		Type		Author	History	Literature Cutoff Date		
		Full Evaluat	ion M.	S. Basunia	NDS 110.999 (2009)	1-Nov-2008		
$Q(\beta^{-})=-3.66\times$ Note: Current of	$10^3 \ 3$; S(n)=6 evaluation has	$.89 \times 10^3 4$; S(p used the follow	b)=4.80×1 wing Q re	$10^3 \ 3; \ Q(\alpha) =$	$4.55 \times 10^3 6$ 2012Wa3 10 40 6920 40 4830 30	8 9 <i>4520</i> 60 2003Au03.		
					¹⁸⁷ Pt Levels			
				Cross Re	eference (XREF) Flags			
			A B C	¹⁸⁷ Au ε d ¹⁷³ Yb(¹⁸ C ¹⁷⁶ Yb(¹⁶ C	ecay D 181 Ta(11 B),4n γ) E 186 Os(α ,31),5n γ)	,5ηγ) ηγ)		
E(level) [†]	J^{π}	T _{1/2} ^{<i>c</i>}	XREF		(Comments		
0.0 <i>j</i>	3/2-	2.35 h 3	ABCDE	$%ε+%β^+=$ μ=-0.401 · μ: weighted 0.408 8 · (2000Sat) ionizatio Q: weighted shielding spectroso (1989Du orientatio J ^π : spin from (1960Ba 5 (1963C Δ <r<sup>2>(¹⁸⁷I (2004An</r<sup>	100 4; Q=-0.99 4 d average of -0.397 5 (1' (1988Ed02, 1990Ed01-nu 58-Laser spectroscopy), - n mass spectroscopy). d average of -1.00 7 (19 g corrected), and -0.98 5 copy-Sternheimer shieldir 01-resonance ion spectro on with γ-detection), and m atomic beam (1975Ru 1973Se13. Other referen 43), 3 h <i>I</i> , 2.5 h 5 (1961) 6r22), and 2.1 h (1965Qa Pt, ¹⁹⁴ Pt)=-0.175 20 (199 14).	989Du01-resonance ion spectroscopy), iclear orientation NMR), $-0.399 \ 8$ -0.43 2 (1992Hi07-Laser resonance 92Hi07-Laser spectroscopy- Sternheimer (2000SaZQ-Laser ng corrected). Others: $-1.13 \ 5$ scopy), $-1.3 \ 3$ (1990Ed01-nuclear $-1.08 \ 6$ (2000Sa58-Laser spectroscopy). 06). Parity from Schmidt diagram. ces: 2.2 h (1960A120), 2.0 h 4 Kr02), 2.6 h 3, 2.0 h 3 (1962Gr27), 3.1 h 01). 2Hi07); $^{1/2}(^{187}Pt)=5.407 \ 4 \ fm$		
9.27 8	3/2-	≤ 1 ns	AB D	J ^{π} : From the same from the cases	the analysis of experiment 35.7 γ and 235.7 γ -181.1 γ	al and theoretical A ₂ values for the r cascades. $J^{\pi}=1/2^{-}$ was ruled out from r cascades. (1992Rol5)		
25.53 ^k 11 51.25 11 57.11 ^h 14 74.57 10	$(5/2^{-})^{\ddagger \#}$ $(1/2,3/2)^{-}$ $(7/2^{-})^{\ddagger \#}$ $3/2^{-}$	0.7 ns <i>1</i> 0.30 ns 8 18 ns 2 0.50 ns 6	AB D A ABCDE AB D	J^{π} : systema J^{π} : From the systematic systemat	atics from ¹⁹¹ Pt, 51.2 γ M to cascade analysis of 70 85.8 γ including the expe	$(1+E2 \text{ to } 3/2^-)$. $(1+E2 \text{ to } 3/2^-)$. $(1-1)^{-609.4\gamma}$, $(706.1\gamma-374.4\gamma)$, and rimental and theoretical A ₂ values The		
174.38 ⁸ 22 190.43 <i>11</i>	(11/2 ⁺) [‡] # 3/2 ⁻	311 µs 15	AB DE AB D	cascade $(^{187}$ Au ε $T_{1/2}$: from J^{π} : 115.9 γ 590.6 γ -1 and the σ (1992Ro	to $3/2^-$ state. $J^{\pi}=5/2^-$ w 81.1 γ correlation, constra- experimental and theoretic	vas ruled out from the analysis of aining the range of measured mixing ratio cal A ₂ values in ¹⁸⁷ Au ε decay		
203.24 ^{<i>f</i>} 24 204.3 ^{<i>j</i>} 3 225.7 ^{<i>h</i>} 4 242.35 20 260.50 12	$(13/2^+)^{@}$ $(7/2^-)^{@}$ $(9/2^-)^{@}$ $(9/2^+)$ $3/2^-$	≤0.5 ns 148 ps 7	ABCDE BD BCD A A	J ^π : 185.1γ J ^π : From tl	E1 to (7/2 ⁻). ne cascade analysis of 70	6.1γ -609.4 γ , 706.1 γ -374.4 γ , and		

Adopted Levels, Gammas (continued)

¹⁸⁷Pt Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
			374.4 γ -185.8 γ including the experimental and theoretical A ₂ values (¹⁸⁷ Au ε decay – 1992Ro15). 260.6 γ E0+M1+E2 to 3/2 ⁻ .
288.33 13	5/2 ^{-b}	A	J^{π} : From the cascade analysis of 1189.4 γ -213.6 γ including the experimental and theoretical A ₂ values (¹⁸⁷ Au ε decay – 1992Ro15), 262.7 γ E0+M1+E2 to (5/2 ⁻).
305.83 ^k 15	$(9/2^{-})^{@}$	ΒD	
426.34 11	$(3/2^{-})^{\&d}$	Α	
426.51 23	(9/2+)	Α	J^{π} : 456.7 γ M1 from (7/2 ⁺), 223 γ to (13/2 ⁺).
430.7 ^h 4	$(11/2^{-})^{@}$	BCD	
465.18 ⁸ 24	$(15/2^+)^{(a)}$	B DE	
474.42 16	(1/2 - 2/2 -)	A	π , 471 A, M1 to (1/2) and 420 A, M1(+E2) to (2/2)
480.0313	(1/2, 3/2) $(11/2)^{(0)}$	A	$J : 4/1.4\gamma$ M1 to $(1/2)$ and 429.4γ M1(+E2) to $(5/2)$.
$500.5^{\circ}5$	$(11/2)^{1}$	BCDE	
507.92 <i>13</i>	1/2-	A	J^{π} : 247.4 γ M1+E2 to 3/2 ⁻ state. A possible 3/2 ⁻ assignment is ruled out from the analysis of 833.0 γ -247.4 γ and 247.4 γ -185.8 γ cascade correlations including the experimental and theoretical A ₂ values (¹⁸⁷ Au ε decay – 1992Ro15).
510.42 18		Α	
525.06 16	$(3/2^{-})$	A	J^{π} : 467.9 γ (E2) to (7/2 ⁻), 473.8 γ M1+E2 to (1/2,3/2) ⁻ .
572.80 16	(1/2 ,3/2)	A	J [*] : 498.3γ (M1+E2) to (3/2 ,5/2). 1979Be51 and 1983Gn01 (^{A0} Au ε decay) expected E0 component (%E0≈60 (1979Be51)) for the 498γ due to high α (K)exp value (α (K)exp>0.58-1979Be51, α (K)exp=0.8 3–1983Gn01). Either of the E0 component or abnormal M1 conversion in the mass region for this element is possible, however 1992Ro15 states it is difficult to determine unambiguously. Without a specific J^{π} assignment for this level, (M1+E2) is assigned by the evaluator.
588.06 21	$(7/2^+)$	Α	J^{π} : 345.8 γ M1 to (9/2 ⁺), 413.7 γ to (3/2 ⁺).
599.11 14	(5/2)	A	J [*] : 542.1 γ M1+E2 to (//2), 547.6 γ to (1/2, 5/2), 172.7 γ to (3/2).
620.77 14	$(1/2, 3/2)^{(1/2+3/2+1)}$	A A	J^{*} : 620 γ M1+E2 to 3/2 , /20 γ E1 from (1/2') state. I^{π} : 390 5 γ E2 to (9/2 ⁺) 206 3 γ M1+E2 to (9/2 ⁺) 708 γ from (1/2 ⁺)
635.02.13	$(3/2^{-})^{\&}$	A	I^{π} : 609.5v M1+E2 to (5/2 ⁻), 706v E1 from (1/2 ⁺) state.
651.2^{h} 4	$(13/2^{-})^{@}$	BCD	
688.68 18	(3/2 ⁻)	Α	J ^{π} : if 498.2 transition is E0+M1+E2. See ¹⁸⁷ Au ε decay.
694.43 ^k 25	$(13/2^{-})^{@}$	ΒD	
781.28 13	$(3/2^{-})^{b}$	Α	J^{π} : 590.9 γ M1+E2 to 3/2 ⁻ state, 559.8 γ (E1) feeding from 1/2 ⁺ state.
845.0 3	(5/0+)	A	$T_{1} = 204.0$ $M_{1} = T_{2} + (7/2^{+}) + (7/2^{+}$
883.1/23	$(5/2^{+})$	A	$J'': 294.9\gamma M1+E2$ to $(1/2')$ state, 456.1 $\gamma E2$ to $(9/2')$ state.
880.8^{j} 4	$(15/2)^{\circ}$	B D	
894.5" 4	$(15/2)^{\circ}$	BCD	
902.88 3	$(19/2^+)^{a}$	B DE	
942.9f 3	$(21/2^+)^{@}$	BCDE	
968.7 3	(=1/=)	A	
1101.65 25		Α	
1114.9 <i>3</i>		Α	
1153.3 ⁿ 4	(17/2 ⁻)	BCD	
1161.0 [~] 4	(17/2 ⁻)	B D	
1212.5 4	$(19/2^+)^a$	B DE	
1304.10 <i>25</i> 1328.29 <i>18</i>	$(1/2^+, 3/2^+)$	A A	J^{π} : also (5/2 ⁺); 1319 γ E1 to 3/2 ⁻ state.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁸⁷Pt Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
1335.0.5		A	
1341.07 12	1/2+	A	J^{π} : Cascade analysis of the 706.1 γ -609.4 γ , 706.1 γ -374.4 γ , and 374.4 γ -185.8 γ including the experimental and theoretical A ₂ values supports the $J^{\pi}=1/2^+$ assignment (¹⁸⁷ Au ε decay-1992Ro15).
1349.8 ^j 4	$(19/2^{-})^{@}$	ВD	
1364.90 22		Α	
1388.07 24		Α	
1398.8 5		Α	
1400.2 11		E	
1409.1 4	$(17/2^{-})$	ΒD	J ^{π} : Assigned by 2007Zh09 (¹⁸ O,4n γ); 904 γ to (17/2 ⁺), 944 γ to (15/2 ⁺).
1418.1 5	(21/2) ^{‡#}	ΒD	
1430.0 ^h 5	$(19/2^{-})^{@}$	ΒD	
1433.76 15	$(3/2^+)$	Α	J^{π} : 1408 γ E1 to (5/2 ⁻).
1442.6 6	(21/2 ⁻)	В	J^{π} : Assigned by 2007Zh09, 281 γ Q to (17/2 ⁻).
1453.0 <mark>8</mark> 3	$(23/2^+)^{@}$	B DE	
1478.02 15	$(3/2^+)$	Α	J^{π} : γ 's to (5/2 ⁻) and (5/2 ⁺ ,7/2 ⁺), log <i>ft</i> =5.92 from 1/2 ⁺ .
1496.2 ^{<i>J</i>} 4	$(25/2^+)^{@}$	BCDE	
1570.7 4		Α	
1598.0 3		A	
1010.2 3	(21/2-)	вр	
1657.903	(21/2)	B DE	
1691.6 ^k 6	(21/2 ⁻)	ΒD	
1717.1 ^{<i>n</i>} 6	$(21/2^{-})^{\textcircled{0}}$	BD	
1777.86 23	(22/21)	A	
1/89.8 4	$(23/2^+)$	ВD	J [*] : Assignment from (¹¹ B,5n γ) as a band member. 23/2 in (¹⁰ O,4n γ).
1839.9" 4	(23/2)	B DE	
1869.6 ^J 7	$(23/2^{-})^{\textcircled{0}}$	B D	
1886.0 3		A	
1891.5 4	(25/2-)	A	
1896.4° 5	(25/2)	N B D	
1970.4 5	$(25/2)^{\ddagger \#}$	חס	
1987.87	$(23/2)^{4}$	вр	
2006.77 0	$(23/2)^{\circ}$	B D	π_{-} and the (2.27 $\pi/2^{-}$) in the same 187 Au e decay (108 (D - 71)) detect
2016.// 14	$(3/2^{+}, 5/2^{+})$	A	J [*] : and also $(3/2, 7/2)$ in the same ¹⁰⁷ Au ε decay (1986KoZI) dataset.
2027.98 10		A	
2070.7^{k} 6	$(25/2^{-})^{@}$	R D	
2082.06 16	(23/2)	A	
2091 68 4	$(27/2^+)^{@}$	BCDE	XREF: C(2094)
2094.65 16	(=:/=)	A	
2120.4 6		В	
2142.8 ^{<i>f</i>} 4	$(29/2^+)^{@}$	B DE	
2158.0 5		Α	
2170.46 22		Α	
2174.9 11	$(27/2^{-})^{a}$	E	
2230.8 ¹ 5	$(27/2^{-})^{\textcircled{0}}$	ΒD	
2263.8 ^h 6	$(25/2^{-})^{\textcircled{@}}$	ΒD	
2322.6 8	$(25/2^{-})$	В	J ^{π} : Assigned by 2007Zh09 (¹⁸ O,4n γ); 631 γ Q to (21/2 ⁻).
2393.4 ^j 8	$(27/2^{-})^{@}$	ΒD	
2424.8 5	(27/2) ^{‡#}	ΒD	

Adopted Levels, Gammas (continued)

¹⁸⁷Pt Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
2433.6 ⁱ 5	$(29/2^{-})^{@}$	ΒD	
2482.3 ^k 8	$(29/2^{-})^{@}$	ΒD	
2493.1 ^h 7	$(27/2^{-})^{@}$	ΒD	
2518.6 9	(29/2) ^{‡#}	ΒD	
2518.8 5	(29/2) ^{‡#}	В	
2570.9 <i>3</i>		Α	
2608.6 7	(31/2 ⁻) ^{‡#}	ΒD	
2626.5 5	(29/2) ^{‡#}	ΒD	
2632.5 7	$(31/2^{-})^{\ddagger\#}$	ΒD	
2654.1 9	(29/2) ^{‡#}	ΒD	
2744.6 <mark>8</mark> 5	$(31/2^+)^{@}$	ΒD	
2745.2 ^h 7	$(29/2^{-})^{@}$	ΒD	
2781.6 6	$(31/2^{-})$	В	
2792.9 [°] 6	$(31/2^{-})^{\textcircled{0}}$	B D	π_{2}^{2} 21/2- : (11p.5.)
2852.29	(22/2+)	вр	$J^{-1}: 31/2$ in (1. B, $3n\gamma$).
2852.47 5	$(33/2^{+})^{\pm}$	вр	
28/1.2 0	$(31/2)^{\ddagger}$	ם ש	
2900.00	$(31/2)^{\circ}$	ם ש	
$2913.0^{\circ} 10$ 2042 7 $\frac{i}{7}$	$(31/2^{-})^{a}$	ע ש ת פ	
2942.7	$(33/2^{-})^{(0)}$	שם ת פ	
$3013.2^{h}.8$	$(33/2^{-})^{(31/2^{-})}^{(31/2^{-})}$	R D	
3017.4.7	$(31/2)^{\ddagger\#}$	R	
3038.4 7	$(33/2)^{\ddagger\#}$	B	
3039.2.6	$(33/2)^{\ddagger\#}$	BD	
3068.5 7	$(35/2^{-})^{\ddagger\#}$	B D	J^{π} : (31/2 ⁻) in (¹¹ B.5ny).
3075.7 8	$(33/2)^{\ddagger\#}$	B	
3116.4 6	(1)	ΒD	J^{π} : 33/2 ⁺ in (¹¹ B,5n γ).
3211.3 6	(33/2) ^{‡#}	ΒD	
3287.2 ^h 9	$(33/2^{-})^{@}$	В	
3297.4 ⁱ 8	$(35/2^{-})^{@}$	ΒD	
3332.5 <mark>8</mark> 6	$(35/2^+)^{@}$	B D	
3414.7 9	(35/2) ^{‡#}	В	
3488.5 ^{<i>f</i>} 6	$(37/2^+)^{(a)}$	ΒD	
3506.5 8	+#	В	
3532.1 7	(35/2)+#	ΒD	
3552.3 ¹ 9	$(37/2^{-})^{\textcircled{0}}$	B D	
357516	(35/2+)#	ם תק	
3598.4.7	$(33/2^{+})$	BD	I^{π} : Assigned by 20077b09 (¹⁸ 0 4ny) 746y 0 to (33/2 ⁺)
3606.6 ^k 11	$(37/2^{-})^{@}$	- B D	
3613.2 6	(35/2) ^{‡#}	— <i>–</i> В	
3617.2 9	$(39/2^{-})^{\ddagger\#}$	B	
3720.7 9	(37/2) ^{‡#}	B	
	x- 11 /		

Adopted Levels, Gammas (continued)

¹⁸⁷Pt Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
3784.5 10	(37/2) ^{‡#}	В	
3839.2 8		В	
3847.7 <mark>8</mark> 6	$(39/2^+)^{@}$	В	
3889.0 ⁱ 10	$(39/2^{-})^{@}$	ΒD	J^{π} : 41/2 ⁻ in (¹¹ B,5n γ).
3976.5 8		ΒD	J^{π} : 39/2 ⁺ in (¹¹ B,5n γ).
3992.2 7	37/2 ^{‡#}	В	
4045.3 ^f 8	$(41/2^+)^{@}$	ΒD	
4075.9 10	(39/2) ^{‡#}	В	
4249.8 ⁱ 10	$(41/2^{-})^{@}$	ΒD	
4256.0 9		В	
4307.2 ^k 12	$(41/2^{-})^{@}$	ΒD	
4318.2 9		В	J^{π} : $J^{\pi} = 41/2^+$ in (¹⁸ O,4n γ).
4554.5 ⁱ 11	$(43/2^{-})^{@}$	ΒD	J^{π} : 45/2 ⁻ in (¹¹ B,5n γ).
4723.3 ^f 9	$(45/2^+)^{@}$	ΒD	
4986.3 ⁱ 12	$(45/2^{-})^{@}$	ΒD	
5274.0 ⁱ 12	$(47/2^{-})^{@}$	ΒD	
5510 3 <i>^f</i> 11	$(49/2^+)^{@}$	ВD	XREF D(5515)

[†] From a least-squares adjustment to the γ -ray energies. Level energies of (¹¹B,5n γ) are consistently higher by about 3 MeV.

[±] A γ (M2+E3)- γ (M1)- γ (M1+E2) cascade connects the 3/2⁻ g.s. to the 25.5, 57.1, and 174.4 excited states establishing their J^{π} as 5/2⁻, (7/2⁻), and (11/2⁺), respectively.

- [#] Assigned by 2007Zh09 as member of band structure. Please see (^{18}O ,4n γ).
- [@] From band assignment.
- & M1 transition to $(5/2^-)$ and log $ft \le 7$ from $1/2^+$.
- ^{*a*} Spin proposed by 1978DaZC on the basis of similarity to bands in ¹⁹¹Pt and ¹⁹³Pt.
- ^b From $\gamma\gamma(\theta)$ and deduced γ -ray multipolarities (¹⁸⁷Au ε decay).
- ^c From ¹⁸⁷Au ε decay (1979Be51), unless otherwise indicated.
- ^d The 369.2 γ and 375.1 γ with α (K)exp values of 0.04 2 and 0.04 3, respectively, from this level have dominant E2 contribution. The 369.2 γ feeds 7/2⁻ state and 375.1 γ feeds (1/2,3/2)⁻ state. Assuming an 914.6 γ E1 feeding from the 1341-keV level J^{π} =1/2⁺ to this level, J^{π} =3/2⁻ is assigned (¹⁸⁷Au ε decay). 1983Gn01 assigned J^{π} =5/2⁻ for this state.
- ^{*e*} The DCO ratio=0.96 9 of the 715 γ , feeding the 21/2⁺ state, indicates that the transition would be a stretched Q transition or a dipole transition that would connect levels with same spin values. Considering the observation of parallel 755.2 γ feeding the 19/2⁺ state, J^{π} =21/2⁻ is assigned ((¹⁸O,4n γ)-2007ZhO9).
- ^{*f*} Band(A): configuration= ν I_{13/2}: $\alpha = 1/2^+$.
- ^g Band(B): configuration= ν I_{13/2}: $\alpha = 1/2^{-}$.
- ^{*h*} Band(C): configuration= ν 7/2⁻[503].
- ^{*i*} Band(D): configuration= $\nu i_{13/2}^2 \nu J(p_{3/2} \text{ or } f_{5/2})$.
- ^{*j*} Band(E): configuration= $\nu 3/2^{-}[512]$.
- ^{*k*} Band(F): configuration= $\nu 1/2^{-}$ [521].

					Adopt	ed Levels, Gammas	(continued)	
						γ ⁽¹⁸⁷ Pt)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments
9.27	3/2-	9.3 1	100	0.0 3/2-	M1		304 11	$\alpha(M)=234 \ 9; \ \alpha(N+)=69.2 \ 25$ $\alpha(N)=58.0 \ 21; \ \alpha(O)=10.4 \ 4; \ \alpha(P)=0.700 \ 25$ B(M1)(W.u.)>0.085
25.53	(5/2 ⁻)	25.6 5	100	0.0 3/2-	M1+E2	≈0.5	≈6.8×10 ²	$\alpha(L) \approx 5.1 \times 10^2$; $\alpha(M) \approx 130$; $\alpha(N+) \approx 36$ $\alpha(N) \approx 31$; $\alpha(O) \approx 4.9$; $\alpha(P) \approx 0.0312$ B(M1)(W.u.) ≈ 0.0022 ; B(E2)(W.u.) $\approx 3.4 \times 10^2$
51.25	(1/2,3/2)-	25.7 5	≈0.008	25.53 (5/2 ⁻)	[E2]		3.1×10 ³ 4	B(E2)(W.u.)≈19 α (L)=2.31×10 ³ 24; α (M)=5.9×10 ² 6; α (N+)=165 17 α (N)=143 15; α (Q)=22.0 23; α (P)=0.0176 18
		51.2 4	100 17	0.0 3/2-	M1+E2	0.10 1	9.3 4	$\alpha(L)=7.1 \ 3; \ \alpha(M)=1.67 \ 7; \ \alpha(N+)=0.490 \ 18 \ \alpha(N)=0.412 \ 15; \ \alpha(O)=0.073 \ 3; \ \alpha(P)=0.00442 \ 12 \ B(M1)(W.u.)=0.051 \ 19; \ B(E2)(W.u.)=8.E+1 \ 4$
57.11	(7/2 ⁻)	31.6 4	100	25.53 (5/2 ⁻)	M1		34.7 15	α (L)=26.7 <i>11</i> ; α (M)=6.2 <i>3</i> ; α (N+)=1.82 <i>8</i> α (N)=1.53 <i>7</i> ; α (O)=0.275 <i>12</i> ; α (P)=0.0185 <i>8</i> B(M1)(W.u.)=0.00109 <i>14</i>
74.57	3/2-	49.0 <i>4</i>	39 5	25.53 (5/2-)	M1+E2	0.25 6	16 4	α (L)=13 3; α (M)=3.0 7; α (N+)=0.88 19 α (N)=0.75 17; α (O)=0.13 3; α (P)=0.00482 19 B(M1)(W,u,)=0.010 5; B(E2)(W,u,)=1.0×10 ² 7
		65.3 4	≈100	9.27 3/2-	M1+E2	0.18 2	4.96 23	B(M1)(W.u.) \approx 0.10; B(E2)(W.u.) \approx 32 α (L)=3.80 18; α (M)=0.90 5; α (N+)=0.262 13 α (N)=0.222 11; α (Q)=0.0387 17; α (P)=0.00212 5
		74.5 4	≈37	0.0 3/2-	M1+E2	0.11 5	2.95 20	B(M1)(W.u.) \approx 0.027; B(E2)(W.u.) \approx 2 α (L)=2.27 <i>15</i> ; α (M)=0.53 <i>4</i> ; α (N+)=0.156 <i>11</i> α (N)=0.131 <i>10</i> ; α (O)=0.0233 <i>15</i> ; α (P)=0.00147 <i>4</i>
174.38	(11/2 ⁺)	117.2 4	100	57.11 (7/2 ⁻)	M2+E3	0.47 19	35.2 22	$\alpha(K)=18 \ 3; \ \alpha(L)=13 \ 4; \ \alpha(M)=3.3 \ 10; \ \alpha(N+)=1.0 \ 3 \ \alpha(N)=0.82 \ 24; \ \alpha(O)=0.14 \ 4; \ \alpha(P)=0.0041 \ 5 \ B(M2)(W,u,)=0.0031 \ 6; \ B(E3)(W,u,)=31 \ 21$
190.43	3/2-	115.9 4	19.7 <i>11</i>	74.57 3/2-	M1+E2	+0.405 15	4.13 8	$\alpha(K)=3.17 6; \alpha(L)=0.736 17; \alpha(M)=0.176 4; \alpha(N+)=0.0513 12 \alpha(N)=0.0434 10; \alpha(O)=0.00747 17; \alpha(P)=0.000364 7$
		133.2 <i>5</i> 164.9 <i>3</i>	12 <i>3</i> 21.3 <i>21</i>	57.11 (7/2 ⁻) 25.53 (5/2 ⁻)	M1+E2	-0.245 25	1.55 3	α (K)=1.261 23; α (L)=0.224 4; α (M)=0.0523 9; α (N+)=0.0154 3
		181.2 <i>3</i>	91 6	9.27 3/2-	M1+E2	+4.8 +23-12	0.536 24	$ \begin{aligned} &\alpha(N) = 0.01292 \ 22; \ \alpha(O) = 0.00230 \ 4; \ \alpha(P) = 0.000144 \ 3 \\ &\alpha(K) = 0.250 \ 25; \ \alpha(L) = 0.215 \ 4; \ \alpha(M) = 0.0548 \ 10; \\ &\alpha(N+) = 0.0156 \ 3 \end{aligned} $
		190.4 <i>3</i>	100 6	0.0 3/2-	M1+E2	>-17	0.426 7	$ \begin{aligned} &\alpha(N) = 0.01340 \ 25; \ \alpha(O) = 0.00213 \ 4; \ \alpha(P) = 2.5 \times 10^{-5} \ 3\\ &\alpha(K) = 0.193 \ 3; \ \alpha(L) = 0.176 \ 3; \ \alpha(M) = 0.0449 \ 7; \\ &\alpha(N+) = 0.01272 \ 20 \end{aligned} $
								α (N)=0.01096 <i>17</i> ; α (O)=0.00174 <i>3</i> ; α (P)=1.84×10 ⁻⁵ <i>3</i> δ : -35 + <i>18</i> - ∞ .

$^{187}_{78}\text{Pt}_{109}\text{-}6$

From ENSDF

 $^{187}_{78}\text{Pt}_{109}\text{-}6$

L

					Adopted Leve	ls, Gammas (con	tinued)	
					$\gamma(^{187}$	Pt) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^{b}	Comments
203.24	$(13/2^+)$	29.0 5	100	174.38 (11/2+)				
204.3	$(7/2^{-})$	178.8 [#] 5	45 [#] 14	25.53 (5/2-)	D^a			
		204.2 [#] 5	100 [#] 31	0.0 3/2-	Q^a			
225.7	$(9/2^{-})$	168.7 ^w 4	100	$57.11 (7/2^{-})$	D^{a}		296 21	(1) 200 16 (0.1) 75 4 (0.1) 20 0 12
242.55	$(9/2^{+})$	39.14	≈0.16	$203.24 (13/2^{+})$	[E2]		380 21	$\alpha(L)=290\ 10;\ \alpha(M)=75\ 4;\ \alpha(N+)=20.9\ 12$ $\alpha(N)=18.1\ 10;\ \alpha(O)=2.80\ 15;\ \alpha(P)=0.00231\ 12$
								$B(E2)(W.u.)>1.1\times10^2$
		68.1 4	≈12	174.38 (11/2+)	M1+E2	0.45 8	7.4 12	α (L)=5.6 9; α (M)=1.38 23; α (N+)=0.40 7
								$\alpha(N)=0.34$ 6; $\alpha(O)=0.056$ 9; $\alpha(P)=0.00165$ 10 $P(M1)(W_{12})>0.0041$; $P(E2)(W_{12})>55$
		185.1 4	100.9	57.11 (7/2 ⁻)	E1		0.0852 13	$\alpha(K)=0.0698$ 11: $\alpha(L)=0.01182$ 18: $\alpha(M)=0.00273$ 5:
		10011	100 /	0/111 (//2)	21		010002 10	$\alpha(N+)=0.000788 \ 12$
								α (N)=0.000667 <i>10</i> ; α (O)=0.0001150 <i>18</i> ;
								$\alpha(P) = 6.02 \times 10^{-6} \ 9$
260 50	3/2-	186.0.4	100.6	71 57 3/2-	$M1\pm F2$	$-0.8 \pm 7 - 4$	0.0.3	$B(E1)(W.u.) > 2.4 \times 10^{-5}$ $\alpha(K) = 0.7 3; \alpha(L) = 0.170 15; \alpha(M) = 0.041.6;$
200.50	5/2	100.0 4	100 0	14.51 5/2	1411 122	0.0 17 4	0.9 5	$\alpha(N+)=0.0119 \ 14$
								α (N)=0.0101 13; α (O)=0.00172 13; α (P)=7.E-5 4
		200.2.2	25 5 20	51.05 (1/0.0/0)-			0.054.11	B(M1)(W.u.)=0.003 <i>3</i> ; B(E2)(W.u.)=3.E+1 <i>3</i>
		209.3 3	25.7 20	51.25 (1/2,3/2)	M1+E2	-3.2 3	0.354 11	$\alpha(K)=0.198 \ I0; \ \alpha(L)=0.1174 \ I8; \ \alpha(M)=0.0297 \ 3; \ \alpha(N+1)=0.00845 \ I3$
								$\alpha(N=0.00726\ 12:\ \alpha(O)=0.001170\ 18;$
								$\alpha(P)=2.01\times10^{-5}$ 12
								$B(M1)(W.u.)=9.1\times10^{-5} 20; B(E2)(W.u.)=8.6 11$
								δ : +59 + ∞ -30 or -16 +8- ∞ if J(51.2)=1/2; δ =-3.2 3
								If $J(51.2)=3/2$ (1992R015). From $\alpha(K)\exp=0.1/2$ assuming 5% uncertainty yields $\delta=5.2.11$
		234.9 4	6.0 8	25.53 (5/2-)				B(M1)(W.u.)=0.00015 3
		251.3 4	56 6	9.27 3/2-	M1+E2	-13 +4-11	0.172 4	$\alpha(K)=0.0972$ 25; $\alpha(L)=0.0561$ 9; $\alpha(M)=0.01418$ 22;
								α (N+)=0.00404 7
								$\alpha(N)=0.00347.6; \alpha(O)=0.000560.9; \alpha(P)=9.6\times10^{-6}.3$ B(M1)(Wu)=8 E=6.5: B(E2)(Wu)=8.2.12
		260.6 3	22.5 16	0.0 3/2-	E0+M1+E2		≈3.9	δ : %E0 \approx 74 (1979Be51); X(E0/E2)=0.3 +12-0.1 with
								$\delta = -0.6 + 4 - 5$ for M1+E2 (1992Ro15); penetration
								parameter $\lambda \approx -80$ with $\delta = -0.41$ 16 or $\lambda \approx 213$ with
								$\delta = -0.96$ 17 (1992R015). $\alpha \approx 3.9$ – Estimated by the evaluator using $\delta = -0.6$
								$+4-5$ and the $\Omega(E0)$ values for K,L1,L2 shells
								(obtained using Bricc).
288.33	5/2-	97.7 4	14 <i>3</i>	190.43 3/2-	M1+E2	1.0 + 11 - 5	6.3 6	$\alpha(K)=3.3 \ 17; \ \alpha(L)=2.2 \ 8; \ \alpha(M)=0.57 \ 22;$

From ENSDF

 $^{187}_{78} Pt_{109}\text{--}7$

 \neg

 $^{187}_{78}\mathrm{Pt}_{109}$ -7

						Adopted Le	vels, Gammas ((continued)	
						$\gamma(1)$	⁸⁷ Pt) (continued	d)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments
288.33	5/2-	213.6 3	89 6	74.57	3/2-	M1+E2	-5.2 3	0.305	$\begin{array}{l} \alpha(\mathrm{N}+)=0.16\ 6\\ \alpha(\mathrm{N})=0.14\ 6;\ \alpha(\mathrm{O})=0.022\ 8;\ \alpha(\mathrm{P})=0.00038\ 19\\ \alpha(\mathrm{K})=0.162\ 4;\ \alpha(\mathrm{L})=0.1083\ 17;\ \alpha(\mathrm{M})=0.0275\ 5;\\ \alpha(\mathrm{N}+)=0.00782\ 12 \end{array}$
		237.1 4	100 10	51.25	(1/2,3/2)-	(E2)		0.204	$\begin{aligned} &\alpha(N) = 0.00672 \ 11; \ \alpha(O) = 0.001078 \ 17; \ \alpha(P) = 1.60 \times 10^{-5} \ 4 \\ &\alpha(K) = 0.1105 \ 17; \ \alpha(L) = 0.0708 \ 11; \ \alpha(M) = 0.0179 \ 3; \\ &\alpha(N+) = 0.00510 \ 8 \\ &\alpha(N) = 0.00439 \ 7; \ \alpha(O) = 0.000705 \ 11; \ \alpha(P) = 1.078 \times 10^{-5} \ 16 \end{aligned}$
		262.7 4	24.0 19	25.53	(5/2 ⁻)	E0+M1+E2		≈6.3	δ: pure E2 if J(51.2)=1/2, -9.5 +4.5-73.1 if J(51.2)=3/2 (1992Ro15). δ: %E0≈83 (1979Be51); X(E0/E2)>0.17 with δ^2 <5 (1992Ro15); penetration parameter λ<-80 or >160 (1992Ro15).
		278.8 <i>4</i> 288.2 <i>4</i>	19.2 <i>19</i> 18.3 <i>19</i>	9.27 0.0	3/2 ⁻ 3/2 ⁻	M1+E2		0.23 12	α : \approx 6.3 – Estimated by the evaluator using δ \approx 2.2 and the Ω (E0) values for K,L1,L2 shells (obtained using Bricc). α (K)=0.17 <i>11</i> ; α (L)=0.039 7; α (M)=0.0094 <i>12</i> ; α (N+)=0.0027 4
305.83 426.34	(9/2 ⁻) (3/2 ⁻)	280.3 [#] 1 138.1 5 165.8 5	100 [#] 9.6 22 3.7 11	25.53 288.33 260.50	(5/2 ⁻) 5/2 ⁻ 3/2 ⁻	Q ^a			$\alpha(N)=0.0023 \ 3; \ \alpha(O)=0.00040 \ 8; \ \alpha(P)=1.9\times10^{-5} \ 13$
		235.8 4	25.6 22	190.43	3/2-	M1+E2	+0.30 +6-5	0.559 15	$\alpha(K)=0.456 \ 14; \ \alpha(L)=0.0793 \ 12; \ \alpha(M)=0.0184 \ 3; \ \alpha(N+)=0.00543 \ 8$
		351.7 3	43.3 22	74.57	3/2-	M1+E2	+0.22 4	0.192 4	$ \begin{aligned} \alpha(N) = 0.00456 \ 7; \ \alpha(O) = 0.000814 \ I3; \ \alpha(P) = 5.18 \times 10^{-5} \ I7 \\ \alpha(K) = 0.158 \ 3; \ \alpha(L) = 0.0262 \ 5; \ \alpha(M) = 0.00605 \ I0; \\ \alpha(N+) = 0.00178 \ 3 \end{aligned} $
		369.2 <i>3</i>	38 <i>3</i>	57.11	(7/2 ⁻)	E2		0.0544	$\begin{aligned} &\alpha(\text{N}) = 0.001496 \ 24; \ \alpha(\text{O}) = 0.000269 \ 5; \ \alpha(\text{P}) = 1.79 \times 10^{-5} \ 4 \\ &\alpha(\text{K}) = 0.0368 \ 6; \ \alpha(\text{L}) = 0.01333 \ 19; \ \alpha(\text{M}) = 0.00330 \ 5; \\ &\alpha(\text{N}+) = 0.000947 \ 14 \end{aligned}$
		375.1 4	24 3	51.25	(1/2,3/2)-	(M1+E2)	≈4.6	≈0.0572	$\begin{aligned} &\alpha(N)=0.000810 \ 12; \ \alpha(O)=0.0001338 \ 20; \ \alpha(P)=3.79\times10^{-6} \ 6\\ &\alpha(K)\approx0.0400; \ \alpha(L)\approx0.01306; \ \alpha(M)\approx0.00321; \\ &\alpha(N+)\approx0.000924 \end{aligned}$
		400.8 4	36 4	25.53	(5/2 ⁻)	M1+E2	-0.37 7	0.128 5	$ \begin{array}{l} \alpha(\mathrm{N}) \approx 0.000789; \ \alpha(\mathrm{O}) \approx 0.0001313; \ \alpha(\mathrm{P}) \approx 4.20 \times 10^{-6} \\ \alpha(\mathrm{K}) = 0.105 \ 4; \ \alpha(\mathrm{L}) = 0.0177 \ 5; \ \alpha(\mathrm{M}) = 0.00410 \ 10; \\ \alpha(\mathrm{N}+) = 0.00121 \ 3 \end{array} $
		416.9 <i>4</i>	7.4 7	9.27	3/2-	(M1+E2)	<0.7	0.112 <i>15</i>	$\begin{aligned} &\alpha(\text{N}) = 0.001013 \ 24; \ \alpha(\text{O}) = 0.000181 \ 5; \ \alpha(\text{P}) = 1.19 \times 10^{-5} \ 5 \\ &\delta: \ \text{or} \ -7 \ +2-6; \ \text{Other:} \ 1.1 \ 4 \ \text{from} \ \alpha(\text{K}) \text{exp} = 0.07 \ 2 \ (^{187}\text{Au} \\ &\varepsilon \ \text{decay}). \\ &\alpha(\text{K}) = 0.092 \ 13; \ \alpha(\text{L}) = 0.0155 \ 14; \ \alpha(\text{M}) = 0.0036 \ 3; \end{aligned}$

 ∞

From ENSDF

 $^{187}_{78}\mathrm{Pt}_{109}\text{--}8$

					A	dopted Leve	ls, Gamma	s (continued)			
						$\gamma(^{187}$	Pt) (continu	ued)			
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments		
426.34	(3/2 ⁻)	426.4 3	100 5	0.0 3/	s/2 ⁻	M1+E2	+0.23 3	0.1146 20	$ \begin{array}{c} \alpha(\mathrm{N}+)=0.00106 \ 9 \\ \alpha(\mathrm{N})=0.00089 \ 8; \ \alpha(\mathrm{O})=0.000159 \ 14; \ \alpha(\mathrm{P})=1.03\times10^{-5} \ 15 \\ \alpha(\mathrm{K})=0.0945 \ 17; \ \alpha(\mathrm{L})=0.01547 \ 24; \ \alpha(\mathrm{M})=0.00357 \ 6; \\ \alpha(\mathrm{N}+)=0.001054 \ 17 \\ \alpha(\mathrm{N})=0.000884 \ 14; \ \alpha(\mathrm{O})=0.0001589 \ 25; \ \alpha(\mathrm{P})=1.064\times10^{-5} \\ 19 \end{array} $		
426.51	(9/2+)	184.2 <i>4</i> 223.0 <i>4</i> 252.2 <i>4</i>	19 6 16.2 <i>15</i> 100 <i>10</i>	242.35 (9 203.24 (1 174.38 (1	9/2 ⁺) 13/2 ⁺) 11/2 ⁺)						
430.7	(11/2 ⁻)	205.0 [#] 5 373.5 [#] 5	100 [#] 29 66 [#] 20	225.7 (9 57.11 (7	9/2 ⁻) 7/2 ⁻)	D ^a Q ^a					
465.18	(15/2 ⁺)	$262.0^{\#}$ <i>1</i> 290.7 [#] <i>2</i>	100 [#] 25 31 [#] 9	203.24 (1 174.38 (1	13/2 ⁺) 11/2 ⁺)	D ^a Q ^a					
474.42		417.2 <i>4</i> 423.2 <i>4</i> 448.7 <i>4</i> 465.3 <i>4</i> 474.3 <i>4</i>	100 <i>11</i> 68 6 91 6 21 6 68 9	57.11 (7 51.25 (1 25.53 (5 9.27 3/ 0.0 3/	$7/2^{-})$ $1/2,3/2)^{-}$ $5/2^{-})$ $5/2^{-}$						
480.65	(1/2 ⁻ ,3/2 ⁻)	405.9 4	39 <i>3</i>	74.57 3/	5/2-	M1		0.1353	$\alpha(K)=0.1118 \ 16; \ \alpha(L)=0.0181 \ 3; \ \alpha(M)=0.00417 \ 6; \ \alpha(N+)=0.001232 \ 18 \ \alpha(N)=0.001232 \ 15 \ \alpha(D)=0.000186 \ 2; \ \alpha(D)=1.262\times10^{-5} \ 18$		
		429.4 3	92 7	51.25 (1	1/2,3/2)-	M1(+E2)	< 0.8	0.101 16	$\alpha(N)=0.001053 \ 12, \ \alpha(C)=0.000180 \ 3, \ \alpha(1)=1.202\times10^{-178} \ \alpha(K)=0.083 \ 14; \ \alpha(L)=0.0141 \ 15; \ \alpha(M)=0.0033 \ 4; \ \alpha(N+)=0.00096 \ 10$		
		471.4 <i>3</i>	100 7	9.27 3/	6/2-	M1		0.0910	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.00081 \ 8; \ \alpha(\mathrm{O}) = 0.000144 \ 16; \ \alpha(\mathrm{P}) = 9.3 \times 10^{-6} \ 16 \\ \alpha(\mathrm{K}) = 0.0753 \ 11; \ \alpha(\mathrm{L}) = 0.01213 \ 18; \ \alpha(\mathrm{M}) = 0.00280 \ 4; \\ \alpha(\mathrm{N}+) = 0.000825 \ 12 \\ \alpha(\mathrm{N}) = 0.000692 \ 10; \ \alpha(\mathrm{O}) = 0.0001246 \ 18; \ \alpha(\mathrm{P}) = 8.47 \times 10^{-6} \ 12 \end{array} $		
		480.4 5	11.2 20	0.0 3/	6/2-						
500.3	$(11/2^{-})$	194.5 [#] 5	8 [#] 3	305.83 (9	9/2-)	D ^a					
		296.0 [#] 2	100 [#] 30	204.3 (7	7/2-)	Q ^a					
505.09	$(17/2^+)$	40 [#]	4.0.0 [#]	465.18 (1	$15/2^+$)	20					
507.92	1/2-	301.8" <i>1</i> 247.4 <i>3</i>	100" 100 8	203.24 (1 260.50 3/	13/2 ⁺) 5/2 ⁻	Q ^{<i>u</i>} M1+E2	+0.29 1	0.491 8	$\alpha(K)=0.401\ 6;\ \alpha(L)=0.0691\ 10;\ \alpha(M)=0.01607\ 24;$ $\alpha(N+)=0.00473\ 7$ $\alpha(N)=0.00397\ 6;\ \alpha(Q)=0.000710\ 11;\ \alpha(P)=4\ 56\times10^{-5}\ 7$		
		317.5 <i>3</i> 433.5 <i>4</i> 450 7 5	16.2 <i>17</i> 14.5 <i>22</i>	190.43 3/ 74.57 3/	$\frac{3}{2^{-}}$						
		456.5 <i>4</i>	22 <i>3</i>	51.25 (1	$1/2, 3/2)^{-1}$	M1		0.0991	$\alpha(K)=0.0819$ 12; $\alpha(L)=0.01322$ 19; $\alpha(M)=0.00305$ 5;		

L

					1	Adopted Lev	els, Gammas	(continued)	
						$\gamma(^{18}$	³⁷ Pt) (continue	<u>d)</u>	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments
									$ \begin{array}{c} \alpha(\text{N+}) = 0.000899 \ 13 \\ \alpha(\text{N}) = 0.000754 \ 11; \ \alpha(\text{O}) = 0.0001357 \ 20; \ \alpha(\text{P}) = 9.22 \times 10^{-6} \\ 13 \end{array} $
507.92	1/2-	482.4 <i>4</i> 498.6 <i>4</i>	20 <i>3</i> 5.0 22	25.53 9.27	$(5/2^{-})$ $3/2^{-}$	(M1+E2)		>1.1	α : Estimated by the evaluator from α (K)exp>0.95 (¹⁸⁷ Au ε decay).
510.42		507.8 <i>4</i> 435.8 <i>4</i> 453.4 <i>4</i>	10.1 <i>17</i> 17 <i>3</i> 32 <i>3</i>	0.0 74.57 57.11	3/2 ⁻ 3/2 ⁻ (7/2 ⁻)				
525.06	(3/2 ⁻)	484.8 <i>3</i> 236.6 <i>4</i>	100 7 67 9	25.53 288.33	(5/2) $5/2^{-}$	E2		0.206	$\alpha(K)=0.1111 \ 17; \ \alpha(L)=0.0714 \ 12; \ \alpha(M)=0.0181 \ 3; \ \alpha(N+)=0.00515 \ 8 \ \alpha(N)=0.00443 \ 7; \ \alpha(Q)=0.000711 \ 11; \ \alpha(P)=1.083\times10^{-5} \ 16$
		450.5 4	49 7	74.57	3/2-				
		467.9 <i>4</i>	78 9	57.11	(7/2 ⁻)	E2		0.0292	$\alpha(K)=0.0212 \ 3; \ \alpha(L)=0.00607 \ 9; \ \alpha(M)=0.001481 \ 22; \ \alpha(N+)=0.000427 \ 6 \ \alpha(N)=0.000264 \ 6; \ \alpha(Q)=6.12)(10^{-5} \ 0; \ \alpha(D)=2.22)(10^{-6} \ 4)$
		473.8 4	51 7	51.25	(1/2,3/2)-	M1+E2	1.0 +4-3	0.059 11	$\alpha(N)=0.000364~0; \ \alpha(O)=0.12\times10^{-9}, \ \alpha(Y)=2.22\times10^{-4} 4$ $\alpha(K)=0.047~10; \ \alpha(L)=0.0089~11; \ \alpha(M)=0.00209~23;$ $\alpha(N+)=0.00061~7$
									α (N)=0.00052 6; α (O)=9.1×10 ⁻⁵ 11; α (P)=5.3×10 ⁻⁶ 11
		500.1 5	64 7	25.53	$(5/2^{-})$				
572.90	(1/2 - 2/2 -)	515.84	100 /	9.27	3/2				
572.80	(1/2 , 3/2)	284.5 4	33 3 62 5	288.33	$\frac{3}{2}$				
		382 / 5	15 3	100.30	3/2 $3/2^{-}$				
		498.3 <i>4</i>	15 7	74.57	3/2-	(M1+E2)		>0.67	α : Estimated by the evaluator from α (K)exp>0.58 (¹⁸⁷ Au ε decay).
		521.6 4	55 <i>5</i>	51.25	$(1/2,3/2)^{-}$				
		563.5 4	100 7	9.27	3/2-				
588.06	$(7/2^+)$	161.4 <i>4</i>	30.6 16	426.51	(9/2+)	E2(+M1)	>4	0.79 3	$\alpha(K)=0.32$ 4; $\alpha(L)=0.355$ 8; $\alpha(M)=0.0909$ 20; $\alpha(N+)=0.0257$ 6
		345.8 <i>3</i>	66 5	242.35	(9/2+)	M1+E2	1.5 3	0.109 15	$\begin{array}{l} \alpha(\mathrm{N})=0.0222\ 5;\ \alpha(\mathrm{O})=0.00351\ 7;\ \alpha(\mathrm{P})=3.1\times10^{-5}\ 4\\ \alpha(\mathrm{K})=0.083\ 14;\ \alpha(\mathrm{L})=0.0202\ 12;\ \alpha(\mathrm{M})=0.00487\ 25;\\ \alpha(\mathrm{N}+)=0.00141\ 8 \end{array}$
									α (N)=0.00120 6; α (O)=0.000205 13; α (P)=9.0×10 ⁻⁶ 16
599.11	(5/2 ⁻)	413.7 <i>3</i> 172.7 <i>4</i>	100 8 25.8 <i>16</i>	174.38 426.34	$(11/2^+)$ $(3/2^-)$	M1+E2	0.6 3	1.19 15	$\alpha(K)=0.92 \ 17; \ \alpha(L)=0.211 \ 15; \ \alpha(M)=0.051 \ 5; \ \alpha(N+)=0.0147 \ 12$
									α (N)=0.0125 11; α (O)=0.00215 13; α (P)=0.000104 20
		408.7 <i>4</i> 524.5 <i>4</i>	29 <i>3</i> 39 <i>5</i>	190.43 74.57	3/2 ⁻ 3/2 ⁻				

From ENSDF

 $^{187}_{78}\text{Pt}_{109}\text{--}10$

 $^{187}_{78} Pt_{109}$ -10

					A	dopted Leve	ls, Gammas (cor	ntinued)	
						$\gamma(^{187}$	Pt) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments
599.11	(5/2 ⁻)	542.1 3	100 7	57.11	(7/2 ⁻)	M1+E2	<0.8	0.055 9	$\frac{\alpha(K)=0.045 \ 8; \ \alpha(L)=0.0075 \ 9; \ \alpha(M)=0.00174 \ 20;}{\alpha(N+)=0.00051 \ 6} \\ \alpha(N)=0.00043 \ 5; \ \alpha(\Omega)=7.7\times10^{-5} \ 10; \ \alpha(P)=5.0\times10^{-6} \ 9.00000000000000000000000000000000000$
<		547.6 5 599.1 3	26 <i>3</i> 32 <i>3</i>	51.25 0.0	$(1/2,3/2)^{-}$ $3/2^{-}$				$a_{(1)}=0.000455, a_{(0)}=7.7\times10^{-10}, a_{(1)}=5.0\times10^{-5}$
620.77	(1/2 ⁻ ,3/2 ⁻)	140.3 <i>5</i> 194.4 <i>4</i>	4.3 8 3.9 8	480.65 426.34	$(1/2^-, 3/2^-)$ $(3/2^-)$	M1(+E2)	<1.5	0.80 22	α (K)=0.61 23; α (L)=0.145 9; α (M)=0.035 4; α (N+)=0.0101 9
		546.3 <i>3</i>	41.0 23	74.57	3/2-	M1+E2	>0.7	0.034 14	$ \begin{aligned} &\alpha(N) = 0.0086 \ 8; \ \alpha(O) = 0.00147 \ 7; \ \alpha(P) = 7.E - 5 \ 3 \\ &\alpha(K) = 0.027 \ 13; \ \alpha(L) = 0.0053 \ 15; \ \alpha(M) = 0.0012 \ 4; \\ &\alpha(N+) = 0.00036 \ 10 \end{aligned} $
		595.3 4	16.8 12	25.53	(5/2 ⁻)	M1+E2	1.3 +6-4	0.029 6	$\alpha(N)=0.00031 \ 9; \ \alpha(O)=5.4\times10^{-5} \ 16; \ \alpha(P)=3.0\times10^{-6} \ 14$ $\alpha(K)=0.023 \ 6; \ \alpha(L)=0.0043 \ 7; \ \alpha(M)=0.00101 \ 15;$ $\alpha(N+)=0.00029 \ 5$
		611.3 <i>4</i> 620.8 <i>3</i>	7.8 <i>12</i> 100 <i>6</i>	9.27 0.0	3/2 ⁻ 3/2 ⁻	M1+E2	<1.5	0.034 11	$\alpha(\mathbf{K}) = 0.00025 \ 4; \ \alpha(\mathbf{C}) = 4.4 \times 10^{-7} \ 7; \ \alpha(\mathbf{P}) = 2.5 \times 10^{-7} \ 6$ $\alpha(\mathbf{K}) = 0.028 \ 9; \ \alpha(\mathbf{L}) = 0.0047 \ 12; \ \alpha(\mathbf{M}) = 0.00110 \ 25; \ \alpha(\mathbf{M} + \mathbf{L}) = 0.00032 \ 8$
									α (N=.)=0.00032 8 α (N)=0.00027 7; α (O)=4.9×10 ⁻⁵ 12; α (P)=3.1×10 ⁻⁶ 10 δ : +0.24 3 if J(620)=3/2, 0 ±1.5 if J(620)=1/2 (¹⁸⁷ Au ε decay-1992Ro15).
632.88	(5/2 ⁺ ,7/2 ⁺)	206.3 4	8.7 9	426.51	(9/2+)	M1+E2	1.3 5	0.52 13	$\alpha(K)=0.36\ 13;\ \alpha(L)=0.122\ 3;\ \alpha(M)=0.0300\ 13;\ \alpha(N+)=0.0086\ 3$
		390.5 <i>3</i>	100 7	242.35	(9/2+)	E2		0.0467	$\alpha(N)=0.0074 \ 3; \ \alpha(O)=0.001225 \ 23; \ \alpha(P)=3.9\times10^{-3} \ 16 \ \alpha(K)=0.0322 \ 5; \ \alpha(L)=0.01099 \ 16; \ \alpha(M)=0.00271 \ 4; \ \alpha(N+)=0.000779 \ 11 \ \alpha(N)=0.000665 \ 10; \ \alpha(O)=0.0001104 \ 16; \ \alpha(D)=3.24\times10^{-6}$
									$\frac{a(N)=0.000005}{5}$
635.02	(3/2 ⁻)	208.7 4	11.2 13	426.34	(3/2 ⁻)	M1(+E2)	<0.9	0.71 12	$\alpha(K)=0.56\ 12;\ \alpha(L)=0.1139\ 24;\ \alpha(M)=0.0270\ 11;\ \alpha(N+)=0.00788\ 25$
		374.5 4	35 <i>3</i>	260.50	3/2-	M1+E2	+0.52 1	0.143 8	$\begin{array}{l} \alpha(\mathrm{N}) = 0.00605 \ 25; \ \alpha(\mathrm{O}) = 0.001162 \ 19; \ \alpha(\mathrm{P}) = 6.4 \times 10^{-9} \ 15 \\ \alpha(\mathrm{K}) = 0.117 \ 7; \ \alpha(\mathrm{L}) = 0.0204 \ 7; \ \alpha(\mathrm{M}) = 0.00475 \ 15; \\ \alpha(\mathrm{N}+) = 0.00140 \ 5 \end{array}$
		444.7 <i>4</i> 560.5 <i>4</i> 578 0 <i>4</i>	5.9 <i>13</i> 56 6 23 2	190.43 74.57 57.11	$3/2^{-}$ $3/2^{-}$ $(7/2^{-})$				α (N)=0.00117 4; α (O)=0.000209 8; α (P)=1.31×10 ⁻⁵ 8
		583.5 5	93	51.25	$(1/2,3/2)^{-}$	M1+E2	1.6 4	0.027 5	$\alpha(K)=0.021 4; \alpha(L)=0.0042 5; \alpha(M)=0.00099 11; \alpha(N+)=0.00029 4$
		609.5 <i>3</i>	29 <i>3</i>	25.53	(5/2 ⁻)	M1+E2	-0.66 +8-23	0.037 5	$\alpha(N)=0.00024 \ 3; \ \alpha(O)=4.5\times10^{-5} \ 5; \ \alpha(P)=2.3\times10^{-6} \ 5 \\ \alpha(K)=0.030 \ 4; \ \alpha(L)=0.0051 \ 5; \ \alpha(M)=0.00119 \ 11; \\ \alpha(N+)=0.00035 \ 4 \\ \alpha(N)=0.00029 \ 3; \ \alpha(O)=5.2\times10^{-5} \ 5; \ \alpha(P)=3.4\times10^{-6} \ 5 \\ \delta: \ or \ -2.6 \ +8-18 \ (1992Ro15). \ \delta \approx 0.3 \ from \\ \alpha(K)exp=0.036.$

						Adopted Lev	els, Gammas (continued)							
	γ ⁽¹⁸⁷ Pt) (continued)														
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [†]	δ^{\dagger}	α b	Comments						
		625.8 <i>4</i> 635.0 <i>3</i>	93 1006	9.27 0.0	3/2 ⁻ 3/2 ⁻	M1+E2	+0.51 6	0.0361 12	α (K)=0.0297 <i>11</i> ; α (L)=0.00490 <i>14</i> ; α (M)=0.00113 <i>3</i> ; α (N+)=0.000333 <i>10</i>						

From ENSDF

 $^{187}_{78}\text{Pt}_{109}\text{-}12$

L

Adopted Levels, Gammas (continued)									
						$\gamma(^{187}$	Pt) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [†]	δ^{\dagger}	α b	Comments
									α (N)=0.000280 8; α (O)=5.02×10 ⁻⁵ 15; α (P)=3.31×10 ⁻⁶ 12
651.2	(13/2 ⁻)	220.5 [@] 3	80 ^{&} 24	430.7	(11/2 ⁻)	(M1+E2) ^a		0.49 23	$\alpha(K)=0.36\ 23;\ \alpha(L)=0.0957\ 16;\ \alpha(M)=0.0232\ 11;\ \alpha(N+)=0.00672\ 19$ $\alpha(N)=0.00571\ 22;\ \alpha(O)=0.00097\ 3;\ \alpha(P)=4.E-5\ 3$
		425.8 [@] 6	100 ^{&} <i>30</i>	225.7	(9/2 ⁻)	(E2) ^{<i>a</i>}		0.0371	$\alpha(K)=0.0263 \ 4; \ \alpha(L)=0.00823 \ 13; \ \alpha(M)=0.00202 \ 3; \ \alpha(N+)=0.000581 \ 9 \ \alpha(N)=0.000496 \ 8; \ \alpha(Q)=8.28\times10^{-5} \ 13; \ \alpha(P)=2.74\times10^{-6} \ 4$
688.68	(3/2 ⁻)	498.2 <i>4</i> 614.1 <i>4</i> 663.2 <i>4</i> 688.6 <i>4</i>	38 8 100 8 60 <i>10</i> 35 <i>10</i>	190.43 74.57 25.53 0.0	3/2 ⁻ 3/2 ⁻ (5/2 ⁻) 3/2 ⁻				<i>u</i> (1)=0.000490 0, <i>u</i> (0)=0.20×10 15, <i>u</i> (1)=2.14×10 4
694.43 781.28	(13/2 ⁻) (3/2 ⁻)	388.6 [#] 2 270.8 5 306.8 5 354.9 4 492.9 4	100 [#] 10.6 24 10.6 24 49 5 26 6	305.83 510.42 474.42 426.34 288.33	(9/2 ⁻) (3/2 ⁻) 5/2 ⁻	Q ^{<i>a</i>}			
		590.9 <i>3</i>	84 6	190.43	3/2-	M1+E2	+56 +40-16	0.01668	α (K)=0.01272 <i>18</i> ; α (L)=0.00302 <i>5</i> ; α (M)=0.000726 <i>11</i> ; α (N+)=0.000211 <i>3</i> α (N)=0.000179 <i>3</i> ; α (O)=3.05×10 ⁻⁵ <i>5</i> ; α (P)=1.346×10 ⁻⁶ <i>19</i>
		706.7 <i>4</i> 724.3 <i>4</i>	94 <i>14</i> 16.5 24	74.57 57.11	$3/2^{-}$ (7/2 ⁻)				
		730.3 4	100 8	51.25	(1/2,3/2)-	M1+E2	<3.5	0.020 9	$\begin{aligned} &\alpha(\mathbf{K}) = 0.017 \ 8; \ \alpha(\mathbf{L}) = 0.0029 \ 10; \ \alpha(\mathbf{M}) = 0.00066 \ 23; \\ &\alpha(\mathbf{N}+) = 0.00019 \ 7 \\ &\alpha(\mathbf{N}) = 0.00016 \ 6; \ \alpha(\mathbf{O}) = 2.9 \times 10^{-5} \ 11; \ \alpha(\mathbf{P}) = 1.8 \times 10^{-6} \ 9 \\ &\delta: \ +1.8 \ +3-2 \ \text{or} \ -0.01 \ 6 \ \text{if} \ J(51.2) = 1/2; \ +2.3 \ +1.2 - 6 \ \text{or} \\ &+ 0.78 \ +25 - 19 \ \text{if} \ J(51.2) = 3/2 \ (^{187} \text{Au} \ \varepsilon \ \text{decay} \ - \\ &1992 \text{Ro15}). \ \delta \approx 0.4 \ \text{from} \ \alpha(\mathbf{K}) \text{exp} = 0.02. \end{aligned}$
845.0 883.17	$(5/2^+)$	772.0 <i>4</i> 781.3 <i>4</i> 602.5 <i>3</i> 250.2 <i>4</i>	29 5 31 4 100 27 7	9.27 0.0 242.35 632.88	$3/2^{-}$ $3/2^{-}$ $(9/2^{+})$ $(5/2^{+},7/2^{+})$				
000117	(294.9 3	100 7	588.06	$(7/2^+)$	M1+E2		0.21 11	$\alpha(K)=0.16 \ 10; \ \alpha(L)=0.037 \ 7; \ \alpha(M)=0.0088 \ 12; \ \alpha(N+)=0.0025 \ 4$
		456.7 <i>4</i>	73 9	426.51	(9/2+)	E2		0.0310	$\begin{aligned} &\alpha(N) = 0.0022 \ 3; \ \alpha(O) = 0.00037 \ 8; \ \alpha(P) = 1.8 \times 10^{-5} \ 12 \\ &\alpha(K) = 0.0224 \ 4; \ \alpha(L) = 0.00656 \ 10; \ \alpha(M) = 0.001602 \ 23; \\ &\alpha(N+) = 0.000462 \ 7 \\ &\alpha(N) = 0.000393 \ 6; \ \alpha(O) = 6.60 \times 10^{-5} \ 10; \ \alpha(P) = 2.35 \times 10^{-6} \ 4 \end{aligned}$

From ENSDF

 $^{187}_{78}\text{Pt}_{109}\text{--}13$

	Adopted Levels, Gammas (continued)												
						$\gamma(^{187}\text{P}$	t) (continued)						
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [†]	$\alpha^{\boldsymbol{b}}$	Comments					
886.8	$(15/2^{-})$	386.5 [#] 2	100 [#]	500.3	$(11/2^{-})$	Q^a							
894.5	$(15/2^{-})$	243.5 [#] 5	40 [#] 12	651.2	$(13/2^{-})$	D^{a}							
		463.8 [#] 2	100 [#] 30	430.7	$(11/2^{-})$	0 ^{<i>a</i>}							
902.8	$(19/2^+)$	397.6 [#] 2	38 [#] 11	505.09	$(17/2^+)$	D^{a}							
		437.7 [#] 1	$100^{\#} 25$	465.18	$(15/2^+)$	O^a							
928.2	$(17/2^+)$	$463.0^{\#}5$	100#	465.18	$(15/2^+)$	×							
942.9	$(21/2^+)$	$437.8^{@}2$	100	505.09	$(13/2^{+})$	O^{a}							
968.7	(21/2)	959.5 4	100 10	9.27	$3/2^{-}$	X							
		968.7 4	62 6	0.0	3/2-								
1101.65		256.5 4	22.9	845.0									
1114.0		468.8 4	100 11	632.88	$(5/2^+, 7/2^+)$								
1114.9		231.3 4 482 3 4	100 20	632.88	$(3/2^+)$ $(5/2^+, 7/2^+)$								
		526.9 4	55 10	588.06	$(7/2^+)$								
1153.3	$(17/2^{-})$	258.7 [#] 5	36 [#] 11	894.5	$(15/2^{-})$	D ^a							
		502.2 [#] 5	100 [#] 30	651.2	$(13/2^{-})$	O^a							
1161.0	$(17/2^{-})$	466.6 [#] 2	100#	694.43	$(13/2^{-})$	\tilde{O}^a							
1179.1	(334.1 4	100	845.0	(Č.							
1212.5	$(19/2^+)$	707.4 [#] 5	100 [#]	505.09	$(17/2^+)$								
1304.10		683.3 4	100 11	620.77	$(1/2^-, 3/2^-)$								
		1229.2 4	36 6	74.57	3/2-								
1228.20	$(1/2^+ 2/2^+)$	1253.2 4	6/6	51.25	(1/2,3/2)								
1320.29	(1/2,3/2)	1067.8.5	62.8	260.54	(3/2)								
		1277.2 4	10.5 12	51.25	$(1/2,3/2)^{-}$								
		1319.0 3	100 5	9.27	3/2-	E1	0.001361 19	α (K)=0.001091 <i>16</i> ; α (L)=0.0001581 <i>23</i> ; α (M)=3.59×10 ⁻⁵ <i>5</i> ; α (N+)=7.61×10 ⁻⁵					
								α (N)=8.86×10 ⁻⁶ 13; α (O)=1.590×10 ⁻⁶ 23; α (P)=1.078×10 ⁻⁷ 16; α (IPF)=6.56×10 ⁻⁵ 10					
		1328.3 4	5.8 19	0.0	3/2-								
1335.0	1./0+	908.7 4	100	426.34	$(3/2^{-})$	(\mathbf{F}_{1})	0.00(50.10						
1341.07	1/2*	559.8 4	21.0 21	781.28	(3/2)	(EI)	0.00652 10	$\alpha(\mathbf{K})=0.00544 \ 8; \ \alpha(\mathbf{L})=0.000832 \ 12; \ \alpha(\mathbf{M})=0.000190 \ 3; \\ \alpha(\mathbf{N}+)=5.57\times 10^{-5} \ 8 \\ \alpha(\mathbf{M})=0.001100 \ 100^{-5}$					
		706.0 <i>3</i>	22.0 15	635.02	(3/2 ⁻)	E1	0.00409 6	$\alpha(N)=4.68\times10^{-7} ; \alpha(O)=8.31\times10^{-6} I2; \alpha(P)=5.22\times10^{-7} 8$ $\alpha(K)=0.00342 5; \alpha(L)=0.000514 8; \alpha(M)=0.0001173 I7;$ $\alpha(N+)=3.44\times10^{-5} 5$					
								$\alpha(N)=2.89\times10^{-5}$ 4; $\alpha(O)=5.15\times10^{-6}$ 8; $\alpha(P)=3.32\times10^{-7}$ 5					
		708.0 4	2.0 4	632.88	$(5/2^+, 7/2^+)$								

L

					Adopted L	evels, Gammas	(continued)					
		γ ⁽¹⁸⁷ Pt) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	$\alpha^{\boldsymbol{b}}$	Comments					
1341.07	1/2+	720.4 3	18.1 13	620.77 (1/2 ⁻ ,3/2 ⁻) E1	0.00393 6	α (K)=0.00329 5; α (L)=0.000493 7; α (M)=0.0001126 16; α (N+)=3.30×10 ⁻⁵ 5 α (N)=2.77×10 ⁻⁵ 4; α (O)=4.94×10 ⁻⁶ 7; α (P)=3.19×10 ⁻⁷ .					
		768.2 <i>4</i> 830.6 <i>4</i>	2.1 <i>4</i> 1.0 <i>3</i>	572.80 (1/2 ⁻ ,3/2 ⁻ 510.42)							

								$\alpha(N)=2.77\times10^{-5}$ 4; $\alpha(O)=4.94\times10^{-6}$ 7; $\alpha(P)=3.19\times10^{-7}$ 5
		768.2 4	2.1 4	572.80	$(1/2^-, 3/2^-)$			
		830.6 4	1.0 3	510.42				
		833.4 3	19.9 <i>12</i>	507.92	1/2-	E1	0.00297 5	α (K)=0.00249 4; α (L)=0.000370 6; α (M)=8.44×10 ⁻⁵ 12; α (N+)=2.47×10 ⁻⁵ 4
								$\alpha(N)=2.08\times10^{-5}$ 3; $\alpha(O)=3.71\times10^{-6}$ 6; $\alpha(P)=2.43\times10^{-7}$ 4
		914.6 <i>3</i>	43.2 17	426.34	(3/2 ⁻)	E1	0.00250 4	$\alpha(K)=0.00210 \ 3; \ \alpha(L)=0.000309 \ 5; \ \alpha(M)=7.05\times10^{-5} \ 10; \ \alpha(N+)=2.07\times10^{-5} \ 3$
								$\alpha(N)=1.737\times10^{-5}\ 25;\ \alpha(O)=3.11\times10^{-6}\ 5;\ \alpha(P)=2.05\times10^{-7}\ 3$
		1080.4 4	4.3 4	260.50	3/2-			
		1151.0 5	1.0 3	190.43	3/2-			-
		1266.5 3	34.4 21	74.57	3/2-	E1	0.001433 20	$\alpha(K)=0.001171 \ 17; \ \alpha(L)=0.0001699 \ 24; \ \alpha(M)=3.86\times10^{-5} \ 6; \ \alpha(N+)=5.35\times10^{-5}$
								α (N)=9.52×10 ⁻⁶ 14; α (O)=1.709×10 ⁻⁶ 24; α (P)=1.156×10 ⁻⁷ 17; α (IPF)=4.21×10 ⁻⁵ 6
		1289.7 4	1.9 <i>3</i>	51.25	$(1/2, 3/2)^{-}$			
		1331.9 3	100 5	9.27	3/2-	E1	0.001346 <i>19</i>	α (K)=0.001073 <i>15</i> ; α (L)=0.0001554 <i>22</i> ; α (M)=3.53×10 ⁻⁵ <i>5</i> ; α (N+)=8.26×10 ⁻⁵
								α (N)=8.71×10 ⁻⁶ <i>13</i> ; α (O)=1.563×10 ⁻⁶ <i>22</i> ; α (P)=1.061×10 ⁻⁷ <i>15</i> ; α (IPF)=7.22×10 ⁻⁵ <i>11</i>
		1341.0 4	2.0 4	0.0	3/2-			
1349.8	(19/2 ⁻)	463.0 ^{<i>c</i>#} 2	100#	886.8	(15/2 ⁻)	(E2) ^{<i>a</i>}	0.0300	α (K)=0.0217 3; α (L)=0.00628 9; α (M)=0.001532 22; α (N+)=0.000442 7
								α (N)=0.000376 6; α (O)=6.32×10 ⁻⁵ 9; α (P)=2.28×10 ⁻⁶ 4
1364.90		1290.6 5	37 7	74.57	3/2-			
		1313.9 4	80 12	51.25	$(1/2,3/2)^{-}$			
		1355.4 4	100 15	9.27	3/2-			
1200.05		1364.7 4	41.5	0.0	3/2-			
1388.07		913.6 4	29.6	4/4.42	2/2-			
		13/9.2 4	100 10	9.27	3/2 2/2-			
1200 0		138/./4	33 0 100	0.0	3/2			
1390.0		924.4 4	100	4/4.42	(17/2+)			
1400.2		472*	100	928.2	$(17/2^{+})$			
1409.1	$(17/2^{-})$	904.0 " 5	100 [#] 31	505.09	$(17/2^+)$			
		944.0 [#] 5	46 [#] 13	465.18	$(15/2^+)$			
1418.1	(21/2)	489.9 [#] 5	60 [#] 18	928.2	$(17/2^+)$			

1418.1

From ENSDF

	Adopted Levels, Gammas (continued)										
	γ ⁽¹⁸⁷ Pt) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [†]	α b	Comments			
1418.1	(21/2)	515.2 [#] 5	100 [#] 30	902.8	$(19/2^+)$	D ^a					
1430.0	(19/2-)	276.7 [#] 5	25 # 8	1153.3	$(17/2^{-})$	D ^a					
1433.76	(3/2+)	535.5 [#] 5 798.9 4 801.0 4 861.0 4	100 [#] 30 5.7 7 2.3 7 4 5 9	894.5 635.02 632.88 572.80	$(15/2^{-})$ $(3/2^{-})$ $(5/2^{+},7/2^{+})$ $(1/2^{-},3/2^{-})$	Q ^a					
		959.2 4	3.4 7	474.42	(1/2,3/2)						
		1007.5 4	4.5 5	426.34	$(3/2^{-})$						
		1359.0 <i>4</i> 1408.1 <i>4</i>	23.2 <i>14</i> 100 7	74.57 25.53	3/2 ⁻ (5/2 ⁻)	E1	0.001275 18	$\alpha(K)=0.000976 \ 14; \ \alpha(L)=0.0001409 \ 20; \ \alpha(M)=3.20\times10^{-5} \ 5;$			
								α (N)=7.89×10 ⁻⁶ 11; α (O)=1.418×10 ⁻⁶ 20; α (P)=9.65×10 ⁻⁸ 14; α (IPF)=0.0001172 17			
		1424.5 5	6.8 7	9.27	3/2-						
1440 6	(01/0-)	1433.8 3	26.6 <i>16</i>	0.0	3/2-	01					
1442.6	(21/2)	281.6" 5	100" 20 # 0	1161.0	(17/2)	Qu					
1453.0	$(23/2^{+})$	510.0" 5	30" 9	942.9	$(21/2^+)$	Da					
1478 02	$(3/2^{+})$	550.1" 2 697 1 4	9.8.20	902.8 781.28	$(19/2^{+})$ $(3/2^{-})$	Q					
11/0.02	(3/2)	843.0 4	10.2 15	635.02	$(3/2^{-})$						
		845.4 <i>4</i>	5.9 15	632.88	$(5/2^+, 7/2^+)$						
		890.4 4	4.9 10	588.06	$(7/2^+)$						
		997.4 4	4.9 15	480.65	(1/2, 3/2)						
		1403.3 5	11.2 20	288.33	$3/2^{-}$						
		1426.6 4	35 3	51.25	$(1/2,3/2)^{-}$						
		1452.3 4	100 6	25.53	(5/2-)						
		1477.9 4	13.7 15	0.0	3/2-	- 0					
1496.2	$(25/2^{+})$	553.4 5	100	942.9	$(21/2^+)$ $(5/2^+, 7/2^+)$	Qu					
1570.7		1171.6.3	100 6	426.34	$(3/2^{-})$						
10,010		1598.1 5	22 6	0.0	3/2-						
1616.2		207.0 [#] 5	100 [#]	1409.1	$(17/2^{-})$						
1657.9	$(21/2^{-})$	248.8 [#] 5	34 [#] 10	1409.1	$(17/2^{-})$	Q ^a					
		445.3 [#] 5	21 [#] 6	1212.5	$(19/2^+)$						
		504.7 [#] 5	29 [#] 9	1153.3	$(17/2^{-})$						
		715.0 [#] 2	100 [#] <i>30</i>	942.9	$(21/2^+)$						
		755.2 [#] 5	20 # 6	902.8	$(19/2^+)$	D ^a					

 $^{187}_{78}\text{Pt}_{109}\text{--}16$

From ENSDF

 $^{187}_{78}\mathrm{Pt}_{109}\text{--}16$

L

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]
1691.6	$(21/2^{-})$	530.6 [#] 5	100 [#]	1161.0	$(17/2^{-})$	Q ^a
1717.1	$(21/2^{-})$	287.0 [#] 5	23 # 7	1430.0	$(19/2^{-})$	-
		563.8 [#] 5	100 [#] 30	1153.3	$(17/2^{-})$	0 ^a
1777.86		1726.8 <i>3</i>	96	51.25	$(1/2,3/2)^{-}$	
		1768.4 <i>3</i>	100	9.27	3/2-	
1789.8	$(23/2^+)$	577.4 [#] 5	36 [#] 10	1212.5	$(19/2^+)$	
		847.0 [#] 5	100 [#] 30	942.9	$(21/2^+)$	D ^a
1839.9	(23/2 ⁻)	182.0 [#] 2	100 ^{#} <i>30</i>	1657.9	(21/2 ⁻)	
		223.7 [#] 5	22 # 6	1616.2		
		490.0 [#] 5	47 [#] 14	1349.8	$(19/2^{-})$	0 ^a
1869.6	$(23/2^{-})$	519.8 [#] .5	100 [#]	1349.8	$(19/2^{-})$	$\hat{0^a}$
1886.0	(/-)	1834.6 4	70 13	51.25	$(1/2,3/2)^{-}$	×.
		1876.8 4	100 13	9.27	3/2-	
1891.3		1882.2 5	579	9.27	3/2-	
		1891.2 4	100 9	0.0	3/2-	
1896.4	$(25/2^{-})$	238.6 [#] 5	100 [#] 30	1657.9	$(21/2^{-})$	Q ^a
		400.0 [#] 5	15 [#] 5	1496.2	$(25/2^+)$	
1970.4		1961.1 <i>4</i>	100 10	9.27	3/2-	
		1970.4 4	42 6	0.0	3/2-	
1987.8	(25/2)	569.7 [#] 5	100 [#]	1418.1	(21/2)	Q ^a
2006.7	$(23/2^{-})$	289.6 [#] 5	14 [#] 4	1717.1	$(21/2^{-})$	
		576.7 [#] 5	100 [#] 30	1430.0	$(19/2^{-})$	Q ^a
2016.77	$(3/2^+, 5/2^+)$	1328.0 4	9 <i>3</i>	688.68	$(3/2^{-})$	
		1383.6 4	28.4 24	632.88	$(5/2^+, 7/2^+)$	
		1417.6 4	37 4	599.11	$(5/2^{-})$	
		1491.9 4	33 3	525.06	$(3/2^{-})$	
		1509.0 4	11.2 18	507.92	1/2-	
		1535.8 4	10.1 12	480.65	(1/2, 3/2)	
		1728.2.4	21.9 24	288.33	5/2	
		1/30.4 4	014	200.50	$\frac{3}{2}$	
		1020.14	17.8 10	25 53	$\frac{5/2}{(5/2^{-})}$	
		2007 8 4	49 3	9 27	$(3/2)^{-}$	
		2017.0 4	66 4	0.0	3/2-	
2027.98		926.3 4	28 6	1101.65	-,-	
		1339.3 4	38 6	688.68	$(3/2^{-})$	
		1502.9 4	58 6	525.06	$(3/2^{-})$	
		1519.6 4	36 6	507.92	1/2-	

17

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]
2027.98		1547.1 5	23 6	480.65	$(1/2^{-}, 3/2^{-})$	
		1601.8 4	45 6	426.34	$(3/2^{-})$	
		1767.6 5	100 8	260.50	3/2-	
		1837.8 5	43 8	190.43	3/2-	
		2002.5 4	40 4	25.53	$(5/2^{-})$	
		2028.1 4	38 6	0.0	3/2-	
2038.62		1439.4 4	8.8 14	599.11	$(5/2^{-})$	
		1612.3 4	16.2 20	426.34	$(3/2^{-})$	
		1750.2 4	14.2 14	288.33	5/2-	
		1778.2 4	41 3	260.50	3/2-	
		1848.0 4	24 <i>3</i>	190.43	3/2-	
		1964.3 <i>3</i>	88 5	74.57	3/2-	
		1987.3 <i>3</i>	100 6	51.25	$(1/2,3/2)^{-}$	
		2038.5 5	9.5 14	0.0	3/2-	
2070.7	$(25/2^{-})$	379.1 [#] 5	100 [#] 30	1691.6	$(21/2^{-})$	Q ^a
		628.1 [#] 5	29 # 9	1442.6	$(21/2^{-})$	Q^{a}
2082.06		1449.0 4	10.6 21	632.88	$(5/2^+, 7/2^+)$	
		1483.0 4	10.6 21	599.11	$(5/2^{-})$	
		1573.9 4	12.7 21	507.92	$1/2^{-}$	
		1821.8 4	17.6 21	260.50	3/2-	
		2030.7 3	100 6	51.25	$(1/2,3/2)^{-}$	
		2056.6 4	98.6	25.53	$(5/2^{-})$	
		20/3.0 5	9.2 14	9.27	3/2-	
		2082.2 5	10.6 21	0.0	3/2-	
2091.6	$(27/2^+)$	596.3 [@] 7	24 7	1496.2	$(25/2^+)$	D ^a
		638.6 [#] 2	100 # 30	1453.0	$(23/2^+)$	Q^{a}
2094.65		992.8 5	16 4	1101.65		
		1211.3 4	13.2 18	883.17	$(5/2^+)$	
		1461.8 5	18 4	632.88	$(5/2^+, 7/2^+)$	
		1584.2 4	20 3	510.42		
		1586.4 5	12 3	507.92	1/2-	
		1806.2 4	56 4	288.33	5/2-	
		1904.3 4	31 4	190.43	3/2-	
		2020.2 4	28 3	74.57	3/2-	
		2069.2 4	38 3	25.53	$(5/2^{-})$	
		2085.7 4	100 6	9.27	3/2-	
2120.4		224.0 [#] 5	100#	1896.4	$(25/2^{-})$	_
2142.8	$(29/2^+)$	646.5 [#] 2	100 [#]	1496.2	$(25/2^+)$	Q^{a}
2158.0		2106.7 4	100	51.25	$(1/2, 3/2)^{-}$	
2170.46		1910.1 <i>3</i>	100 7	260.50	3/2-	

18

L

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]
2170.46		2095.8 4	33 4	74.57	$3/2^{-}$		2792.9	$(31/2^{-})$	359.4 [#] 5	58 [#] 18	2433.6 (29/2 ⁻)	D ^a
		2161.0 4	14 4	9.27	3/2-				562.1 [#] 5	100 [#] 29	2230.8 (27/2-)	
2174.9	$(27/2^{-})$	335 [‡]	100	1839.9	$(23/2^{-})$		2852.2		359.1 [#] 5	100 [#]	2493.1 (27/2-)	
2230.8	$(27/2^{-})$	334.4 [#] 1	100 [#]	1896.4	$(25/2^{-})$	D ^a	2852.4	$(33/2^+)$	709.6 [#] 2	100 [#]	2142.8 (29/2+)	Q ^a
2263.8	$(25/2^{-})$	257.0 [#] 5	25 [#] 8	2006.7	$(23/2^{-})$	D ^a	2871.2	$(31/2^+)$	779.7 [#] 5	100 [#]	2091.6 (27/2+)	Q ^a
		546.6 [#] 5	100 [#] <i>31</i>	1717.1	$(21/2^{-})$	Q ^a	2900.6	(31/2)	274.0 [#] 5	100 [#] <i>30</i>	2626.5 (29/2)	
2322.6	$(25/2^{-})$	631.0 [#] 5	100 [#]	1691.6	$(21/2^{-})$	Q ^a			475.8 [#] 5	43 [#] 13	2424.8 (27/2)	
2393.4	$(27/2^{-})$	523.8 [#] 5	100 [#]	1869.6	$(23/2^{-})$	Q ^a	2915.0	$(31/2^{-})$	521.6 [#] 5	100 [#]	2393.4 (27/2-)	Q ^a
2424.8	(27/2)	635.0 [#] 2	100 [#] 30	1789.8	$(23/2^+)$		2942.7	$(33/2^{-})$	509.1 [#] 5	100 [#]	2433.6 (29/2-)	Q ^a
		928.5 [#] 5	60 [#] 18	1496.2	$(25/2^+)$	D ^a	2996.1	$(33/2^{-})$	513.8 [#] 5	100 [#]	2482.3 (29/2-)	Q ^a
2433.6	$(29/2^{-})$	202.6 [#] 5	13 [#] 4	2230.8	$(27/2^{-})$		3013.2	$(31/2^{-})$	267.9 [#] 5	37 [#] 12	2745.2 (29/2-)	
		313.1 [#] 5	16 [#] 5	2120.4					520.1 [#] 5	100 [#] 25	2493.1 (27/2 ⁻)	
		537.3 [#] 2	100 [#] 30	1896.4	$(25/2^{-})$	Q ^a	3017.4	(31/2)	390.9 [#] 5	100 [#]	2626.5 (29/2)	
2482.3	$(29/2^{-})$	411.6 [#] 5	100 [#]	2070.7	$(25/2^{-})$	Q ^a	3038.4	(33/2)	519.6 [#] 5	100 [#]	2518.8 (29/2)	Q ^a
2493.1	$(27/2^{-})$	229.2 <mark>#</mark> 5	37 <mark>#</mark> 12	2263.8	$(25/2^{-})$		3039.2	(33/2)	294.6 [#] 5	100 [#]	2744.6 (31/2 ⁺)	D^{a}
		486.6 <mark>#</mark> 5	100 [#] 25	2006.7	$(23/2^{-})$		3068.5	$(35/2^{-})$	436.0 [#] 5	92 <mark>#</mark> 29	2632.5 (31/2-)	
2518.6	(29/2)	530.8 <mark>#</mark> 5	100#	1987.8	(25/2)	Q ^a			460.0 [#] 5	100 [#] 29	2608.6 (31/2 ⁻)	
2518.8	(29/2)	427.2 [#] 5	100 [#]	2091.6	$(27/2^+)$	D ^a	3075.7	(33/2)	294.1 [#] 5	100 [#]	2781.6 (31/2 ⁻)	D^{a}
2570.9		2519.6 4	44 8	51.25	$(1/2, 3/2)^{-}$		3116.4		264.0 [#] 5	100 [#] 29	2852.4 (33/2+)	
		2561.3 5	28 8	9.27	$3/2^{-}$				973.6 [#] 5	76 <mark>#</mark> 23	2142.8 (29/2+)	
		2571.2 5	100 16	0.0	$3/2^{-}$		3211.3	(33/2)	310.5 [#] 5	100 [#] 29	2900.6 (31/2)	D^{a}
2608.6	$(31/2^{-})$	377.8 <mark>#</mark> 5	100#	2230.8	$(27/2^{-})$				585.0 [#] 5	77 <mark>#</mark> 23	2626.5 (29/2)	
2626.5	(29/2)	201.6 [#] 5	100 [#] 29	2424.8	(27/2)		3287.2	$(33/2^{-})$	542.0 [#] 5	100#	2745.2 (29/2 ⁻)	
		1130.2 [#] 5	18 [#] 5	1496.2	$(25/2^+)$	Q ^a	3297.4	$(35/2^{-})$	504.5 [#] 5	100#	2792.9 (31/2 ⁻)	Q^{a}
2632.5	$(31/2^{-})$	401.7 [#] 5	100#	2230.8	$(27/2^{-})$		3332.5	$(35/2^+)$	480.1 [#] 5	18 [#] 5	2852.4 (33/2+)	
2654.1	(29/2)	666.3 [#] 5	100#	1987.8	(25/2)	Q^{a}			587.9 [#] 5	100 [#] 29	2744.6 (31/2 ⁺)	Q^{a}
2744.6	$(31/2^+)$	225.8 [#] 5	9 [#] 3	2518.8	(29/2)		3414.7	(35/2)	339.0 [#] 5	100#	3075.7 (33/2)	D^{a}
		601.5 [#] 5	20 # 6	2142.8	$(29/2^+)$		3488.5	$(37/2^+)$	372.2 [#] 5	17 <mark>#</mark> 7	3116.4	
		653.0 [#] 5	100 [#] 30	2091.6	$(27/2^+)$	Q^{a}			636.2 [#] 5	100 [#] 30	2852.4 (33/2+)	Q^{a}
2745.2	$(29/2^{-})$	252.2 [#] 5	100 [#] 25	2493.1	$(27/2^{-})$		3506.5		390.1 [#] 5	100#	3116.4	
		481.4 [#] 5	100 [#] 25	2263.8	$(25/2^{-})$		3532.1	(35/2)	320.6 [#] 5	52 [#] 14	3211.3 (33/2)	
2781.6	$(31/2^{-})$	348.2 [#] 5	33 [#] 13	2433.6	$(29/2^{-})$				631.7 [#] 5	100 [#] 29	2900.6 (31/2)	
		550.7 [#] 5	100 [#] 27	2230.8	$(27/2^{-})$		3552.3	$(37/2^{-})$	609.6 [#] 5	100 [#]	2942.7 (33/2 ⁻)	

19

$^{187}_{78}\text{Pt}_{109}\text{-}19$

From ENSDF

 $^{187}_{78}\mathrm{Pt}_{109}\text{--}19$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [†]	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]
3574.0		534.8 [#] 5	100 [#]	3039.2 (33/2)		3889.0	(39/2 ⁻)	591.6 [#] 5	100 [#]	3297.4 (35/2 ⁻)	
3575.1	$(35/2^+)$	535.8 [#] 5	42 ^{#} 12	3039.2 (33/2)	D ^a	3976.5		644.0 [#] 5	100 [#]	3332.5 (35/2+)	
		704.0 [#] 5	92 [#] 29	2871.2 (31/2+)	Q ^a	3992.2	37/2	379.0 [#] 5	100 [#] <i>30</i>	3613.2 (35/2)	D ^a
		830.5 5	100 29	2744.6 (31/2+)				781.0 [#] 5	28 [#] 9	3211.3 (33/2)	
3598.4	$(37/2^+)$	746.0 [#] 5	100 [#]	2852.4 (33/2+)	Q ^a	4045.3	$(41/2^+)$	556.8 [#] 5	100 [#]	3488.5 (37/2+)	Q ^a
3606.6	$(37/2^{-})$	610.5 [#] 5	100 [#]	2996.1 (33/2 ⁻)		4075.9	(39/2)	355.2 [#] 5	100 [#]	3720.7 (37/2)	D ^a
3613.2	(35/2)	402.0 [#] 5	44 ^{#} 12	3211.3 (33/2)		4249.8	$(41/2^{-})$	697.5 [#] 5	100 [#]	3552.3 (37/2-)	
		595.7 [#] 5	100 [#] 29	3017.4 (31/2)		4256.0		263.8 [#] 5	100 [#]	3992.2 37/2	
		712.5 [#] 5	38 [#] 12	2900.6 (31/2)	Q ^a	4307.2	$(41/2^{-})$	700.6 [#] 5	100 [#]	3606.6 (37/2-)	
3617.2	$(39/2^{-})$	548.7 [#] 5	100 [#]	3068.5 (35/2-)		4318.2		719.8 <mark>#</mark> 5	100 [#]	3598.4 (37/2+)	
3720.7	(37/2)	306.0 [#] 5	89 [#] 22	3414.7 (35/2)	D ^a	4554.5	$(43/2^{-})$	665.5 [#] 5	100 [#]	3889.0 (39/2-)	
		645.0 [#] 5	100 [#] 33	3075.7 (33/2)		4723.3	$(45/2^+)$	678.0 [#] 5	100 [#]	4045.3 (41/2+)	
3784.5	(37/2)	369.8 [#] 5	100 [#]	3414.7 (35/2)		4986.3	$(45/2^{-})$	736.5 [#] 5	100 [#]	4249.8 (41/2-)	
3839.2		264.1 [#] 5	100 [#]	3575.1 (35/2+)		5274.0	$(47/2^{-})$	719.5 [#] 5	100 [#]	4554.5 (43/2-)	
3847.7	$(39/2^+)$	359.3 [#] 5	33 [#] 10	3488.5 (37/2+)		5510.3	$(49/2^+)$	787.0 [#] 5	100 [#]	4723.3 (45/2+)	
		515.1 [#] 5	100 [#] <i>30</i>	3332.5 (35/2+)							

20

[†] From ¹⁸⁷Au ε decay, except otherwise noted.

[‡] From (α ,3n γ).

[#] From ($^{18}O,4n\gamma$).

[@] Weighted average of data from ($^{16}O,5n\gamma$) and ($^{18}O,4n\gamma$).

[&] From (¹⁸O,4n γ). ^{*a*} From (¹⁸O,4n γ), assigned by the evaluator based on the DCO ratio and R_{ADO} value.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed.

^d Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{187}_{78}{\rm Pt}_{109}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{187}_{78}\mathrm{Pt}_{109}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{187}_{78}{\rm Pt}_{109}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{187}_{78}\mathrm{Pt}_{109}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁷₇₈Pt₁₀₉

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁷₇₈Pt₁₀₉

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁷₇₈Pt₁₀₉

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{187}_{78}{\rm Pt}_{109}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{187}_{78}\mathrm{Pt}_{109}$

 $^{187}_{78}\mathrm{Pt}_{109}$

 $^{187}_{78}\text{Pt}_{109}\text{--}32$

From ENSDF

 $^{187}_{78}{\rm Pt}_{109}$

Adopted Levels, Gammas (continued)

 $^{187}_{78}$ Pt $_{109}$