¹⁸⁷Pt ε decay 1992GuZX,1992Gu14,1973Se13

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 110, 999 (2009)	1-Nov-2008

Parent: ¹⁸⁷Pt: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=2.35$ h 3; $Q(\varepsilon)=3000$ 30; $\%\varepsilon+\%\beta^{+}$ decay=100.0

Others: 1970Du09,1969Ha03, 1965Qa01, 1962Gr27, and 1961Kr02. 1992GuZX,1992Gu14: 187 Pt was obtained as daughter product of 187 Au, the latter was produced by 181 Ta(12 C,6n) 187 Au

reaction; Measured: E γ , I γ , deduced δ , J^{π}, level scheme, γ - γ -t and γ -e-t coincidences, γ and electron multiscaled singles events were collected. Also angular distribution of the γ -rays from the decay of ¹⁸⁷Pt, in a 128 T magnetic field, is studied semi-on-line, ¹⁸⁷Pt was obtained from the decay of ¹⁸⁷Hg [produced from ¹⁷⁶Hf(¹⁶O,5n)¹⁸⁷Hg reaction, E=125–MeV]; detectors at 7 angles, 3° to 45° , relative to applied field direction.

1973Se13: ¹⁸⁷Pt produced from decay of ¹⁸⁷Hg; Detector:Ge(Li), Si(Li), electron spectrograph; Measured: Ey, Iy, ce, yy coin, electron-electron coincidence, deduced levels scheme, J^{π} .

¹⁸⁷Ir Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0@	3/2+		
106.480 ^{&} 24	$1/2^+$	11.5 ns 3	
$110.075^{@} 22$	5/2 ⁺	120 ps 15	
$186 16^{b} 4$	9/2 ⁻	120 ps 15	
180.50 3	3/2+	22 ps 10	
201.61^{a} 4	5/2-	0.84 ns 8	
$285.08^{@} 4$	3/2 7/2 ⁺	0.01 115 0	
311.66° 3	5/2 ⁺	<30 ps	
388.73^{a} 4	$1/2^{-}$	<65 ps	
433.75 [°] 6	$\frac{1}{2}$ $\frac{1}{2}$	152 ns <i>12</i>	$T_{1/2}$: Other: 140 ns 30 (1969Ha03).
442.87 10	$(9/2^+)$		1/2.
471.22 ^{&} 5	7/2+		
486.28 ^{<i>a</i>} 4	3/2-		
486.39 4	7/2-		
731.19 5	5/2-		
738.46 7	$(1/2^{-})$		
810.04 4 810.06 <i>1</i>	(3/2, 3/2) $3/2^+$		
896.30.5	$(1/2^{-}, 3/2^{-})$		
985.36 9	(1/2 ,0/2)		
995.06 <i>13</i>	$(11/2^{-})$		
1001.62 10	$(3/2^+, 5/2^+)$		
1022.58 6	$(5/2^{-})$		
1173.01 9			
1214.92 11	$(5/2^{-})$		
1210.07 11	$1/2^+$ $3/2^+$ $5/2^+$		E(level): not reported in 1992Gu14.
1418.70 11	1/2 ,0/2 ,0/2		
1798.86 <i>18</i>			
2277.20 7			
2291.25 5			
2305.88 /			
2372.87.11			
2380.78 7			
2399.25 11			
2404.41 6			

 187 Pt ε decay 1992GuZX,1992Gu14,1973Se13 (continued)

¹⁸⁷Ir Levels (continued)

E(level)[†]

2413.45 13

2416.48 8

[†] From a least-squares adjustment to the γ -ray energies without considering the 186.25 γ and 551.64 γ from the 388-keV and 738-keV levels, respectively (σ >3).

[‡] From Adopted Levels.

[#] From $\gamma\gamma(t)$, ce-Ce(t) (1973Se13).

@ 3/2+[402].

^a 1/2⁺[400]. ^a 1/2⁺[400]. ^b K=9/2?

 $c 11/2^{-}[505]?$

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ †‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
$(1.74 \times 10^3 \ 3)$	1255.80	0.016 4	3.8 7	7.19 9	3.8 7	av Eβ=343 14; εK=0.8080 4; εL=0.14265 25; εM+=0.04525 9
$(1.78 \times 10^3 \ 3)$	1218.87	0.006 6	1.2 12	7.7 5	1.2 12	av E β =359 14; ε K=0.8075 5; ε L=0.1423 3; ε M+=0.04514 9
$(1.98 \times 10^3 \ 3)$	1022.58	0.0036 11	0.31 9	8.39 <i>13</i>	0.31 9	av Eβ=446 14; εK=0.8034 10; εL=0.1406 3; εM+=0.04453 11
$(2.00 \times 10^3 \ 3)$	1001.62	0.022 5	1.8 <i>3</i>	7.64 8	1.8 <i>3</i>	av Eβ=455 14; εK=0.8027 10; εL=0.1404 3; εM+=0.04446 11
$(2.10 \times 10^3 3)$	896.30	0.066 10	3.6 4	7.37 5	3.7 4	av Eβ=501 14; εK=0.7989 13; εL=0.1392 4; εM+=0.04408 12
$(2.18 \times 10^3 \ 3)$	819.06	0.30 4	12.9 13	6.86 5	13.2 13	av Eβ=535 14; εK=0.7955 15; εL=0.1383 4; εM+=0.04378 13
$(2.18 \times 10^3 \ 3)$	816.04	0.068 9	2.9 3	7.50 5	3.0 3	av Eβ=536 14; εK=0.7953 16; εL=0.1383 4; εM+=0.04376 13
$(2.26 \times 10^3 \ 3)$	738.46	0.036 4	1.3 1	7.90 4	1.3 1	av Eβ=570 14; εK=0.7912 18; εL=0.1373 4; εM+=0.04343 14
$(2.27 \times 10^3 \ 3)$	731.19	0.071 13	2.4 4	7.62 7	2.5 4	av E β =573 14; ε K=0.7908 18; ε L=0.1372 5; ε M+=0.04340 14
$(2.51 \times 10^3 3)$ $(2.53 \times 10^3 3)$	486.28 471.22	0.029 5	2.0 3	9.17 ¹ <i>u</i> 7	2.0 3	av E β =693 13; ε K=0.7947 7; ε L=0.1447 3; ε M+=0.04613 11
$(2.56 \times 10^{3\#} 3)$	442.87					
$(2.61 \times 10^{-5} 3)$	388.73	0.10 2	1.6 3	7.92.8	1.7 3	av $E\beta = 724$ 14; $\varepsilon K = 0.765$ 3; $\varepsilon L = 0.1317$ 6; $\varepsilon M + = 0.04162$ 19
$(2.69 \times 10^3 \ 3)$	311.66	1.02 12	13.4 14	7.03 5	14.4 15	av Eβ=758 14; εK=0.758 3; εL=0.1303 6; εM+=0.04115 20
$(2.71 \times 10^3 \ 3)$	285.08	0.12 2	5.3 6	8.87 ¹ <i>u</i> 6	5.4 6	av Eβ=771 13; εK=0.7897 10; εL=0.1427 4; εM+=0.04544 12
$(2.81 \times 10^3 \ 3)$	189.59	0.89 11	9.3 11	7.22 6	10.2 12	av Eβ=812 14; εK=0.744 4; εL=0.1277 7; εM+=0.04034 21
$(2.81 \times 10^{3 \text{\#}} 3)$	186.16	0.54 9	5.6 9	7.45 8	6.1 10	av E β =813 14; ε K=0.744 4; ε L=0.1277 7; ε M+=0.04031 21 I(ε + β ⁺); from the decay scheme, an apparent 4%

Continued on next page (footnotes at end of table)

			187 Pt ε d	ecay 1	992GuZX,19	092Gu14,1973Se13 (continued)
				-	ϵ, β^+ radiation	ns (continued)
E(decay)	E(level)	Ιβ ⁺ †‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
						branch is observed feeding this level. This branch is inconsistent with the forbiddenness of the transition and indicative of incorrect transition intensities deexciting it. See comments on 79-keV γ .
$(2.89 \times 10^3 \ 3)$ $(2.89 \times 10^3 \ 3)$	110.075 106.480	1.56 <i>19</i> 1.16 <i>14</i>	14.1 <i>16</i> 10.4 <i>12</i>	7.07 <i>6</i> 7.20 <i>5</i>	15.7 <i>18</i> 11.6 <i>13</i>	av E β =847 14; ε K=0.735 4; ε L=0.1260 7; ε M+=0.03978 22 av E β =849 14; ε K=0.735 4; ε L=0.1259 7; ε M+=0.03975 22

[†] From the 511.7-keV intensity, an upper limit of 1% can be placed on the positron intensity.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

¹⁸⁷Pt ε decay **1992GuZX,1992Gu14,1973Se13** (continued)

 $\gamma(^{187}{\rm Ir})$

Iγ normalization: from Ti(g.s.)=100. Other: 0.07, from I(K β_1 x ray+K β_2 x ray)=312 and I(K x ray)/I(K β_1 x ray+K β_2 x ray)=4.65 (1978LeZA), I(K x ray)=1451. From the decay scheme the K x-ray contribution from internal conversion is I(K x ray) α =645 so I(K x ray) ε =806. Correcting for fluorescence yield (ω (K)=0.962) (1978LeZA) and ε K/ ε =0.57, the electron capture intensity I(ε)=1470 and yields I γ normalization=0.07. Positron decay intensity can be estimated from the 511.7 γ intensity as I(β^+)<10. The ε/β^+ ratio is consistent with little positron decay to levels below 1 MeV.

E_{γ}^{\dagger}	$I_{\gamma}^{\&k}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^f	δ ^g	α^{l}	Comments
76.09 3	0.67 ^{<i>d</i>} 7	186.16	9/2-	110.075	5/2+	M2+E3	0.22 ^{<i>h</i>} 2	79 4	Mult.: L1:L2:L3:M1:M2:M3:N12:N3:N45:0= 19.4 20:8.2 10:10.4 10:5.4 7:2.6 3:3.0 4:1.7 5:1.3 5:0.4 2:0.6 2 (1973Se13). I_{γ} : 1975An08 suggest from delayed coincidence data that this intensity is too low. However, in view of the too large apparent β feeding to this level, this result has been ignored.
79.39 6	1.5 4	189.59	3/2+	110.075	5/2+	[M1+E2]		12.0 3	$\alpha(K)=55; \alpha(L)=54; \alpha(M)=1.310; \alpha(N+)=0.43$ $\alpha(N)=0.3123; \alpha(O)=0.054; \alpha(P)=0.00076$ $\alpha(L1)\exp=2.21(1973Se13).$ I_{γ} : photon was not observed. $I_{\gamma}=1.54$ from ce(L1) and $\alpha(L1)=1.52$, if M1.
83.08 <i>5</i>	22.1 3	189.59	3/2+	106.480	1/2+	M1+E2	+0.15 ^{<i>i</i>} 3	10.39	α (K)=8.39 <i>14</i> ; α (L)=1.54 <i>6</i> ; α (M)=0.360 <i>15</i> ; α (N+)=0.105 <i>4</i> α (N)=0.088 <i>4</i> ; α (O)=0.0154 <i>6</i> ; α (P)=0.001052 <i>18</i> A ₂ =+0.025 <i>12</i> , A ₄ =0 (assumed). Mult.: α (L1)exp=0.87 <i>17</i> (1973Se13).
91.50 <i>5</i>	8.6 1	201.61	5/2-	110.075	5/2+	E1		0.500	$\alpha(K)=0.402$ 6; $\alpha(L)=0.0755$ 11; $\alpha(M)=0.01748$ 25; $\alpha(N+)=0.00494$ 7 $\alpha(N)=0.00421$ 6; $\alpha(O)=0.000693$ 10; $\alpha(P)=3.41\times10^{-5}$ 5 $A_2=-0.19$ 3, $A_4=0$ (assumed). Mult.: $\alpha(L1)\exp<0.06$ (1973Se13).
97.56 6	3.6 1	486.28	3/2-	388.73	1/2-	M1+E2	+1.2 ^{<i>i</i>} 6	5.7 5	$\alpha(K)=2.7 \ 15; \ \alpha(L)=2.3 \ 8; \ \alpha(M)=0.58 \ 21; \ \alpha(N+)=0.16 \ 6 \ \alpha(N)=0.14 \ 5; \ \alpha(O)=0.022 \ 8; \ \alpha(P)=0.00033 \ 19 \ A_2=-0.11 \ 6, \ A_4=0 \ (assumed).$ Mult: $\alpha(K)\exp=2.3 \ 10 \ (1973)\exp(3.5)$
106.44 <i>3</i>	100.0 <i>16</i>	106.480	1/2+	0.0	3/2+	E2		3.58	$\alpha(K)=0.693 \ I0; \ \alpha(L)=2.17 \ 3; \ \alpha(M)=0.559 \ 8; \ \alpha(N+)=0.1558 \ 22 \ \alpha(N)=0.1351 \ I9; \ \alpha(O)=0.0206 \ 3; \ \alpha(P)=7.83\times10^{-5} \ I1 \ A_2=+0.006 \ 4, \ A_4=-0.006 \ 5.$ Mult.: $\alpha(K)\exp=0.52 \ (1973Se13); \ \alpha(K)\exp=0.708 \ I7 \ (1992GuZX).$
110.06 <i>3</i>	74.9 11	110.075	5/2+	0.0	3/2+	M1+E2	-0.67 ^{<i>i</i>} 8	4.18 10	$\alpha(K)=2.85\ 17;\ \alpha(L)=1.01\ 7;\ \alpha(M)=0.248\ 18;\ \alpha(N+)=0.071\ 5$ $\alpha(N)=0.060\ 5;\ \alpha(O)=0.0098\ 6;\ \alpha(P)=0.000351\ 22$ $A_2=+0.110\ 5,\ A_4=-0.006\ 6.$ Mult: $\alpha(K)\exp=2.8\ 7\ (1973\ensuremath{\$e13});\ \alpha(K)\exp=2.70\ 4\ (1992\ensuremath{$GuZX})$
122.00 4	31.1 3	311.66	5/2+	189.59	3/2+	M1+E2	<0.2 ⁱ	3.44 6	$\alpha(K)=2.81 \ 6; \ \alpha(L)=0.482 \ 15; \ \alpha(M)=0.112 \ 4; \ \alpha(N+)=0.0326 \ 11 \ \alpha(N)=0.0274 \ 10; \ \alpha(O)=0.00482 \ 14; \ \alpha(P)=0.000348 \ 8 \ Mult.: \ \alpha(K)exp=3.3 \ 7 \ (1973Se13); \ \alpha(K)exp=2.73 \ 3 \ (1992GuZX).$
159.52 6	4.5 ^a 7	471.22	7/2+	311.66	5/2+	M1		1.618	$\alpha(K)=1.335$ 19; $\alpha(L)=0.218$ 3; $\alpha(M)=0.0502$ 7; $\alpha(N+)=0.01470$ 21

4

From ENSDF

					¹⁸⁷ Pt <i>e</i>	e decay	1992GuZX	K,1992Gu 1	4,1973Se13 (continued)
							γ (¹⁸⁷ Ir) (continue	<u>d)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\&k}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^f	δ ^g	α^l	Comments
^x 162.57 <i>11</i> ^x 166.29 8	$1.6 \ l$ $0.9^{a} \ 2$					M1		1.439	$\begin{aligned} &\alpha(N) = 0.01235 \ 18; \ \alpha(O) = 0.00219 \ 3; \ \alpha(P) = 0.0001648 \ 24 \\ &\text{Mult.:} \ \alpha(K) \text{exp} = 1.0 \ 4 \ (1973\text{Se13}). \\ &\text{ce}(K) = 2.0 \ 5, \ \text{ce}(L1) = 0.7 \ 3 \ (1973\text{Se13}). \\ &\alpha(K) = 1.188 \ 17; \ \alpha(L) = 0.194 \ 3; \ \alpha(M) = 0.0447 \ 7; \ \alpha(N+) = 0.01307 \ 19 \\ &\alpha(N) = 0.01098 \ 16; \ \alpha(O) = 0.00194 \ 3; \ \alpha(P) = 0.0001465 \ 21 \end{aligned}$
174.99 <i>4</i>	6.8 1	285.08	7/2+	110.075	5/2+	M1		1.247	Mult.: $\alpha(K)\exp=2 \ l \ (1973Se13)$. $\alpha(K)=1.029 \ l5; \ \alpha(L)=0.1679 \ 24; \ \alpha(M)=0.0387 \ 6; \ \alpha(N+)=0.01132 \ l6$ $\alpha(N)=0.00950 \ l4; \ \alpha(O)=0.001683 \ 24; \ \alpha(P)=0.0001269 \ l8$ $A_2=+0.201 \ 23, \ A_4=+0.003 \ 35.$
186.2 <i>1</i>	15.6 9	186.16	9/2-	0.0	3/2+	E3		4.02	Mult.: $\alpha(K)\exp=1.6\ 6\ (1973Se13)$. $\alpha(K)=0.573\ 8;\ \alpha(L)=2.57\ 4;\ \alpha(M)=0.687\ 10;\ \alpha(N+)=0.193\ 3$ $\alpha(N)=0.1675\ 24;\ \alpha(O)=0.0257\ 4;\ \alpha(P)=0.0001260\ 18$ $I_{\gamma}:\ 42\ 5\ (1973Se13)$. Mult.: $\alpha(K)\exp=0.55\ 14\ (mixed with\ 1774\ K\ line)\ (1072Se13)$:
186.25 7	33.9 10	388.73	1/2-	201.61	5/2-	E2		0.441	Mult.: $\alpha(K)\exp=0.55$ 14 (mixed with 1777 K line) (1975Se13); $\alpha(K)\exp=1.25$ 7 (1992GuZX). $\alpha(K)=0.204$ 3; $\alpha(L)=0.179$ 3; $\alpha(M)=0.0455$ 7; $\alpha(N+)=0.01275$ 18 $\alpha(N)=0.01102$ 16; $\alpha(O)=0.001713$ 25; $\alpha(P)=2.04\times10^{-5}$ 3 I _γ : 17 5 (1973Se13). Mult : $\alpha(K)\exp=0.17$ 4 (1973Se13)
189.61 5	10.0 3	189.59	3/2+	0.0	3/2+	M1+E2	-0.6^{i} 3	0.84 11	$\alpha(K) = 0.66 \ 12; \ \alpha(L) = 0.142 \ 7; \ \alpha(M) = 0.0338 \ 22; \ \alpha(N+) = 0.0098 \ 6$ $\alpha(N) = 0.0083 \ 5; \ \alpha(O) = 0.00141 \ 5; \ \alpha(P) = 8.0 \times 10^{-5} \ 15$ Works $\alpha(K) = 0.025 \ \alpha(D) = 0.00141 \ 5; \ \alpha(P) = 8.0 \times 10^{-5} \ 15$
199.11 ^m 7	2.8 1	388.73	1/2-	189.59	3/2+	E1		0.0690	Mult.: $\alpha(K)\exp=0.65\ 20\ (1973Se13)$ and $0.781\ 24\ (1992GuZX)$. $\alpha(K)=0.0568\ 8;\ \alpha(L)=0.00941\ 14;\ \alpha(M)=0.00216\ 3;\ \alpha(N+)=0.000620$ 9
									α (N)=0.000526 8; α (O)=8.94×10 ⁻⁵ 13; α (P)=5.36×10 ⁻⁶ 8 I _y : 8.5 10 (1973Se13). A ₂ =+0.08 5, A ₄ =+0.05 6. Mult.: α (K)exp<0.06 (1973Se13).
^x 200.8 [#] 2	Ь					(M1)		0.849	$\alpha(K)=0.701 \ 10; \ \alpha(L)=0.1140 \ 17; \ \alpha(M)=0.0263 \ 4; \ \alpha(N+)=0.00768 \ 11 \ \alpha(N)=0.00645 \ 10; \ \alpha(O)=0.001143 \ 17; \ \alpha(P)=8.62\times10^{-5} \ 13 \ Mult.; \ ce(K)=0.9 \ 3 \ (1973Se13).$
201.49 <i>10</i>	≈6 ^b	311.66	5/2+	110.075	5/2+	M1		0.840	$\alpha(K)=0.694 \ 10; \ \alpha(L)=0.1129 \ 16; \ \alpha(M)=0.0260 \ 4; \ \alpha(N+)=0.00761 \ 11$ $\alpha(N)=0.00639 \ 9; \ \alpha(O)=0.001132 \ 16; \ \alpha(P)=8.54\times10^{-5} \ 12$ $I_{\gamma}: \ 67.2 \ 11 \ for \ doublet \ (201.73\gamma + 201.38\gamma) \ (1992GuZX), \ intensity$ was divided by the evaluator based on intensity adjustment at 201 and 311 keV levels. Mult : $ce(K)=5.9 \ 10 \ (1973Se13)$
201.68 9	≈61 ^b	201.61	5/2-	0.0	3/2+	E1		0.0668	$\alpha(K)=0.0550 \ 8; \ \alpha(L)=0.00910 \ 13; \ \alpha(M)=0.00209 \ 3; \ \alpha(N+)=0.000600 \ 9 \ \alpha(N)=0.000508 \ 8; \ \alpha(O)=8.65\times10^{-5} \ 13; \ \alpha(P)=5.20\times10^{-6} \ 8 \ I_{\gamma}: \ 67.2 \ 11 \ \text{for doublet} \ (201.73\gamma + 201.38\gamma) \ (1992GuZX), \ \text{intensity}$

S

 $^{187}_{77}\mathrm{Ir}_{110}\text{-}5$

				¹⁸⁷ Pt	ε decay	1992G	uZX,1992	Gu14,1973Se13 (continued)
						<u> γ(</u>	¹⁸⁷ Ir) (con	tinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\&k}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. ^f	α^{l}	Comments
205.18 6	8.6 1	311.66	5/2+	106.480	1/2+	E2	0.317	was divided by the evaluator based on intensity adjustment at 201 and 311 keV levels. The 201 γ Branching from the 201 keV level of the adopted gammas indicates $I\gamma\approx27$. Mult.: $\alpha(K)\exp=0.07$ (1973Se13). $\alpha(K)=0.1591$ 23; $\alpha(L)=0.1189$ 17; $\alpha(M)=0.0301$ 5; $\alpha(N+)=0.00846$ 12 $\alpha(N)=0.00730$ 11; $\alpha(O)=0.001141$ 16; $\alpha(P)=1.612\times10^{-5}$ 23
244.79 9	2 ^c 1	731.19	5/2-	486.39	7/2-	M1	0.490	A ₂ =-0.112 23, A ₄ =+0.01 3. Mult.: α (K)exp=0.16 6 (1973Se13); α (K)exp=0.149 3 (1992GuZX). α (K)=0.405 6; α (L)=0.0657 10; α (M)=0.01511 22; α (N+)=0.00442 7 α (N)=0.00371 6; α (O)=0.000658 10; α (P)=4.97×10 ⁻⁵ 7
								A ₂ =+0.123 <i>13</i> , A ₄ =-0.020 <i>20</i> (doublet). Mult.: α (K)exp=0.442 8 – for doublet (1992GuZX); ce(K)=4.7 <i>10</i> , ce(L)=1.1 <i>3</i> (includes 245.01 ce(L)) (1973Se13). I _y : 11.3 2 for doublet (244.79y+245.01y) (1992GuZX), intensity was divided by the evaluator from intensity balance at the 486.28- and 486.39-keV levels.
245.01 9	9 ^c 1	731.19	5/2-	486.28	3/2-	M1	0.489	$\alpha(K)=0.404\ 6;\ \alpha(L)=0.0655\ 10;\ \alpha(M)=0.01507\ 22;\ \alpha(N+)=0.00441\ 7$ $\alpha(N)=0.00371\ 6;\ \alpha(O)=0.000656\ 10;\ \alpha(P)=4.96\times10^{-5}\ 7$ I _y : 11.3 2 for doublet (244.79 γ +245.01 γ) (1992GuZX), intensity was divided by the evaluator from intensity balance at the 486.28- and 486.39-keV levels. A ₂ =+0.123\ 13\ A_4=-0.020\ 20 (doublet)
247.61 6	32.8 12	433.75	11/2-	186.16	9/2-	M1	0.475	Mult.: $\alpha(K)\exp=0.442\ 8 - doublet (1992GuZX); ce(K)=3.4\ 1 (1973Se13).$ $\alpha(K)=0.392\ 6; \alpha(L)=0.0636\ 9; \alpha(M)=0.01464\ 21; \alpha(N+)=0.00428\ 6$ $\alpha(N)=0.00360\ 5; \alpha(O)=0.000638\ 9; \alpha(P)=4.82\times10^{-5}\ 7$ $I_{y}: 42\ 4 (1973Se13).$ $A_2=+0.090\ 6, A_4=-0.003\ 8.$ Mult: $\alpha(K)\exp=0.45\ 9 (1973Se13); \alpha(K)\exp=0.468\ 18 (1992GuZX)$
$256.60^{@}$ 11	$1.2^{@}$ 1	995.06	(11/2 ⁻)	738.46	(7/2 ⁻)			
282.06 6	0.5 ⁴ 1 18.8 4	388.73	1/2-	106.480	1/2+	E1	0.0293	$\alpha(K)=0.0242 \ 4; \ \alpha(L)=0.00388 \ 6; \ \alpha(M)=0.000890 \ 13; \ \alpha(N+)=0.000256 \ 4 \\ \alpha(N)=0.000217 \ 3; \ \alpha(O)=3.73\times10^{-5} \ 6; \ \alpha(P)=2.39\times10^{-6} \ 4 \\ I_{\gamma}: \ 27 \ 4 \ (1973Se13). \\ A_{2}=-0.023 \ 11, \ A_{4}=+0.05 \ 6. \\ Mult.; \ \alpha(K)exp<0.03 \ (1973Se13); \ \alpha(K)exp=0.0422 \ 15 \ (1992GuZX). \end{cases}$
284.51 [@] 10 284.73 7	≈4 [@] e ≈4 ^e	486.39 486.28	7/2 ⁻ 3/2 ⁻	201.61 201.61	5/2 ⁻ 5/2 ⁻	(M1)	0.324	$\alpha(K)=0.268 \ 4; \ \alpha(L)=0.0433 \ 6; \ \alpha(M)=0.00995 \ 14; \ \alpha(N+)=0.00291 \ 4$ $\alpha(N)=0.00245 \ 4; \ \alpha(O)=0.000434 \ 6; \ \alpha(P)=3.28\times10^{-5} \ 5$ $A_2=+0.043 \ 9, \ A_4=-0.018 \ 10 \ (doublet).$ Mult.: $\alpha(K)exp=0.27 \ 5 \ includes \ unresolved \ E2 \ component; \ \alpha(L)exp=0.05 \ 1$ (10720, 12)
285.07 10	≈48 ^e	285.08	7/2+	0.0	3/2+	E2	0.1105	$\alpha(K)=0.0684 \ 10; \ \alpha(L)=0.0319 \ 5; \ \alpha(M)=0.00797 \ 12; \ \alpha(N+)=0.00225 \ 4$

 $^{187}_{77}\mathrm{Ir}_{110}\text{-}6$

I

					¹⁸⁷ Pt a	e decay	1992GuZ	X,1992Gu14,1973	Se13 (contin	uued)
							$\gamma(^{187})$	(continued)		
E,	,†	Ι _γ & <i>k</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^f	δ^{g}	α^{l}	Comments
300.23	7	12.51 10	486.39	7/2-	186.16	9/2-	M1(+E2)	0.11 <i>1</i>	0.278	$\alpha(N)=0.00194 \ 3; \ \alpha(O)=0.000309 \ 5; \ \alpha(P)=7.29\times10^{-6}$ <i>II</i> $A_{2}=+0.043 \ 9, \ A_{4}=-0.018 \ 10 \ (doublet).$ Mult.: from adopted gammas. $\alpha(K)=0.230 \ 4; \ \alpha(L)=0.0373 \ 6; \ \alpha(M)=0.00858 \ 12;$ $\alpha(N+)=0.00251 \ 4$ $\alpha(N)=0.00211 \ 3; \ \alpha(O)=0.000374 \ 6; \ \alpha(P)=2.81\times10^{-5} \ 4$
304.72	6	44.2 5	738.46	(7/2 ⁻)	433.75	11/2-	E2		0.0905	Mult.: α (K)exp=0.230 4 (1992GuZX); α (K)exp=0.30 7 (1973Se13). E _y : Placement from 1992GuZX. α (K)=0.0577 8; α (L)=0.0248 4; α (M)=0.00618 9; α (N+)=0.001749 25 α (N)=0.001502 21; α (O)=0.000240 4; α (P)=6.22×10 ⁻⁶ 9 A ₂ =-0.035 5; A ₄ =+0.002 7
311.72	2 7	19.2 2	311.66	5/2+	0.0	3/2+	M1+E2	-0.23 ^{<i>i</i>} +11-15	0.245 14	Mult.: $\alpha(K)\exp=0.057 \ 16 \ (1973Se13); \ \alpha(K)\exp=0.0579 \ 8 \ (1992GuZX).$ $\alpha(K)=0.202 \ 12; \ \alpha(L)=0.0332 \ 10; \ \alpha(M)=0.00766 \ 20; \ \alpha(N+)=0.00224 \ 6 \ \alpha(N)=0.00188 \ 5; \ \alpha(O)=0.000332 \ 10; \ \alpha(P)=2.46\times10^{-5} \ 16 \ Comparison 100 \ Co$
329.73	8	6.4 <i>1</i>	816.04	(3/2 ⁻ ,5/2 ⁻)	486.28	3/2-	M1+E2	0.66 <i>1</i>	0.173 3	A ₂ =+0.160 9, A ₄ =+0.035 15. Mult.: α(K)exp=0.24 7 (1973Se13); α(K)exp=0.199 4 (1992GuZX). δ: or -1.7 +4-5 (1992Gu14). α(K)=0.1398 22; α(L)=0.0258 4; α(M)=0.00604 9; α(N+)=0.001754 25 α(N)=0.001481 21; α(O)=0.000257 4; α(P)=1.69×10 ⁻⁵ 3
332.79	9	2.9 6	442.87	(9/2+)	110.075	5/2+	E2		0.0700	A ₂ =-0.054 22, A ₄ =+0.01 3. Mult.: α (K)exp=0.1396 24 (1992GuZX); α (K)exp=0.15 (1973Se13). α (K)=0.0463 7; α (L)=0.0180 3; α (M)=0.00445 7; α (N+)=0.001262 18 α (N)=0.001082 16; α (O)=0.0001743 25; α (P)=5.05×10 ⁻⁶ 7 A ₂ =-0.19 5, A ₄ =+0.06 6.
342.48	[@] 10	1.3 [@] 1	731.19	5/2-	388.73	1/2-	E2		0.0645	Mult.: $\alpha(K)\exp=0.057 \ 3 \ (1992GuZX)$. $\alpha(K)=0.0432 \ 6; \ \alpha(L)=0.01621 \ 23; \ \alpha(M)=0.00401 \ 6; \ \alpha(N+)=0.001137 \ 16 \ \alpha(N)=0.000975 \ 14; \ \alpha(O)=0.0001573 \ 22; \ \alpha(P)=4.72\times10^{-6} \ 7 \ Mult.: \ \alpha(K)\exp=0.047 \ 6 \ (1992GuZX).$

 $^{187}_{77}\mathrm{Ir}_{110}\text{--}7$

				187 Pt ε	decay	1992GuZ	X,1992Gı	114,1973Se13	(continued)
						$\gamma(^{187})$	Ir) (contin	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\&k}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^f	δ^{g}	α^{l}	Comments
361.20 7	7.9 1	471.22	7/2+	110.075	5/2+	M1		0.1702	$\alpha(K)=0.1409\ 20;\ \alpha(L)=0.0226\ 4;\ \alpha(M)=0.00520\ 8;\alpha(N+)=0.001523\ 22\alpha(N)=0.001279\ 18;\ \alpha(O)=0.000227\ 4;\ \alpha(P)=1.718\times10^{-5}\ 24A_2=+0.127\ 18,\ A_4=+0.02\ 3.Mult.:\ \alpha(K)exp=0.29\ (1973Se13);\ \alpha(K)exp=0.160\ 3$
376.44 8	3.7 ^{<i>a</i>} 3	486.39	7/2-	110.075	5/2+	E1+M2	0.31 2	0.060 6	(1992GuZA). α(K) = 0.047 5; α(L) = 0.0093 9; α(M) = 0.00221 22; α(N+) = 0.00065 7 α(N) = 0.00054 6; α(O) = 9.5 × 10-5 10; α(P) = 6.7 × 10-6 7 Mult.: α(K) exp = 0.047 5 (1992GuZX) - assignment M1 by 1973Se13 is inconsistent; α(K) exp = 0.2 (1973Se13). Eγ: Placement from 1992Gu14. Placement from 819 level in 1973Se13 is inconsistent with a 3/2+ to 9/2+ transition
*384.89 <i>9</i>	3.9 ^{<i>a</i>} 2					M1		0.1436	$\alpha(K)=0.1189\ 17;\ \alpha(L)=0.0191\ 3;\ \alpha(M)=0.00438\ 7;\ \alpha(N)=0.001282\ 18\ \alpha(N)=0.001077\ 15;\ \alpha(O)=0.000191\ 3;\ \alpha(P)=1.448\times10^{-5}\ 21\ Mult.:\ \alpha(K)exp=0.16\ (1973Se13);\ \alpha(K)exp=0.134\ 4\ (1992GuZX)$
388.65 9	7.7 1	388.73	1/2-	0.0	3/2+	E1		0.01385	$\alpha(K)=0.01152 \ 17; \ \alpha(L)=0.00180 \ 3; \ \alpha(M)=0.000411 \ 6; \alpha(N+)=0.0001187 \ 17 \alpha(N)=0.0001002 \ 14; \ \alpha(O)=1.737\times10^{-5} \ 25; \ \alpha(P)=1.169\times10^{-6} \ 17 A_2=+0.022 \ 19, \ A_4=+0.05 \ 3. Mult.: \ \alpha(K)exp<0.012 \ (1973Se13); \ \alpha(K)exp=0.0131 \ 18 \ (1992GuZX).$
x400.77 [‡] 7	13.4 2					E1		0.01292	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.01076 \ 15; \ \alpha(\mathrm{L}) = 0.001672 \ 24; \ \alpha(\mathrm{M}) = 0.000382 \ 6; \\ &\alpha(\mathrm{N}+) = 0.0001106 \ 16 \\ &\alpha(\mathrm{N}) = 9.33 \times 10^{-5} \ 13; \ \alpha(\mathrm{O}) = 1.619 \times 10^{-5} \ 23; \ \alpha(\mathrm{P}) = 1.094 \times 10^{-6} \\ &16 \\ &\alpha(\mathrm{K}) \exp = 0.0073 \ 8 \ (1992 \mathrm{GuZX}). \end{aligned} $
410.03 [@] 10	4.1 [@] 1	896.30	(1/2 ⁻ ,3/2 ⁻)	486.28	3/2-				A ₂ =+0.02 4, A ₄ =0 (assumed). α (K)exp=0.0963 21 (1992GuZX).
427.24 [‡] 7	14.1 3	816.04	(3/2 ⁻ ,5/2 ⁻)	388.73	1/2-	(E2)		0.0353	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0254 \ 4; \ \alpha(\mathbf{L}) = 0.00760 \ 11; \ \alpha(\mathbf{M}) = 0.00185 \ 3; \\ &\alpha(\mathbf{N}+) = 0.000529 \ 8 \\ &\alpha(\mathbf{N}) = 0.000452 \ 7; \ \alpha(\mathbf{O}) = 7.41 \times 10^{-5} \ 11; \ \alpha(\mathbf{P}) = 2.84 \times 10^{-6} \ 4 \\ &\mathbf{I}_{\gamma}: \ 25 \ 4 \ (1973 \text{Se13}). \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \text{exp} = 0.0172 \ 6 \ (1992 \text{GuZX}). \end{aligned}$
$x^{439.59}$ 10 446.00 10	1.4 [@] 1 1.5 [@] 1	731.19	5/2-	285.08	7/2+				
480.41 8	12.9 <i>3</i>	1218.87	(5/2-)	738.46	(7/2-)	M1+E2	0.22 2	0.0774 12	$\begin{aligned} &\alpha(\text{K}) = 0.0640 \ 10; \ \alpha(\text{L}) = 0.01029 \ 15; \ \alpha(\text{M}) = 0.00237 \ 4; \\ &\alpha(\text{N}+) = 0.000692 \ 11 \\ &\alpha(\text{N}) = 0.000582 \ 9; \ \alpha(\text{O}) = 0.0001030 \ 16; \ \alpha(\text{P}) = 7.75 \times 10^{-6} \ 12 \end{aligned}$

 ∞

 $^{187}_{77}\mathrm{Ir}_{110}\mathrm{-8}$

				187 Pt ε	decay	1992Gu	ZX,1992G	Gu14,1973Se	13 (continued)
						$\gamma(^{18}$	⁷ Ir) (conti	nued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\&k}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^f	$\delta^{\mathbf{g}}$	α^l	Comments
									Mult.: <i>α</i> (K)exp=0.0641 <i>13</i> (1992GuZX); <i>α</i> (K)exp=0.087
483.73 [@] 10	2.1 [@] 1	1214.92		731.19	5/2-				α (K)exp=0.069 4 – M1 (1992GuZX), A ₂ =-0.27 8, A ₄ =0
486.37 8	14 <i>1</i>	486.28	3/2-	0.0	3/2+	E1		0.00845	(assumed). $\alpha(K)=0.00705 \ 10; \ \alpha(L)=0.001078 \ 16; \ \alpha(M)=0.000246 \ 4;$
									$\alpha(N+)=7.13\times10^{-5} 10^{-5} \alpha(N)=6.01\times10^{-5} 9; \alpha(O)=1.048\times10^{-5} 15; \alpha(P)=7.26\times10^{-7} 11^{-5} \alpha(P)=7.26\times10^{-7} 11^{-7} 11^{-5} \alpha(P)=7.26\times10^{-7} 11^{-$
									Mult.: α (K)exp<0.008 (1973Se13); α (K)exp=0.0084 4 (1992GuZX).
^x 492.0 ^{‡#} 4	4 1								
^x 495.34 [@] 10	1.0 [@] 1					M1+E2	0.4 4	0.067 13	α (K)=0.055 <i>11</i> ; α (L)=0.0090 <i>13</i> ; α (M)=0.0021 <i>3</i> ; α (N+)=0.00061 <i>9</i>
									α (N)=0.00051 7; α (O)=9.0×10 ⁻⁵ 13; α (P)=6.7×10 ⁻⁶ 14 α (K)exp=0.055 11 (1992GuZX).
499.09 [@] 11	4.3 [@] 2	985.36		486.28	3/2-				$A_2 = -0.12 5$, $A_4 = 0$ (assumed). α (K)exp=0.055 3 (1992GuZX).
504.24 [@] 11	3.1 [@] 2	816.04	$(3/2^{-}, 5/2^{-})$	311.66	5/2+				$A_2 = -0.11$ 5, $A_4 = 0$ (assumed).
507.31 [@] 10	12 [@] 1	896.30	$(1/2^-, 3/2^-)$	388.73	1/2-				E_{γ} : 507.31 γ was multiply placed from 819- and 896-keV levels in 1992Gu14.
									I_{γ} : 14.4 <i>3</i> (1992GuZX), intensity was divided by the evaluator from intensity balance at the 311- and 388-keV levels.
507.36 9	3 1	819.06	3/2+	311.66	5/2+	M1		0.0692	α (K)=0.0574 8; α (L)=0.00912 13; α (M)=0.00209 3; α (N+)=0.000613 9
									α (N)=0.000515 8; α (O)=9.13×10 ⁻⁵ 13; α (P)=6.94×10 ⁻⁶ 10 I _{γ} : 14.4 3 (1992GuZX), intensity was divided by the evaluator
									Mult.: α (K)exp=0.06 (1973Se13); α (K)exp=0.0552 <i>13</i> for doublet (1992GuZX).
^x 511.7 [#] 3	<16					M1,E2		0.045 23	α (K)=0.036 20; α (L)=0.0066 23; α (M)=0.0015 5; α (N+)=0.00045 15
									α (N)=0.00038 <i>13</i> ; α (O)=6.6×10 ⁻⁵ 24; α (P)=4.3×10 ⁻⁶ 25 Mult.: α (K)exp≥0.02 (1973Se13).
-	-								I_{γ} : may include significant contribution from positron annihilation.
^x 523.80 [@] 11	3.3 [@] 2					M1		0.0636	α (K)=0.0528 8; α (L)=0.00838 12; α (M)=0.00192 3; α (N+)=0.000563 8
500 50 0		701.10	5/2-	001.61	5/0-		0.04.1	0.0440	α (N)=0.000473 7; α (O)=8.39×10 ⁻⁵ 12; α (P)=6.38×10 ⁻⁶ 9 Mult.: α (K)exp=0.0529 19 (1992GuZX).
529.53 9	7.5 1	731.19	5/2-	201.61	$5/2^{-1}$	M1+E2	0.84 <i>1</i>	0.0448	$\alpha(K)=0.0365$ 6; $\alpha(L)=0.00638$ 10; $\alpha(M)=0.001483$ 22;

From ENSDF

 $^{187}_{77}\mathrm{Ir}_{110}\mathrm{-}9$

				187 Pt ε	decay	1992GuZX,1992Gu14,1973Se13		4,1973Se13 ((continued)
						$\gamma(^{187}$	Ir) (continue	d)	
E_{γ}^{\dagger}	$I_{\gamma}^{\&k}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. ^f	δ^{g}	α^{l}	Comments
536.34 11	4.2 ^{<i>a</i>} 7	1022.58	(5/2 ⁻)	486.39	7/2-	M1		0.0598	$\begin{aligned} \alpha(\text{N}) = 0.000364 \ 6; \ \alpha(\text{O}) = 6.36 \times 10^{-5} \ 10; \ \alpha(\text{P}) = 4.37 \times 10^{-6} \ 7 \\ \text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.05 \ (1973\text{Se13}); \ \alpha(\text{K}) \text{exp} = 0.0366 \ 8 \\ (1992\text{GuZX}). \\ \alpha(\text{K}) = 0.0496 \ 7; \ \alpha(\text{L}) = 0.00787 \ 11; \ \alpha(\text{M}) = 0.00181 \ 3; \\ \alpha(\text{N}+) = 0.000529 \ 8 \\ \alpha(\text{N}) = 0.000444 \ 7; \ \alpha(\text{O}) = 7.88 \times 10^{-5} \ 11; \ \alpha(\text{P}) = 6.00 \times 10^{-6} \ 9 \end{aligned}$
551.64 [@] 10	2.3 [@] 1	738.46	(7/2 ⁻)	186.16	9/2-				A ₂ =+0.002 29, A ₄ =-0.02 4. Mult.: α (K)exp=0.052 (1973Se13); α (K)exp=0.058 7 (1992GuZX). δ =+1.2 +9-6, was determined by the relative method for
			(, ,		,				γ -rays in competition with the pure E2 transition (1992Gu14).
x555.64 [@] 10	1.6 [@] 1								
579.99 ^{^w} 15	1.1 ^{••} 1	1798.86		1218.87	$(5/2^{-})$				
584.62° 10	$3.6 \ 1$	896.30	$(1/2^-, 3/2^-)$	311.66	5/2+				
$x_{506,56}^{*}$ 10	$4.2 \ 1$								
x617.05 [@] 10	2.2 ^{<i>@</i>} 1					(E2)		0.01445	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.01118 \ 16; \ \alpha(\mathrm{L}) = 0.00251 \ 4; \ \alpha(\mathrm{M}) = 0.000597 \ 9; \\ \alpha(\mathrm{N}+) = 0.0001719 \ 24 \\ \alpha(\mathrm{N}) = 0.0001460 \ 21; \ \alpha(\mathrm{O}) = 2.46 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 1.272 \times 10^{-6} \end{array} $
^x 622.29 8	17.3 3					M1+E2	0.40 1	0.0370	<i>18</i> $\alpha(K)\exp=0.0097 \ 9 \ (1992GuZX).$ $\alpha(K)=0.0306 \ 5; \ \alpha(L)=0.00493 \ 8; \ \alpha(M)=0.001135 \ 17;$ $\alpha(N+)=0.000332 \ 5$ $\alpha(N)=0.000279 \ 4; \ \alpha(O)=4.93\times10^{-5} \ 8; \ \alpha(P)=3.68\times10^{-6} \ 6$ Mult : $\alpha(K)\exp=0.05 \ (1973Se13); \ \alpha(K)\exp=0.0307 \ 5$
620 44 7	2465	910.04	2/2+	180.50	2/2+	M1+E2	10 50 j 2	0.0240.7	$\begin{array}{c} \text{(I)} (\text{I}) = 0.03 \text{ (I)} \text{(I)} \text$
029.44 7	34.0 5	819.00	5/2	169.39	5/2	WIT+E2	+0.323 3	0.0340 /	$\alpha(\text{K})=0.02816, \alpha(\text{L})=0.004389, \alpha(\text{M})=0.00103519, \alpha(\text{N}+)=0.0003086$ $\alpha(\text{N})=0.0002595; \alpha(\text{O})=4.57\times10^{-5}9; \alpha(\text{P})=3.37\times10^{-6}7$ $A_2=-0.1387, A_4=-0.01010.$ Mult.: $\alpha(\text{K})\exp=0.02955(1992\text{GuZX}); \alpha(\text{K})\exp=0.045$ (1973Se13);
^x 640.77 [@] 10	2.8 [@] 1								· //
^x 659.98 [@] 10	1.9 [@] 1								
^x 661.52 [@] 10	7.5 [@] 1					M1+E2	0.36 3	0.0322 6	α (K)=0.0266 5; α (L)=0.00426 8; α (M)=0.000979 17; α (N+)=0.000286 5 α (N)=0.000241 5; α (O)=4.26×10 ⁻⁵ 8: α (P)=3.20×10 ⁻⁶ 6
×675.04 [@] 10	2.6 [@] 1								Mult.: $\alpha(K)$ exp=0.0266 7 (1992GuZX).

From ENSDF

				187 Pt ε	decay	1992Gu	ZX,1992Gu	14,1973Se13	(continued)
						$\gamma(^{18}$	³⁷ Ir) (continu	ied)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\&k}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. ^f	δ ^g	α^{l}	Comments
687.51 [@] 10 694.93 [@] 11 *696.0 [#] 7	1.5 [@] 1 6.3 [@] 5 10 3	1418.70 896.30	(1/2 ⁻ ,3/2 ⁻)	731.19 201.61	5/2 ⁻ 5/2 ⁻	(M1)		0.0305	α (K)exp=0.032 3 (1992GuZX). α (K)=0.0253 4; α (L)=0.00398 6; α (M)=0.000913 13; α (N+)=0.000267 4 α (N)=0.000224 4; α (O)=3.98×10 ⁻⁵ 6; α (P)=3.04×10 ⁻⁶ 5 Mult.: α (K)exp=0.046 (1973Se13).
706.01 [@] 10 709.04 7	7.4 [@] 2 52.2 9	816.04 819.06	(3/2 ⁻ ,5/2 ⁻) 3/2 ⁺	110.075 110.075	5/2 ⁺ 5/2 ⁺	M1		0.0291	A ₂ =+0.25 6, A ₄ =+0.01 9. $\alpha(K)=0.0241 4; \alpha(L)=0.00380 6; \alpha(M)=0.000870 13;$ $\alpha(N+)=0.000255 4$ $\alpha(N)=0.000214 3; \alpha(O)=3.80\times10^{-5} 6; \alpha(P)=2.90\times10^{-6} 4$ A ₂ =+0.068 6, A ₄ =-0.001 8. Mult.: $\alpha(K)\exp=0.022$ (1973Se13).
710.08 [@] 16	4.4 [@] 7	816.04	(3/2 ⁻ ,5/2 ⁻)	106.480	$1/2^{+}$				
712.47 9	12.8 2	819.06	3/2+	106.480	1/2+	M1+E2	$-1.06^{j} 5$	0.0191 6	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0156 \ 5; \ \alpha(\mathbf{L}) = 0.00267 \ 7; \ \alpha(\mathbf{M}) = 0.000618 \ 14; \\ &\alpha(\mathbf{N}+) = 0.000180 \ 5 \\ &\alpha(\mathbf{N}) = 0.000152 \ 4; \ \alpha(\mathbf{O}) = 2.65 \times 10^{-5} \ 7; \ \alpha(\mathbf{P}) = 1.85 \times 10^{-6} \ 6 \\ &A_2 = +0.360 \ 21, \ A_4 = 0 \ (assumed). \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.024 \ (1973 \text{Se13}); \ \alpha(\mathbf{K}) \exp = 0.0162 \ 4 \\ &(1992 \text{GuZX}). \end{aligned}$
x728.33 [@] 12	1.8 [@] 1					M1+E2	1.1 2	0.0178 <i>18</i>	$\alpha(K)=0.0145\ 15;\ \alpha(L)=0.00248\ 20;\ \alpha(M)=0.00058\ 5;\ \alpha(N+)=0.000168\ 13$ $\alpha(N)=0.000141\ 11;\ \alpha(O)=2.47\times10^{-5}\ 20;\ \alpha(P)=1.72\times10^{-6}\ 19$ Mult.: $\alpha(K)exp=0.0147\ 19\ (1992GuZX).$
731.34 [@] 14 ^x 732.35 [@] 11 ^x 771.60 [@] 12	$3.7^{@} 3$ $4.7^{@} 4$ $1.9^{@} 1$	731.19	5/2-	0.0	3/2+				
789.95 10	9.5 1	896.30	(1/2 ⁻ ,3/2 ⁻)	106.480	1/2+	E1		0.00316 5	$ \begin{array}{l} \alpha = 0.00316 \; 5; \; \alpha(\mathrm{K}) = 0.00265 \; 4; \; \alpha(\mathrm{L}) = 0.000391 \; 6; \\ \alpha(\mathrm{M}) = 8.90 \times 10^{-5} \; 13; \; \alpha(\mathrm{N}+) = 2.59 \times 10^{-5} \; 4 \\ \alpha(\mathrm{N}) = 2.18 \times 10^{-5} \; 3; \; \alpha(\mathrm{O}) = 3.83 \times 10^{-6} \; 6; \; \alpha(\mathrm{P}) = 2.80 \times 10^{-7} \; 4 \\ \mathrm{Mult.: \; From \;} \alpha(\mathrm{K}) \exp = 0.0032 \; 4 \; (1992 \mathrm{GuZX}); \; \mathrm{A_2} = +0.014 \; 22, \\ \mathrm{A_4} = +0.02 \; 3. \\ \mathrm{Placement \; from \;} 1992 \mathrm{GuZX}. \end{array} $
^x 792.16 <i>10</i> ^x 796.20 <i>21</i>	14.4 <i>I</i> 7.0 <i>I</i>					M1+E2	0.57 3	0.0183 4	$\alpha(K)=0.0152 \ 3; \ \alpha(L)=0.00244 \ 5; \ \alpha(M)=0.000561 \ 11; \ \alpha(N+)=0.000164 \ 3 \ \alpha(N)=0.000138 \ 3; \ \alpha(O)=2.43\times10^{-5} \ 5; \ \alpha(P)=1.81\times10^{-6} \ 4 \ Mult.: \ \alpha(K)exp=0.01 \ (19738e13); \ \alpha(K)exp=0.0153 \ 5 \ (1002GuZV)$
816.09 10	5.3 1	816.04	(3/2 ⁻ ,5/2 ⁻)	0.0	3/2+	E1,E2		0.00296	(1992002A). I_{γ} : 12 2 (1973Se13). A_2 =+0.14 4, A_4 =-0.05 6. Mult.: α (K)exp<0.008 (1973Se13).

From ENSDF

 $^{187}_{77}\mathrm{Ir}_{110}\text{--}11$

				187 Pt ε deca	y 19	992GuZX,1	1992Gu14,19	973Se13 (con	tinued)
γ ⁽¹⁸⁷ Ir) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\&k}$	E_i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^f	δ ^g	α^{l}	Comments
819.16 9	35.9 9	819.06	3/2+	0.0	3/2+	M1+E2	$-0.82^{j} 6$	0.0152 5	$\begin{aligned} &\alpha(\text{K})=0.0125 \ 5; \ \alpha(\text{L})=0.00205 \ 6; \ \alpha(\text{M})=0.000471 \ 14; \\ &\alpha(\text{N}+)=0.000138 \ 4 \\ &\alpha(\text{N})=0.000116 \ 4; \ \alpha(\text{O})=2.04\times10^{-5} \ 6; \\ &\alpha(\text{P})=1.48\times10^{-6} \ 5 \\ &A_2=+0.199 \ 8, \ A_4=-0.009 \ 12. \\ &\text{Mult.:} \ \alpha(\text{K})\text{exp}=0.015 \ (1973\text{Se}13); \ \alpha(\text{K})\text{exp}=0.0131 \ 4 \\ &(1992\text{GuZX}). \end{aligned}$
$833.00^{@} 10$	8.3 [@] 1 3.3 [@] 1	1022.58	(5/2 ⁻)	189.59	3/2+				
861.32 11	5.7 3	1173.01		311.66	5/2+				E_{γ}, I_{γ} : Placement is from 1992GuZX. In 1973Se13, 861.1 γ is unplaced and $I_{\gamma}=11$ 2. (K)exp=0.0063.5 = E2(+M1) (1992GuZX)
^x 875.27 [@] 10	4.8 [@] 1					(E2)		0.00682	$\alpha(\mathbf{K}) = 0.00539 - 122(1411) (1992GuZX).$ $\alpha(\mathbf{K}) = 0.00549 \ 8; \ \alpha(\mathbf{L}) = 0.001022 \ 15; \ \alpha(\mathbf{M}) = 0.000239 - 4; \ \alpha(\mathbf{N}+) = 6.92 \times 10^{-5} \ 10 - 1008 \times 10^{-5} \ 15; \ \alpha(\mathbf{N}) = 5.85 \times 10^{-5} \ 9; \ \alpha(\mathbf{O}) = 1.008 \times 10^{-5} \ 15; \ \alpha(\mathbf{P}) = 6.25 \times 10^{-7} \ 9 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 10000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 10000000 - 10000000 - 10000000 - 1000000 - 10000000 - 10000000 - 10000000 - 100000000$
891.8 6 895.13 9	7.5 20 12.2 3	1001.62 1001.62	$(3/2^+, 5/2^+)$ $(3/2^+, 5/2^+)$	110.075 106.480	5/2 ⁺ 1/2 ⁺	(E2)		0.00651	$E_{\gamma}, I_{\gamma}: \text{ From 1973Se13.}$ $\alpha(K)=0.00525 \ 8; \ \alpha(L)=0.000969 \ 14; \ \alpha(M)=0.000227 \ 4; \ \alpha(N+)=6.56\times10^{-5} \ 10 \ \alpha(N)=5.54\times10^{-5} \ 8; \ \alpha(O)=9.56\times10^{-6} \ 14; \ \alpha(P)=5.98\times10^{-7} \ 9 \ I_{\gamma}: \ 20 \ 3 \ (1973Se13).$ $A_{2}=+0.02 \ 3, \ A_{4}=-0.06 \ 3. \ Mult.: \ \alpha(K)exp=0.0042 \ 2 \ (1992GuZX); \ \alpha(K)exp=0.003 \ (1973Se13).$
896.22 [@] 11 ^x 907.84 [@] 10	3.9 [@] 3 2.1 [@] 1	896.30	(1/2 ⁻ ,3/2 ⁻)	0.0	3/2+	M1+E2	1.5 3	0.0091 10	$\alpha(K)=0.0075 \ 8; \ \alpha(L)=0.00127 \ 11; \ \alpha(M)=0.000293$ $25; \ \alpha(N+)=8.5\times10^{-5} \ 8$ $\alpha(N)=7.2\times10^{-5} \ 7; \ \alpha(O)=1.26\times10^{-5} \ 12;$ $\alpha(P)=8.8\times10^{-7} \ 10$ Mult: $\alpha(K)=0.0076 \ 8 \ (1992GuZX)$
x912.85 [‡] 9 x977.54 10 x978.83 [@] 10 x983.82 [@] 10	12.9 5 11.6 2 8.0 [@] 2 4.2 [@] 1	005.01			2./S [±]				I_{γ} : 20 3 (1973Se13).
985.36° 12 1022.65 [@] 14	$3.1 \stackrel{\circ}{=} 1$ $0.8 \stackrel{\circ}{=} 1$	985.36 1022.58	(5/2 ⁻)	0.0 0.0	3/2+ 3/2+				
1118.20 [@] 11 1145.79 13	1.6 [@] 1 1.5 1	2291.25 1255.80	1/2+,3/2+,5/2+	1173.01 110.075	5/2+				E_{γ}, I_{γ} : Placement from 1973Se13. $I_{\gamma}=19$ 4 (1973Se13).

From ENSDF

¹⁸⁷ Pt ε decay 1992GuZX,1992Gu14,1973Se13 (continued)									
γ ⁽¹⁸⁷ Ir) (continued)									
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\&k}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments			
1149.4 5 x1157.31 10 x1201.30 [@] 12	$ \begin{array}{c} 12 \ 4 \\ 13 \ 4 \\ 1.5^{\textcircled{0}} \ 1 \end{array} $	1255.80	1/2+,3/2+,5/2+	106.480	1/2+	E_{γ}, I_{γ} : From 1973Se13.			
$x1205.63^{(@)} 10$ $x1208.44^{(@)} 10$ $1240.44^{(@)} 10$	$7.9^{\textcircled{0}}{1}$ $3.8^{\textcircled{0}}{1}$	2412 45		1172.01					
1240.44 = 10 $1254.65^{@}$ 12 1255.4 3	2.9 [@] 1 27 4	2413.43 2277.20 1255.80	1/2+,3/2+,5/2+	1022.58 0.0	(5/2 ⁻) 3/2 ⁺	E_{γ}, I_{γ} : From 1973Se13.			
$1268.81 \ 10^{x}$ $^{x}1406.89^{@} \ 11^{x}$ $^{x}1470 \ 69^{@} \ 10^{x}$	7.3 <i>1</i> 8.7 [@] 8 4 8 [@] 1	2291.25		1022.58	(5/2 ⁻)	E_{γ} : Placement from 1992GuZX. ce(K)=0.036 and α (K)exp=0.0032 (1973Se13).			
$1475.19^{@}$ 11	$9.9^{\textcircled{0}{0}}6$	2291.25		816.04	$(3/2^{-}, 5/2^{-})$	$A_2 = +0.020 \ 18, \ A_4 = +0.01 \ 3.$			
1552.91 [@] 10	7.9 [@] 2	2291.25		738.46	(7/2 ⁻)	$A_2 = +0.03 \ 3, \ A_4 = -0.01 \ 4.$			
^x 1600.81 [@] 12	$3.4^{\textcircled{0}}{3}$								
1665.87 [@] 10	13.8 ^w 1	2404.41		738.46	$(7/2^{-})$	$A_2 = +0.026\ 20,\ A_4 = +0.042\ 25.$			
1805.00 ^[®] 10	14.2° 1	2291.25		486.28	3/2-	$A_2 = -0.007 \ 2I, A_4 = +0.03 \ 3.$			
^x 1815.79 [°] 10	3.2° 1	2205 99		496 20	7/2-				
1819.45 - 10 1874.60@ 10	3.0 - 1 5.2 - 1	2305.88		480.39	1/2 7/2-				
$x_{1882} = 30^{\circ}$	3.5 - 1	2501.02		480.39	1/2				
$1894.69^{@}$ 10	2.4° 1	2380.78		486.28	3/2-				
$1902.24^{@}$ 10	$6.0^{(0)}$	2291.25		388.73	$1/2^{-}$				
^x 1913.41 [@] 10	6.7 [@] 1				-1-				
1917.89 [@] 11	4.5 [@] 1	2404.41		486.39	$7/2^{-}$				
1930.11 [@] 10	4.3 [@] 1	2416.48		486.39	7/2-				
2020.69 [@] 11	3.1 [@] 1	2305.88		285.08	7/2+				
^x 2062.38 [@] 10	7.0 [@] 1								
^x 2101.42 [@] 11	5.5 [@] 2								
2104.41 [@] 10	9.0 [@] 1	2305.88		201.61	5/2-	$A_2 = -0.19 \ 3.$			
2119.41 [@] 10	5.5 [@] 1	2404.41		285.08	7/2+	$A_2 = -0.07 \ 3, \ A_4 = +0.06 \ 4.$			
^x 2134.44 [@] 10	2.1 [@] 1								
^x 2138.74 [@] 10	7.2 [@] 1								
^x 2143.55 [@] 10	1.4 [@] 1								
2159.43 [@] 10	3.8 [@] 1	2361.02		201.61	5/2-				
2167.04 [@] 10	14.8 [@] 1	2277.20		110.075	5/2+	$A_2 = +0.060 \ 18, \ A_4 = -0.07 \ 3.$			

From ENSDF

 $^{187}_{77}\mathrm{Ir}_{110}\text{--}13$

 $^{187}_{77}\mathrm{Ir}_{110}\mathrm{-13}$

¹⁸⁷Pt ε decay **1992GuZX,1992Gu14,1973Se13** (continued)

$\gamma(^{187}$ Ir) (continued)

E_{γ}^{\dagger}	Ι _γ & <i>k</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
2171.25 [@] 10	9.4 [@] 1	2372.87		201.61	5/2-	$A_2 = -0.062\ 25,\ A_4 = +0.04\ 3.$
2178.89 [@] 11	10.0 [@] 2	2380.78		201.61	$5/2^{-}$	$A_2 = -0.125 \ 23, \ A_4 = +0.02 \ 3.$
$x2184.60^{@}$ 12	2.1 [@] 1					
2197.63 [@] 10	9.4 [@] 1	2399.25		201.61	$5/2^{-}$	$A_2 = -0.18 \ 3, \ A_4 = +0.02 \ 4.$
2202.86 [@] 10	5.7 [@] 1	2404.41		201.61	$5/2^{-}$	$A_2 = -0.13 \ 3, \ A_4 = 0 \ assumed.$
2214.83 [@] 10	5.9 [@] 1	2416.48		201.61	5/2-	$A_2 = -0.003 \ 32, \ A_4 = 0.003 \ 47.$
$x^{2225.64}$ <i>@</i> 10	9.1 [@] 1					
^x 2231.13 [@] 11	1.9 [@] 1					
^x 2235.17 [@] 12	2.1 [@] 1					
$x^{2266.62}$ 10	2.4 [@] 1					
2277.24 [@] 10	16.0 [@] 2	2277.20		0.0	$3/2^{+}$	$A_2 = -0.035 \ 17, \ A_4 = +0.027 \ 23.$
2291.22 [@] 10	3.7 [@] 1	2291.25		0.0	$3/2^{+}$	$A_2 = -0.04 5, A_4 = +0.04 7.$
$x^{2294.50}$ 10	4.3 [@] 1					$A_2 = -0.14 \ 4, \ A_4 = +0.01 \ 6.$
x2300.97 [@] 10	1.4 [@] 1					
$2380.78^{\textcircled{0}}$ 10	$2.8^{@}$ 1	2380.78		0.0	$3/2^{+}$	

[†] Weighted average of 1992GuZX and 1973Se13, unless otherwise noted.

^{\ddagger} Transition mixed with impurity from ¹⁸⁷Ir decay (1973Se13).

[#] From 1973Se13.

[@] From 1992GuZX.

[&] From 1992GuZX, except otherwise noted.

^a Weighted average of 1992GuZX and 1973Se13.

^b The (200.8-201.5-201.8) γ -ray triplet (1973Se13), I γ =81.5 80 was unresolved in the γ -ray spectrum. From coincidence data, I γ (201.5)=60 15, which is consistent only with E1 for the measured K-conversion electron intensity. The measured K-conversion electron intensity and the total 201 γ intensity (correcting for the 201.5 γ intensity) are consistent only with M1 multipolarity for the 201.8 γ . The 200.8 γ can be M1 or E2 by a similar argument (1973Se13).

^c $I\gamma(244.8\gamma+245.1\gamma)=17$ 2. The K-conversion intensities for both transitions are consistent with predominantly M1 multipolarity (1973Se13). The intensity was divided by the evaluator using the ce(K) ratio (1973se13). $I\gamma(244.79\gamma+244.99\gamma)=11.3$ 2.

^d Calculated from measured ce data and theoretical conversion coefficients.

^{*e*} $I\gamma(285\gamma)=I\gamma=56.6\ 24\ (1992GuZX)$ for triplet $(284.51\gamma+284.51\gamma+285.07\gamma)$. Intensity was divided for 285γ from the 285 keV level using Branching from the $(\alpha,xn\gamma)$, while intensity of 284.5γ from the 486 keV $(3/2^{-})$ and $(7/2^{-})$ states was divided from an approximate intensity balance at those states and at the 201 keV level.

 f From ce measurements of 1973Se13 and 1992GuZX, except otherwise noted. The ce data can be normalized to the same relative scale as gammas multiplying by 1.04 8. γ -ray angular distribution coefficients A2 and A4 are from 1992Gu14.

^g Deduced by the evaluator from $\alpha(K)$ exp value of 1992GuZX, except otherwise noted.

187 Pt ε decay 1992GuZX,1992Gu14,1973Se13 (continued)

 $\gamma(^{187}$ Ir) (continued)

- ^{*h*} Deduced by the evaluator from $\alpha(K)$ exp value of 1973Se13.
- ^{*i*} From 1992Gu14. ^{*j*} From 1992GuZX.
- ^k For absolute intensity per 100 decays, multiply by 0.083 3.
- ¹ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^{*m*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

187 Pt ε decay 1992GuZX,1992Gu14,1973Se13

¹⁸⁷Pt ε decay 1992GuZX,1992Gu14,1973Se13

¹⁸⁷Pt ε decay 1992GuZX,1992Gu14,1973Se13

¹⁸⁷Pt ε decay 1992GuZX,1992Gu14,1973Se13

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{187}_{77}\mathrm{Ir}_{110}$