ values here to show the agreement. $\alpha(K)\exp$ data are from 1979Be51, except noted.

^{*a*} Transitions at 498.2 and 498.8 keV were observed with E0 admixture (1979Be51). Three gammas at 498.2, 498.3, and 498.6 keV were identified by 1983Gn01. The two higher-energy transitions were assumed by 1983Gn01 to contain the E0 admixture although there is no apparent reason to exclude the 498.2 transition.

^b Deduced by the evaluator from 1979Be51 and 1983Gn01 α (K)exp data, except otherwise noted.

^{*c*} Deduced from $\gamma\gamma(\theta)$ correlation coefficient A2 and A4 (1992Ro15). Sign was changed by the evaluator to follow the phase convention of Krane and Steffen (1970Kr03).

 d For absolute intensity per 100 decays, multiply by $\approx 0.09.$

^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $^{187}_{78}\mathrm{Pt}_{109}$

Decay Scheme (continued)

¹⁸⁷₇₈Pt₁₀₉

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

¹⁸⁷₇₈Pt₁₀₉

 $^{187}_{78}{\rm Pt}_{109}$

¹⁸⁷₇₈Pt₁₀₉

Decay Scheme (continued)

 $^{187}_{78}$ Pt $_{109}$