¹⁵⁵Gd(³⁶Ar,4nγ) **1998Ba88**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. S. Basunia	NDS 110, 999 (2009)	1-Nov-2008				

Other: 2000By02.

1998Ba88: E(³⁶Ar)=174 MeV, 90.5% enriched ¹⁵⁵Gd target, fragment mass analyzer, array of 10 Compton-suppressed Ge detectors. E(³⁶Ar)=176 MeV, 92.3% enriched ¹⁵⁵Gd target, RITU gas-filled recoil separator, JUROSPHERE detector array (15 Ge (70% efficient) and 4 smaller Ge detectors). measured Eγ, Iγ (unstated), recoil-γ coin, recoil-γγ coin, γ-X(Pb) coin, Eα(recoil).
2000By02: ¹⁵⁵Gd(³⁶Ar,4nγ), E(³²S)=176 MeV; 92% ¹⁵⁵Gd enriched target; evaporation residue energy, position, arrival time and Eα obtained from Si strip detector In focal plane of RITU gas-filled magnetic recoil separator; four Ge γ detectors; measured Eγ,

recoil- γ (t) ($\Delta t < 50 \ \mu$ s), recoil- $\gamma \gamma$ (t) ($\Delta t < 4 \ \mu$ s). searched for, but did not find, ¹⁸⁷Pb isomers; concluded that 14 ns $\leq T_{1/2} \leq 416$ ns for any yrast or near-yrast isomer produced In this reaction, based on absence of lines In E γ -t data (In this experiment or In 1998Ba88) which could Be identified with any known γ In ¹⁸⁷Pb.

¹⁸⁷Pb Levels

E(level) [†]	J^{π}	Comments		
0.0+x [‡]	(13/2+)	J^{π} : Author's tentative assignments, on the basis of systematic trends of heavier odd-A Pb isotopes, assuming the 0.0+x level is the low-energy isomer ($J^{\pi}=13/2^+$) observed in this region.		
831+x [‡] 1247+x [‡] 1723+x [‡]	$(17/2^+)^{\#}$ $(21/2^+)^{\#}$ $(25/2^+)^{\#}$			

[†] Based on E γ . Here, values are given relative to the excitation energy "x" of the 13/2⁺ state. Comparing with the Adopted Levels, x=0.0 keV is assumed by the evaluator considering the absence of the 494 γ in this dataset, which is observed depopulating the other 13/2⁺ state in the ¹⁹¹Po α decay (93 ms) dataset.

[‡] Band(A): π =+ yrast states. Likely configuration is ($\nu i_{13/2}$) weakly coupled to near-spherical ¹⁸⁶Pb core states.

[#] From the assumption of cascade 476 γ , 416 γ , and 831 γ are stretched Q transitions by 1998Ba88 and the systematic trend of heavier odd-A Pb in this region.

$\gamma(^{187}\text{Pb})$

E_{γ}^{\dagger}	E_i (level)	J^{π}_i	E_f	${ m J}_f^\pi$
416	1247+x	$(21/2^+)$	831+x	$(17/2^+)$
476	1723+x	$(25/2^+)$	1247+x	$(21/2^+)$
831	831+x	$(17/2^+)$	0.0+x	$(13/2^+)$

[†] From 1998Ba88; uncertainty unstated by authors.

¹⁵⁵Gd(³⁶Ar,4nγ) 1998Ba88

Level Scheme

 $^{187}_{82}\mathrm{Pb}_{105}$

 $^{187}_{82}\mathrm{Pb}_{105}$