		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 110,999 (2009)	1-Nov-2008

 $Q(\beta^{-})=-1.67\times10^{3}$ 3; S(n)=6290.0 6; S(p)=6579.3 11; $Q(\alpha)=2721.3$ 13 2012Wa38 Note: Current evaluation has used the following Q record \$ -1502 6 6290.0 6 6577.0 10 2723.9 12 2003Au03.

There are 122 neutron resonances for the 186 Os+n reaction in the 22 eV. to 3.35 keV energy range (2006MuZX).

¹⁸⁷Os Levels

Cross Reference (XREF) Flags

		A 187 Re β ⁻ d B 187 Re[+75] C 187 Ir ε deca D 186 Os(n,γ)	ecay β ⁻ decay (32.9 ay	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments								
0.0#	1/2-	stable	ABCD FGH J	 μ=+0.06465189 6 J^π: spin from optical spectroscopy (1976Fu06), parity from magnetic moment. μ: from 1974Sa25 (NMR). Same value in 1989Ra17 and 2005St24. <r<sup>2>^{1/2}(¹⁸⁷Os)=5.3934 <i>17</i> fm (2004An14).</r<sup> 								
9.756 [@] 19	3/2-	2.38 ns 18	BCD F H J	J^{π} : 9.7 γ M1(+E2) to 1/2 ⁻ state, L=0(+2) from ¹⁸⁹ Os(p,t), target(¹⁸⁹ Os) J^{π} =3/2 ⁻ .								
74.356 [#] 21	3/2-	37 ps 28	CDeFgHi	J^{π} : L=0 in ¹⁸⁹ Os(p,t), target(¹⁸⁹ Os) J^{π} =3/2 ⁻ ; 74.3 γ M1+E2 to 1/2 ⁻ state, 64.6 γ M1+E2 to 3/2 ⁻ state. T _{1/2} : Using B(E2) \uparrow =0.68 (1963Mc18), 74.3 γ and adopted properties (Coulomb excitation)								
75.016 [@] 22	5/2-	2.16 ns 16	CDeFgHi J	J ^π : 75γ E2 to 1/2 ⁻ state, band assignment. T _{1/2} : from ¹⁸⁷ Ir ε decay (γ-ce coincidence measurement-1971Ma24). Other: 1.7 ns 5 from B(E2)↑=0.90 (Coulomb Excitation – assuming 20% uncertainty).								
100.45 ^{&} 4	7/2-	112 ns 6	CDE HIJ	^π : 90.4γ E2 to 3/2 ⁻ state, 25.6γ M1 to 5/2 ⁻ state, band assignment. $\Gamma_{1/2}$: from ¹⁸⁷ Ir ε decay (γ-ce coincidence measurement-1971Ma24); other value: 120 ns 20 (1964Kr02) from ¹⁸⁸ Os(γ,n).								
117 2 187.42 [#] 3	5/2-	107 ps 9	L CD FgH j	J ^π : 187.4γ E2 to $1/2^-$ state, band assignment. T _{1/2} : Using the reported B(E2)↓=0.446 33 of 187γ (1997Br18) and the adopted γ-ray properties (Coulomb excitation)								
190.57 [@] 6	$7/2^{-}$		CD Fg j	J^{π} : 180.8 γ E2 to 3/2 ⁻ , 115.7 γ M1+E2 to 5/2 ⁻ state, band assignment.								
257.10 ^b 7	11/2+	231 µs 2	CFj	J ^π : 156.6γ M2+E3 to 7/2 ⁻ state. $T_{1/2}$: from 156.6γ-t and the γ-ray associated x-ray-t (1967Co20) ⁻ (d,2nγ),(p,nγ); other value: 225 μs 10 (1964Br27) from ¹⁸⁸ Os(γ,n).								
263.07 ^{&} 24	(9/2 ⁻) [‡]		Fj									
333.35 [#] 5	(7/2 ⁻)		CDEFg IJ	J^{π} : 258 γ (E2) to 3/2 ⁻ state, band assignment.								
341.5 [@] 3 350 <i>1</i>	(9/2 ⁻) [‡]		Fg G I	E(level): From (d,d').								

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁸⁷Os Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
419.00 ^b 22	$(13/2^+)^{\ddagger}$	EF I	J^{π} : L=6 in (t, α), band assignment.
442 3		E	$L=1\pm 1 (d,p).$
445.09 /	(1/2, 9/2)	CF	J [*] : 344γ M1 to $1/2$, populated in cascade from the 934.8 (15/2) level.
464 1	(11/2)	г Е	$L=(0,1)\pm 1$ in (d,p).
501.44 ^c 3	3/2-	CDE Ij	J^{π} : 501.5 γ M1 to 1/2 ⁻ state, 314 γ to 5/2 ⁻ state.
508.25 [#] 18	$(9/2^{-})^{\ddagger}$	EFG j	
511.6? [@] 3 536.67	$(11/2^{-})^{\ddagger}$	F D	
556.90 ^a 8	$(9/2^+)^{\ddagger}$	CFI	J^{π} : 299.7 γ M1 to 9/2 ⁺ state, 456.7 γ to 7/2 ⁻ state.
586.31 [°] 4	5/2-	CD CD	J^{π} : 576.6 γ M1 to 3/2 ⁻ state, 485.9 γ to 7/2 ⁻ state.
611 <i>3</i>	1/2 ,3/2	CDE I I	J^* : or $5/2$; 586.4γ M11 to $3/2$ state. $L(d,t)=1\pm 1$.
617.91 ⁰ 24 641.9 7	$(15/2^+)^4$	F D	
664.03 <i>5</i> 670 <i>5</i>	(3/2 ⁻ ,5/2 ⁻)	CDE G J E	J^{π} : 654.3 γ M1(+E2) to 3/2 ⁻ state, 589.5 γ M1 to 5/2 ⁻ state. L=1±1 in (d,p).
684.1? ^{&} 3	(13/2 ⁻) [‡]	F	
684.3? <i>3</i> 711 30 6	$(11/2^-, 13/2^-)$ $5/2^-$	F CDF T	J [*] : fed by γ from (15/2 ⁻) state, deexcites to (7/2 ⁻ ,9/2 ⁻) state.
725.75 4	$3/2^{-}$	CD G J	J^{π} : L=0 in ¹⁸⁹ Os(p,t), target(¹⁸⁹ Os) $J^{\pi}=3/2^-$; 725.7 γ M1+E2 to 1/2 ⁻ state, 651.4 γ
	- /		to $3/2^-$ state.
727.10? ^a 25	$(11/2^+)^{\ddagger}$	F	
745 6		J	E(love) From $(dt)(t, e)$
7304 9175b 2	$(17/2+)^{\ddagger}$	E T	$E(1eVe1)$: FIOIII (d,t),(t, α).
838 4	(17/2).	r I I	
885.5 ^{<i>a</i>} 4	$(13/2^+)$	FI	J^{π} : L=6 in (t, α), band assignment.
934.8 ^{&} 4	$(15/2^{-})^{\ddagger}$	eF I	
935.03 5	5/2-,7/2-	CDe	J^{π} : 348.7 γ M1 to 5/2 ⁻ state, 747.6 γ M1(+E2) to 7/2 ⁻ state. L=3±1 in (d,p).
941.83 7	$(5/2^+, 7/2^-)$	C	J^{n} : γ' s to $3/2^{-}$ and $9/2^{+}$.
987.29 4	3/2-	CE	J^{π} : 912.9 γ M1 to 5/2 ⁻ state, 987.3 γ M1(+E2) to 1/2 ⁻ state.
1005 6	,	I	
1053 6		I	
1069.0	$(10/2^{\pm})^{\pm}$	г. т. Г	
1084.1° 4	$(19/2^{-})^{+}$	C F I	I^{π} : 756 by M1 to (7/2 ⁻) v to 1/2 ⁻ state
1112.13 5	$1/2^{-},3/2^{-}$	CDE I	J^{π} : 1112 γ M1+E2 to 1/2 ⁻ state, 1102 γ to 5/2 ⁻ state. L=1±1 in (d,p).
1193 6		J	
1210.4 5	$(17/2^{-})^{\ddagger}$	EF	
1227 0	(5/2 ,7/2)	E T	$J^*: L=(3)$ (p,t).
1278 5		E	E(level). Weighted average of 1249 5 (u,p) and 1240 5 (u,t), ($\operatorname{He}, \alpha$).
1354 3		_ I	
1369 6		J	
1563 5		E T	
1615 2		E I T	
1657 6	$(3/2^{-})$	Ĵ	J^{π} : L=0 in ¹⁸⁹ Os(p,t), target(¹⁸⁹ Os) $J^{\pi}=3/2^{-}$.
1784 <i>I</i>		E	
1843 2		E	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁸⁷Os Levels (continued)

E(level) [†]	XREF					
1881 2	Е					
2097 2	E					
2266 2	E					

[†] From a least-squares adjustment to the γ -ray energies, except otherwise noted.

¹ From a least-squares adjusti
² Band assignment.
[#] Band(A): 1/2⁻[501] band.
[@] Band(B): 3/2⁻[512] band.
[@] Band(C): 7/2⁻[503] band.
^a Band(C): 9/2⁺[624] band.
^b Band(E): 11/2⁺[615] band.
^c Band(F): K=3/2 band.

Adopted Levels, Gammas (continued)												
γ ⁽¹⁸⁷ Os)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α &	Comments			
9.756	3/2-	9.75 3	100	0.0	1/2-	M1(+E2)	<0.04	2.8×10 ² 7	$ \begin{array}{c} \alpha(M) = 2.2 \times 10^2 \ 5; \ \alpha(N+) = 62 \ 14 \\ \alpha(N) = 53 \ 12; \ \alpha(O) = 8.8 \ 18; \ \alpha(P) = 0.524 \ 9 \end{array} $			
74.356	3/2-	64.59 <i>3</i>	36 7	9.756	3/2-	M1+E2	0.13 2	3.91 <i>15</i>	B(M1)(W.u.)>0.026; B(E2)(W.u.)<3.0×10 ² α (L)=3.01 <i>11</i> ; α (M)=0.70 <i>3</i> ; α (N+)=0.201 <i>8</i> α (N)=0.170 <i>7</i> ; α (O)=0.0288 <i>10</i> ; α (P)=0.00191 <i>3</i> D(M1)(W.u.) = 0.0(-5, D(E2)(W.u.) = 1.0×10 ² 0			
		74.30 <i>3</i>	100 23	0.0	1/2-	M1+E2	0.08 3	≈9.97	B(M1)(W.u.)=0.06 5; B(E2)(W.u.)=1.0×10 ² 9 B(M1)(W.u.)=0.11 10; B(E2)(W.u.)=5.E+1 +6-5 α : From ¹⁸⁷ Ir ε decay. Deduced by the evaluator from N _y + N _{cc} =10,700 and N _y =1000, calculated intensities in 1962Ha24.			
75.016	5/2-	65.31 <i>3</i>	100 20	9.756	3/2-	E2+M1	2.9 3	24.4 7	Eγ close to ¹⁸⁷ Os K-shell binding energy; total α from sub-shells except K using Bricc (2008Ki07) yields 2.4. α (L)=18.4 5; α (M)=4.70 13; α (N+)=1.29 4 α (N)=1.12 3; α (O)=0.165 5; α (P)=0.00043 4 P(M)(W =) 0.00010.4; P(F2)(W =) 81.22			
		75.03 3	84 16	0.0	1/2-	E2		14.62	B(M1)(w.u.)=0.00010 4; B(E2)(w.u.)=81 22 $\alpha(K)=0.804 12; \alpha(L)=10.42 15; \alpha(M)=2.67 4; \alpha(N+)=0.732 11$ $\alpha(N)=0.638 9; \alpha(O)=0.0937 14; \alpha(P)=0.0001714 24$			
100.45	7/2-	25.62 5	100 50	75.016	5/2-	M1+E2	0.021 8	54.5 14	B(E2)(W.u.)=38 10 α (L)=42.0 11; α (M)=9.68 25; α (N+)=2.80 7 α (N)=2.36 6; α (O)=0.406 10; α (P)=0.0295 5			
		90.37 10	4.7 17	9.756	3/2-	E2		6.61	B(M1)(W.u.)=0.00021 15; B(E2)(W.u.)=0.06 6 α (K)=0.892 13; α (L)=4.31 7; α (M)=1.103 17; α (N+)=0.303 5 α (N)=0.264 4; α (O)=0.0389 6; α (P)=0.0001072 16			
187.42	5/2-	87.62 10	1.8 12	100.45	7/2-	(M1+E2)	0.4 1	8.12 <i>13</i>	B(E2)(W.u.)=0.011 7 α (K)=6.0 4; α (L)=1.64 25; α (M)=0.40 7; α (N+)=0.112 18 α (N)=0.096 16; α (O)=0.0155 22; α (P)=0.00070 5			
		112.35 10	1.53 15	75.016	5/2-	E2		2.73	B(M1)(W.u.)=(0.0014 <i>10</i>); B(E2)(W.u.)=(12 <i>10</i>) α (K)=0.660 <i>10</i> ; α (L)=1.565 <i>23</i> ; α (M)=0.400 <i>6</i> ; α (N+)=0.1101 <i>16</i>			
		113.20 10	8.1 5	74.356	3/2-	M1+E2	1.5 2	3.05 10	$\alpha(N)=0.0958 \ 14; \ \alpha(O)=0.01418 \ 21; \ \alpha(P)=6.37\times10^{-5} \ 9 \\ B(E2)(W.u.)=20 \ 3 \\ \alpha(K)=1.45 \ 17; \ \alpha(L)=1.21 \ 7; \ \alpha(M)=0.305 \ 18; \ \alpha(N+)=0.084 \ 5 \\ \alpha(N)=0.073 \ 5; \ \alpha(O)=0.0111 \ 6; \ \alpha(P)=0.000160 \ 21 \\ (M, M, M, M, M) = 0.000160 \ 21 \\ (M, M, M, M) = 0.000160 \ 21 \\ (M, M) =$			
		177.68 7	100 4	9.756	3/2-	M1+E2	0.53 6	0.97 3	B(M1)(W.u.)=0.00102 23; B(E2)(W.u.)=72 11 α (K)=0.76 3; α (L)=0.159 4; α (M)=0.0375 9; α (N+)=0.01071 23 α (N)=0.00911 21; α (O)=0.00151 3; α (P)=8.7×10 ⁻⁵ 4			
		187.37 7	67.4 23	0.0	1/2-	E2		0.415	B(M1)(W.u.)=0.0082 <i>10</i> ; B(E2)(W.u.)=30 6 α (K)=0.201 3; α (L)=0.1617 23; α (M)=0.0408 6; α (N+)=0.01131 <i>16</i> α (N)=0.00982 <i>14</i> ; α (O)=0.001480 2 <i>1</i> ; α (P)=1.86×10 ⁻⁵ 3 B(E2)(W.u.)=70 7			

4

	Adopted Levels, Gammas (continued)											
$\gamma(^{187}\text{Os})$ (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α &	Comments			
190.57	7/2-	115.67 8	26 4	75.016	5/2-	M1+E2	1.3 +8-4	2.91 24	$\alpha(K)=1.5 5; \alpha(L)=1.04 17; \alpha(M)=0.26 5; \alpha(N+)=0.073 12$ $\alpha(N)=0.063 11; \alpha(O)=0.0096 15; \alpha(P)=0.00017 6$			
		180.83 11	100 8	9.756	3/2-	E2		0.469	$\alpha(K) = 0.220 \ 4; \ \alpha(L) = 0.188 \ 3; \ \alpha(M) = 0.0476 \ 7; \ \alpha(N+) = 0.01317 \ 19$			
257.10	11/2+	156.63 7	100	100.45	7/2-	M2+E3	0.31 4	9.53	$\alpha(N)=0.01143 \ 17; \ \alpha(O)=0.001721 \ 25; \ \alpha(P)=2.03\times10^{-3} \ 3 \ \alpha(K)=6.47 \ 16; \ \alpha(L)=2.31 \ 10; \ \alpha(M)=0.58 \ 3; \ \alpha(N+)=0.166 \ 7 \ \alpha(N)=0.142 \ 7; \ \alpha(O)=0.0233 \ 9; \ \alpha(P)=0.00121 \ 3 \ B(M2)(W.u.)=0.00377 \ 11; \ B(E3)(W.u.)=9.1 \ 22$			
263.07	$(9/2^{-})$	162.4 [‡] 3	100 [‡]	100.45	$7/2^{-}$							
555.55	(1/2)	258.65 7	100 19	74.356	3/2-	(E2)		0.1437	α (K)=0.0866 <i>13</i> ; α (L)=0.0433 <i>6</i> ; α (M)=0.01079 <i>16</i> ; α (N+)=0.00301 <i>5</i>			
		323.11 ^a 9		9.756	3/2-	(E2)		0.0734	$\alpha(N)=0.00260 \ 4; \ \alpha(O)=0.000400 \ 6; \ \alpha(P)=8.48\times10^{-6} \ 12$ $\alpha(K)=0.0489 \ 7; \ \alpha(L)=0.0187 \ 3; \ \alpha(M)=0.00460 \ 7;$ $\alpha(N+)=0.001287 \ 18$ $\alpha(N)=0.001109 \ 16; \ \alpha(O)=0.0001733 \ 25; \ \alpha(P)=4.96\times10^{-6} \ 7$			
341.5	(9/2 ⁻)	150.9 ^{‡a} 3	100‡	190.57	7/2-				u(1)=0.00110/10, u(0)=0.0001755/20, u(1)=1.90810			
419.00 445.09	$(13/2^+)$ $(7/2^- 9/2^-)$	161.9 [‡] 3 344 34 9	100 [‡] 100	257.10 100.45	$\frac{11}{2^{+}}$	M1		0 1782	$\alpha(K) = 0.1477.21; \alpha(I) = 0.0235.4; \alpha(M) = 0.00538.8;$			
115.09	(12,)2)	511.517	100	100.15	1/2	1011		0.1702	$\alpha(N+)=0.001558\ 22$			
450 33	$(11/2^{-})$	106 3 3	100 28	263.07	$(0/2^{-})$				α (N)=0.001314 <i>19</i> ; α (O)=0.000227 <i>4</i> ; α (P)=1.700×10 ⁻³ 24			
+57.55	(11/2)	359 1 3	65^{\ddagger} 13	100.45	(9/2)							
501.44	3/2-	314.13 8	20.3 7	187.42	5/2-	M1		0.228	α (K)=0.189 3; α (L)=0.0302 5; α (M)=0.00691 10; α (N+)=0.00200 3			
			_						α (N)=0.001687 24; α (O)=0.000292 4; α (P)=2.18×10 ⁻⁵ 3			
		400.81 9	96 [@] 3	100.45	7/2-	E2		0.0402	α (K)=0.0287 4; α (L)=0.00878 13; α (M)=0.00214 3; α (N+)=0.000601 9			
			0						$\alpha(N)=0.000516 \ 8; \ \alpha(O)=8.20\times10^{-5} \ 12; \ \alpha(P)=2.99\times10^{-6} \ 5$			
		426.4 8	6.0 ^{^w} 11	75.016	5/2-	N/1		0.1004				
		427.02 8	100 3	/4.356	3/2	MI		0.1004	$\alpha(\mathbf{K})=0.0835\ 12;\ \alpha(\mathbf{L})=0.01317\ 19;\ \alpha(\mathbf{M})=0.00301\ 5;\ \alpha(\mathbf{N}+)=0.000873\ 13$			
		491.74 7	30.8 11	9.756	3/2-	M1		0.0692	$\alpha(N)=0.000756 \ 17; \ \alpha(O)=0.0001273 \ 18; \ \alpha(P)=9.55\times10^{-6} \ 14^{-6} \ \alpha(K)=0.0575 \ 8; \ \alpha(L)=0.00905 \ 13; \ \alpha(M)=0.00207 \ 3; \ \alpha(N+)=0.000600 \ 9$			
		501.51 7	35.5 [@] 23	0.0	1/2-	M1		0.0658	$\alpha(N)=0.000506\ 7;\ \alpha(O)=8.74\times10^{-5}\ 13;\ \alpha(P)=6.57\times10^{-6}\ 10$ $\alpha(K)=0.0546\ 8;\ \alpha(L)=0.00859\ 12;\ \alpha(M)=0.00197\ 3;$			
									α (N+)=0.000569 8 α (N)=0.000480 7; α (O)=8.30×10 ⁻⁵ 12; α (P)=6.24×10 ⁻⁶ 9			

S

From ENSDF

Adopted Levels, Gammas (continued)											
$\gamma(^{187}\text{Os})$ (continued)											
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	α &	Comments			
508.25	(9/2 ⁻)	$174.8^{\ddagger} 3$ $317.6^{\ddagger} 3$ $321.0^{\ddagger} 3$	$38^{\ddagger} 6$ $100^{\ddagger} 28$ $<125^{\ddagger}$	333.35 190.57 187.42	(7/2 ⁻) 7/2 ⁻ 5/2 ⁻						
511.6? 536.6	(11/2 ⁻)	$321.0^{\ddagger a} 3$ $462.5^{\#}$	100^{\ddagger} $66^{\#}$ 13	190.57 74.356	7/2 ⁻ 3/2 ⁻						
556.90	(9/2+)	536.3 [#] 299.69 <i>12</i>	100# 20 100 5	0.0 257.10	1/2 ⁻ 11/2 ⁺	M1	0.259	α (K)=0.215 3; α (L)=0.0343 5; α (M)=0.00786 11; α (N+)=0.00228 4 α (N)=0.00192 3; α (O)=0.000332 5; α (P)=2.48×10 ⁻⁵ 4			
586.31	5/2-	456.74 <i>19</i> 84.88 <i>5</i>	20 4 12.4 14	100.45 501.44	3/2-	M1	8.99	$\alpha(K)=7.42 \ 11; \ \alpha(L)=1.216 \ 18; \ \alpha(M)=0.279 \ 4; \ \alpha(N+)=0.0808 \ 12 \ \alpha(N)=0.0681 \ 10; \ \alpha(Q)=0.01176 \ 17; \ \alpha(P)=0.000874 \ 13$			
		252.99 9	15 5	333.35	(7/2 ⁻)	M1	0.412	$\alpha(K) = 0.341 5; \alpha(L) = 0.0546 8; \alpha(M) = 0.01252 18; \alpha(N+) = 0.00363 5$ $\alpha(N) = 0.00306 5; \alpha(O) = 0.000528 8; \alpha(P) = 3.94 \times 10^{-5} 6$			
		395.89 11	15.7 3	190.57	7/2-	M1	0.1227	$\alpha(K)=0.1018 \ 15; \ \alpha(L)=0.01613 \ 23; \ \alpha(M)=0.00369 \ 6; \ \alpha(N+)=0.001069 \ 15$			
		398.72 <i>23</i>	42 4	187.42	5/2-	M1	0.1204	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.000902 \ 13; \ \alpha(\mathrm{O}) = 0.0001559 \ 22; \ \alpha(\mathrm{P}) = 1.169 \times 10^{-5} \ 17 \\ \alpha(\mathrm{K}) = 0.0999 \ 14; \ \alpha(\mathrm{L}) = 0.01583 \ 23; \ \alpha(\mathrm{M}) = 0.00362 \ 6; \ \alpha(\mathrm{N}+) = 0.001049 \\ 15 \end{array} $			
		485.96 7	84 <i>3</i>	100.45	7/2-	E2	0.0244	$\alpha(N)=0.000885 \ I3; \ \alpha(O)=0.0001529 \ 22; \ \alpha(P)=1.147 \times 10^{-5} \ I7$ $\alpha(K)=0.0183 \ 3; \ \alpha(L)=0.00472 \ 7; \ \alpha(M)=0.001135 \ I6; \ \alpha(N+)=0.000321 \ 5$ $\alpha(N)=0.000275 \ 4; \ \alpha(O)=4.43 \times 10^{-5} \ 7; \ \alpha(P)=1.94 \times 10^{-6} \ 3$			
		511.11 9	13.3 22	75.016	5/2-	1.01	0.0457				
		576.607	100 4	9.756	3/2	MI	0.0457	$\alpha(\mathbf{K})=0.0380\ 6;\ \alpha(\mathbf{L})=0.00595\ 9;\ \alpha(\mathbf{M})=0.001361\ 19;\ \alpha(\mathbf{N}+)=0.000394\ 6$ $\alpha(\mathbf{N})=0.000332\ 5;\ \alpha(\mathbf{O})=5.75\times10^{-5}\ 8;\ \alpha(\mathbf{P})=4.33\times10^{-6}\ 6$			
596.36	1/2-,3/2-	522.13 8	85 4	74.356	3/2-	M1	0.0592	$\alpha(K)=0.0492$ 7; $\alpha(L)=0.00773$ 11; $\alpha(M)=0.001767$ 25; $\alpha(N+)=0.000512$ 8			
		586.39 8	100 5	9.756	3/2-	M1	0.0438	$\alpha(N)=0.000431\ 6;\ \alpha(O)=7.46\times10^{-5}\ 11;\ \alpha(P)=5.61\times10^{-6}\ 8$ $\alpha(K)=0.0364\ 5;\ \alpha(L)=0.00570\ 8;\ \alpha(M)=0.001302\ 19;\ \alpha(N+)=0.000377\ 6$ $\alpha(N)=0.000318\ 5;\ \alpha(O)=5.50\times10^{-5}\ 8;\ \alpha(P)=4.14\times10^{-6}\ 6$			
617.91	(15/2+)	198.9 <i>3</i> 361.1 <i>3</i>	91 <i>18</i> 100 <i>20</i>	419.00 257.10	(13/2 ⁺) 11/2 ⁺						
641.9		454.8 " 566.5 #	100 **	187.42	5/2 ⁻						
664.03	(3/2 ⁻ ,5/2 ⁻)	162.80 <i>15</i>	32 3	75.016 501.44	3/2 3/2 ⁻	M1	1.403	α (K)=1.160 <i>17</i> ; α (L)=0.188 <i>3</i> ; α (M)=0.0430 <i>7</i> ; α (N+)=0.01245 <i>18</i> α (N)=0.01051 <i>15</i> ; α (O)=0.00181 <i>3</i> ; α (P)=0.0001351 <i>20</i>			
		589.47 8	83 5	74.356	$3/2^{-}$	M1	0.0432	$\alpha(K)=0.0359 5; \alpha(L)=0.00562 8; \alpha(M)=0.001284 18; \alpha(N+)=0.000372 6$			

6

 $\begin{array}{l} \alpha(\mathrm{K}) = 0.003145; \ \alpha(\mathrm{C}) = 0.001013; \ \alpha(\mathrm{K}) = 0.0003726\\ \alpha(\mathrm{K}) = 0.0003145; \ \alpha(\mathrm{C}) = 0.005628; \ \alpha(\mathrm{M}) = 0.00128418; \ \alpha(\mathrm{N}+..) = 0.0003726\\ \alpha(\mathrm{N}) = 0.0003145; \ \alpha(\mathrm{O}) = 5.42 \times 10^{-5}8; \ \alpha(\mathrm{P}) = 4.09 \times 10^{-6}6 \end{array}$

Adopted Levels, Gammas (continued)											
						$\gamma(^{187}\text{Os})$ (con	ntinued)				
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α &	Comments		
664.03	(3/2 ⁻ ,5/2 ⁻)	654.30 8	100 26	9.756	3/2-	M1(+E2)	<0.9	0.028 5	$\begin{array}{l} \alpha(\mathrm{K}) = 0.023 \ 4; \ \alpha(\mathrm{L}) = 0.0038 \ 6; \ \alpha(\mathrm{M}) = 0.00087 \ 12; \\ \alpha(\mathrm{N}+) = 0.00025 \ 4 \\ \alpha(\mathrm{N}) = 0.00021 \ 3; \ \alpha(\mathrm{O}) = 3.6 \times 10^{-5} \ 5; \ \alpha(\mathrm{P}) = 2.6 \times 10^{-6} \\ 5 \end{array}$		
684.1?	(13/2 ⁻)	664.25 <i>11</i> 225.4 ^{‡a} 3 420.8 ^{‡a} 3	38.3 22 100 [‡] 29 41 [‡] 8	0.0 459.33 263.07	1/2 ⁻ (11/2 ⁻) (9/2 ⁻)						
684.3? 711.30	(11/2 ⁻ ,13/2 ⁻) 5/2 ⁻	239.2 ^{‡a} 3 265.97 8	100 [‡] 1.90 <i>11</i>	445.09 445.09	(7/2 ⁻ ,9/2 ⁻) (7/2 ⁻ ,9/2 ⁻)	E2		0.1318	$\alpha(K)=0.0806 \ 12; \ \alpha(L)=0.0388 \ 6; \ \alpha(M)=0.00967$ 14; \(\alpha(N+)=0.00270 \ 4 \(\alpha(N)=0.00233 \ 4; \(\alpha(O)=0.000359 \ 5; \(\alpha(P)=7.93\times10^{-6} \ 12\)		
		610.88 7	100 [@] 4	100.45	7/2-	M1		0.0394	$\alpha(K)=0.0328 5; \alpha(L)=0.00512 8; \alpha(M)=0.001170$ 17; $\alpha(N+)=0.000339 5$ $\alpha(N)=0.000286 4; \alpha(O)=4.94\times10^{-5} 7;$ $\alpha(P)=3.73\times10^{-6} 6$		
		636.49 <i>12</i> 701.2 <i>10</i> 711.47 <i>12</i>	7.8 <i>11</i> 1.6 <i>3</i> 2.45 <i>22</i>	75.016 9.756 0.0	5/2 ⁻ 3/2 ⁻ 1/2 ⁻						
725.75	3/2-	224.44 9	8.8 4	501.44	3/2-	M1		0.572	$\begin{aligned} &\alpha(\mathbf{K}) = 0.474 \ 7; \ \alpha(\mathbf{L}) = 0.0761 \ 11; \ \alpha(\mathbf{M}) = 0.01746 \ 25; \\ &\alpha(\mathbf{N}+) = 0.00505 \ 7 \\ &\alpha(\mathbf{N}) = 0.00426 \ 6; \ \alpha(\mathbf{O}) = 0.000736 \ 11; \\ &\alpha(\mathbf{P}) = 5.49 \times 10^{-5} \ 8 \end{aligned}$		
		651.40 8	86 [@] 6	74.356	3/2-	M1+E2	0.9 +7-4	0.024 6	$\begin{array}{l} \alpha(\mathrm{K}) = 0.020 \ 5; \ \alpha(\mathrm{L}) = 0.0033 \ 7; \ \alpha(\mathrm{M}) = 0.00076 \ 14; \\ \alpha(\mathrm{N}+) = 0.00022 \ 4 \\ \alpha(\mathrm{N}) = 0.00019 \ 4; \ \alpha(\mathrm{O}) = 3.2 \times 10^{-5} \ 7; \ \alpha(\mathrm{P}) = 2.2 \times 10^{-6} \\ 6 \end{array}$		
		716.00 <i>11</i> 725.70 8	52 <i>3</i> 100 <i>6</i>	9.756 0.0	3/2 ⁻ 1/2 ⁻	M1+E2	1.8 +54-7	0.013 4	$\alpha(K)=0.011 \ 3; \ \alpha(L)=0.0019 \ 4; \ \alpha(M)=0.00045 \ 9; \\ \alpha(N+)=0.000129 \ 25 \\ \alpha(N)=0.000110 \ 21; \ \alpha(O)=1.8\times10^{-5} \ 4; \\ \alpha(P)=1.2\times10^{-6} \ 4$		
727.10?	$(11/2^+)$	169.9 [‡] 3 308.4 [‡] 3	$100^{\ddagger} 27$	556.90 419.00	$(9/2^+)$ $(13/2^+)$						
817.5	(17/2 ⁺)	199.4^{\ddagger} 3	$91^{\ddagger} 18$ $100^{\ddagger} 20$	617.91	$(15/2^+)$ $(15/2^+)$ $(13/2^+)$						
885.5 934.8	(13/2 ⁺) (15/2 ⁻)	$158.4^{\ddagger a} 3$ $251.0^{\ddagger} 3$	$100^{\ddagger} 20$ $100^{\ddagger} 96^{\ddagger} 19$	727.10? 684.1?	$(13/2^{+})$ $(11/2^{+})$ $(13/2^{-})$						

7

 $^{187}_{76}\mathrm{Os}_{111}$ -7

	Adopted Levels, Gammas (continued)											
$\gamma(^{187}\text{Os})$ (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	α ^{&}	Comments			
934.8 935.03	(15/2 ⁻) 5/2 ⁻ ,7/2 ⁻	475.1 [‡] <i>3</i> 348.74 <i>9</i>	100 [‡] 21 11.7 13	459.33 586.31	(11/2 ⁻) 5/2 ⁻	M1		0.1722	$\alpha(K)=0.1428\ 20;\ \alpha(L)=0.0227\ 4;\ \alpha(M)=0.00520\ 8;$ $\alpha(N+)=0.001506\ 22$ $\alpha(N)=0.001270\ 18;\ \alpha(O)=0.000219\ 3;$ $\alpha(N)=1\ 642\times10^{-5}\ 22$			
		747.62 8	85 5	187.42	5/2-	M1(+E2)	<1.2	0.019 5	$\alpha(\mathbf{F}) = 1.043 \times 10^{-123}$ $\alpha(\mathbf{K}) = 0.016 \ 4; \ \alpha(\mathbf{L}) = 0.0026 \ 5; \ \alpha(\mathbf{M}) = 0.00059 \ 11;$ $\alpha(\mathbf{N}+) = 0.00017 \ 4$ $\alpha(\mathbf{N}) = 0.00014 \ 3; \ \alpha(\mathbf{O}) = 2.5 \times 10^{-5} \ 5; \ \alpha(\mathbf{P}) = 1.8 \times 10^{-6} \ 5$			
941.83	(5/2 ⁺ ,7/2 ⁻)	859.98 7 860.63 12 935.14 20 355.69 10 384.96 8 440.27 9	100 21 23.4 16 20 8 10.8 10 91 11 19.1 24	75.016 74.356 0.0 586.31 556.90 501.44	5/2 ⁻ 3/2 ⁻ 1/2 ⁻ 5/2 ⁻ (9/2 ⁺) 3/2 ⁻							
987.29	3/2-	841.09 <i>20</i> 261.58 <i>7</i>	100 <i>5</i> 3.72 <i>21</i>	100.45 725.75	7/2 ⁻ 3/2 ⁻	M1		0.376	α (K)=0.311 5; α (L)=0.0498 7; α (M)=0.01142 16; α (N+)=0.00331 5 α (N)=0.00279 4; α (O)=0.000482 7; α (P)=3.60×10 ⁻⁵			
		275.91 16	0.76 18	711.30	5/2-	M1		0.325	$\alpha(K)=0.269 \ 4; \ \alpha(L)=0.0430 \ 6; \ \alpha(M)=0.00986 \ 14; \\ \alpha(N+)=0.00285 \ 4 \\ \alpha(N)=0.00241 \ 4; \ \alpha(O)=0.000416 \ 6; \ \alpha(P)=3.11\times10^{-5} \\ 5 \\ \end{tabular}$			
		323.11 9 400.81 ^a 9 654.30 ^a 8 796 8 10	5.21 <i>18</i> 1.8 <i>18</i> 0.29 6	664.03 586.31 333.35 190.57	(3/2 ⁻ ,5/2 ⁻) 5/2 ⁻ (7/2 ⁻) 7/2 ⁻							
		799.90 8	18.6 8	187.42	5/2-	M1		0.0197	$\alpha(K)=0.01645\ 23;\ \alpha(L)=0.00255\ 4;\ \alpha(M)=0.000582$ 9; $\alpha(N+)=0.0001684\ 24$ $\alpha(N)=0.0001420\ 20;\ \alpha(O)=2.46\times10^{-5}\ 4;$ $\alpha(P)=1\ 86\times10^{-6}\ 3$			
		886.91 9 912.86 7	2.68 <i>15</i> 100 <i>4</i>	100.45 74.356	7/2 ⁻ 3/2 ⁻	M1		0.01413	$\alpha(K) = 0.01178 \ 17; \ \alpha(L) = 0.00182 \ 3; \ \alpha(M) = 0.000415 6; \ \alpha(N+) = 0.0001201 \ 17 \alpha(N) = 0.0001012 \ 15; \ \alpha(O) = 1.753 \times 10^{-5} \ 25;$			
		977.54 8	65.5 <i>21</i>	9.756	3/2-	M1+E2	0.9 +4-3	0.0089 13	$\alpha(P)=1.330\times10^{-6} I9$ $\alpha(K)=0.0074 I1; \ \alpha(L)=0.00118 I5; \ \alpha(M)=0.00027$ $4; \ \alpha(N+)=7.8\times10^{-5} I0$ $\alpha(N)=6.6\times10^{-5} 8; \ \alpha(O)=1.13\times10^{-5} I5;$ (M) = 0.2 1027 I2			
		987.35 8	58.5 21	0.0	1/2-	M1(+E2)	<1	0.0100 <i>17</i>	$\alpha(\mathbf{r}) = 8.2 \times 10^{-7} I_{3}^{-7}$ $\alpha(\mathbf{K}) = 0.0083 I4; \ \alpha(\mathbf{L}) = 0.00130 \ 20; \ \alpha(\mathbf{M}) = 0.00030$ $5; \ \alpha(\mathbf{N}+) = 8.6 \times 10^{-5} I_{3}$ $\alpha(\mathbf{N}) = 7.2 \times 10^{-5} I1; \ \alpha(\mathbf{O}) = 1.25 \times 10^{-5} I9;$ $\alpha(\mathbf{P}) = 9.3 \times 10^{-7} I7$			

Adopted Levels, Gammas (continued) $\gamma(^{187}\text{Os})$ (continued) E_{γ}^{\dagger} I_{γ}^{\dagger} $\alpha^{\&}$ Mult. J^{π} J^{π}_{L} Comments \mathbf{E}_{f} $(19/2^+)$ 100 20 817.5 266.2 3 $(17/2^+)$ 466.7 3 100 20 617.91 $(15/2^+)$ $(5/2^{-})$ 756.64 9 $333.35 \quad (7/2^{-})$ M1 0.0227 $\alpha(K)=0.0189 3; \alpha(L)=0.00294 5; \alpha(M)=0.000671 10;$ 68 5 $\alpha(N+..)=0.000194$ 3 $\alpha(N)=0.0001638\ 23$; $\alpha(O)=2.84\times10^{-5}\ 4$; $\alpha(P)=2.15\times10^{-6}\ 3$ 899.85 13 45 5 190.57 $7/2^{-}$ 902.94 8 100 5 187.42 5/2-M1 0.01453 $\alpha(K)=0.01211 \ 17; \ \alpha(L)=0.00187 \ 3; \ \alpha(M)=0.000426 \ 6;$ α(N+..)=0.0001235 18 α (N)=0.0001041 15; α (O)=1.80×10⁻⁵ 3; α (P)=1.367×10⁻⁶ 20 1016.05 20 30 3 74.356 3/2-42 3 9.756 3/2-1080.60 9 1090.5 *1* 6.77 0.0 $1/2^{-}$ $1/2^{-}, 3/2^{-}$ 448.20 8 24.7 12 664.03 $(3/2^{-}, 5/2^{-})$ M1 0.0883 $\alpha(K)=0.0733 \ 11; \ \alpha(L)=0.01158 \ 17; \ \alpha(M)=0.00265 \ 4;$ $\alpha(N+..)=0.000767 11$ $\alpha(N)=0.000647$ 9; $\alpha(O)=0.0001118$ 16; $\alpha(P)=8.40\times10^{-6}$ 12 71 3 $\alpha(K)=0.0508 \ 8; \ \alpha(L)=0.00798 \ 12; \ \alpha(M)=0.00183 \ 3;$ 515.68 8 596.36 $1/2^{-}, 3/2^{-}$ M1 0.0611 α (N+..)=0.000529 8 $\alpha(N)=0.000446$ 7; $\alpha(O)=7.71\times10^{-5}$ 11; $\alpha(P)=5.80\times10^{-6}$ 9 1037.96 10 764 74.356 3/2-1102.22 9 33.3 17 9.756 3/2- $\alpha(K)=0.0059 \ 13; \ \alpha(L)=0.00092 \ 18; \ \alpha(M)=0.00021 \ 4;$ 1111.99 *19* 100 5 0.0 $1/2^{-}$ M1+E2 0.76 0.0071 15 $\alpha(N+..)=6.1\times10^{-5}$ 12

9

[†] From ¹⁸⁷Ir ε decay, except otherwise noted.

[‡] From (d,2n γ), (p,n γ).

[#] From (n, γ) .

1210.4

 E_i (level)

1090.32

1112.13

1084.1

^(a) Identified as multiplet in (n,γ) .

 $(17/2^{-})$

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

275.7^{‡a} 3

526^{*a*} 1

100[‡] 19

934.8

 $(15/2^{-})$

684.1? $(13/2^{-})$

 $\alpha(N)=5.1\times10^{-5}$ 10; $\alpha(O)=8.9\times10^{-6}$ 17; $\alpha(P)=6.6\times10^{-7}$ 15;

 α (IPF)=4.1×10⁻⁷ 6

 E_{γ} : From (d,2n γ),(p,n γ).

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme

¹⁸⁷₇₆Os₁₁₁

¹⁸⁷₇₆Os₁₁₁

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁸⁷₇₆Os₁₁₁

¹⁸⁷₇₆Os₁₁₁

Adopted Levels, Gammas (continued)

