Adopted Levels, Gammas

	Type			Author	History Citation	Literature Cutoff Date								
		Full Evalu	uation	M. S. Basunia	NDS 110, 999 (2009)	1-Nov-2008								
$Q(\beta^{-}) = -8607 \ 17; \ S(n) = 8370 \ 14; \ S(p) = 208 \times 10^{1} \ 18; \ Q(\alpha) = 6395 \ 6 \qquad 2003 \text{Au}03$														
Assignment 155 150 142 107	: Gd(⁴⁰ Ar,8n Sm(⁴⁰ Ca,3n Nd(⁴⁸ Ti,3n Ag(⁸⁴ Kr,p3) exc) exc) Ma n) Ma	cit (cit (1 uss Spe uss Spe	1972Ga27, 197 980Sc09, 1975 ctrometer (19 ctrometer (19	4Le02), Ca06), 80Sc09, 1981Mi12), 81Mi12).									
¹⁸⁷ Pb Levels														
Cross Reference (XREF) Flags														
				A 191 B 191 C ¹⁵⁵	Po α decay (22 ms) Po α decay (93 ms) Gd(³⁶ Ar,4n γ)									
E(level) [†]	$J^{\pi \ddagger}$	Т _{1/2} У	KREF		C	Comments								
0.0 33 [@] 13	(3/2 ⁻)	15.2 s 3 A	ABC											
				 %α: From 1999An36. %α=2.0 estimated by 1974Le02 from comparison of Iα(6073) with the ¹⁹⁶Po α produced by ¹⁶⁴Dy(⁴⁰Ar,8n) reaction. %α=0.7 was estimated by 1972Ga27 from comparison of cross sections for the formation of Pb and Po nuclides by ¹⁵⁵Gd(⁴⁰Ar,xn) and ¹⁶⁴Dy(⁴⁰Ar,xn) reactions. E(level): From ¹⁸⁷Pb and ¹⁸⁷Pb^m mass measurements by 2005We11. 2 keV <i>15</i> is established in ¹⁹¹Po α decay (22 ms). 19 keV <i>10</i> in 2012Wa38-AME. J^π: analogous to high-spin isomers of ¹⁹³Pb, ¹⁹⁵Pb, ¹⁹⁷Pb; (v i_{13/2})⊗π(0p-0h) configuration suggested in 1999An10. T_{1/2}: measurement of 1981Mi12. Other measured values: 17.5 s <i>36</i> (1972Ga27), 17 s <i>4</i> (1974Le02). Δ<r<sup>2>(¹⁸⁷Pb, ²⁰⁸Pb)=-1.025 <i>10</i> fm² (2007De09).</r<sup> 										
375.0 10	(3/2 ⁻)	$<10^{\text{#}}$ ns A	L .	E(level): Relative to the 33 keV level. For absolute energy $\Delta E=13$ keV of the 33 keV level should be considered in propagation.										
505.0 10	(9/2+)		В	J^{π} : from 472 γ (E2) to (13/2 ⁺) and HF of the 6909 α decay (2002An19).										
527.0 10	(13/2 ⁺)	<10 [#] ns	В	J ^{π} : from 494 γ (M1) to (13/2 ⁺), HF, and the J ^{π} of the parent nucleus (2002An19). Possible configuration ($v_{13/2}$) $\otimes \pi$ (2p-2h). Two: based on observation of 6888 α and 494 α in prompt coincidence (1000An10).										
607 <i>15</i> 627.0? <i>10</i> 864 [@] 1280 [@]	(9/2 ⁺) (17/2 ⁺) (21/2 ⁺)		B B C C	J^{π} : Based on the	$J^{\pi} = (13/2^+)$ of 527 keV	level and the (80γ) (E2).								
1756 [@]	(25/2+)		С											

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁸⁷Pb Levels (continued)

[†] From G-ray energies.

[‡] Values given without comment are from (36 Ar,4n γ), based on analogy with heavier odd-A Pb isotopes in which a sequence of

three stretched Q transitions connect the yrast $25/2^+$ state to a low-energy $13/2^+$ isomer.

[#] Limit deduced from observation of $\alpha\gamma$ prompt coincidence in ¹⁹¹Po α decay.

^(a) Band(A): π =+ yrast states (1998Ba88). Possible configuration is ($\nu i_{13/2}$) – weakly coupled to near-spherical ¹⁸⁶Pb core states.

γ ⁽¹⁸⁷ Pb)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	E_f	\mathbf{J}_{f}^{π}	Mult.	α [@]	Comments			
375.0	(3/2 ⁻)	375 [‡] 1	100	0.0	(3/2-)	(E0+M1+E2)	≈1.1	Mult.: From α (K)exp=0.88 <i>30</i> (2002An19). α : Estimated by the evaluator from α (K)exp=0.88.			
505.0	$(9/2^+)$	472 [#] 1	100	33	$(13/2^+)$	(E2)	0.0338	Mult.: from $\alpha(K) \exp \leq 0.06$.			
527.0	$(13/2^+)$	494 [#] 1	100	33	(13/2 ⁺)	(M1)	0.1115	B(M1)(W.u.)>1.6×10 ⁻⁵ Mult.: from α (K)exp 0.076 20.			
607	$(9/2^+)$	(80 15)	100	527.0	$(13/2^+)$	(E2)	2.×10 ¹ 3	Mult., α : From α , $\alpha \ge 10$ (2002An19).			
627.0?		594 ^{#& 1}	100	33	$(13/2^+)$						
864	$(17/2^+)$	831	100	33	$(13/2^+)$						
1280	$(21/2^+)$	416	100	864	$(17/2^+)$						
1756	$(25/2^+)$	476	100	1280	$(21/2^+)$						

[†] From (³⁶Ar,4n γ), except otherwise noted. [‡] From ¹⁹¹Po α decay (22 ms). [#] From ¹⁹¹Po α decay (93 ms).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

& Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

```
Level Scheme
```

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Adopted Levels, Gammas

