Adopted Levels, Gammas

		Type		Author	History Citation	Literature Cutoff Date				
		Full Evalu	ation 1	M. S. Basunia	NDS 110,999 (2009)	1-Nov-2008				
$Q(\beta^{-}) = -5675 I$ Note: Current ev	$Q(\beta^{-}) = -5675 \ 17; \ S(n) = 7650 \ 19; \ S(p) = 3.69 \times 10^{3} \ 3; \ Q(\alpha) = 5230 \ 14 \ 2012Wa38$ Note: Current evaluation has used the following Q record \$ -5674 \ 16 \ 7650 \ 18 \ 3692 \ 25 \ 5230 \ 14 \ 2003Au03.									
	¹⁸⁷ Hg Levels									
Cross Reference (XREF) Flags										
	A ${}^{187}\text{Tl} \varepsilon \text{ decay } (51 \text{ s}+15.60 \text{ s})$ B ${}^{191}\text{Pb} \alpha \text{ decay } (1.33 \text{ min})$ C ${}^{163}\text{Dy}({}^{28}\text{Si},4n\gamma),$									
E(level) [†]	J ^π ‡	T _{1/2}	XREF			Comments				
0.0	3/2 ⁽⁻⁾	1.9 min <i>3</i>	AB	$\% \varepsilon + \% \beta^+ = 10$	0; $\%\alpha < 3.7 \times 10^{-4}$					
0.0+x ^a	13/2(+)	2.4 min <i>3</i>	A C	$\mu = -0.594 4;$ $J^{\pi}: \text{ spin meas}$ experiments $\mu, Q: \text{ from 198}$ shielding co $T_{1/2}: \text{ from 199}$ measured for $5035\alpha 20 \text{ fr}$ $\%\alpha: \text{ Estimate}$ $1970\text{Ha18} \text{ fr}$ $(r^2 > 1/2)^{1/2} (^{187}\text{Hg})$ $\%\varepsilon + \%\beta^{+} = 10$	Q=-0.75 25 ured by optical pumping al μ with Schmidt limit f 86U102 (radiative detection orrected. Same values in 070Ha18. In 1970Ha18, 1 or 5035 α 20 and 4870 α feeding the 3/2 ⁻ state in d by the evaluator using reports $\%\alpha$ >1.2×10 ⁻⁴ , et g.s. and Isomeric state ε g)=5.405 4 fm (2004An1 0; $\%\alpha$ <3.7×10 ⁻⁴ 10	(1971Bo31), parity from comparison of for configuration $\nu p_{3/2}$. on of optical pumping), Q(β^-)Sternheimer 1989Ra17 and 2005St24. half-lives 1.9 min 3 and 2.4 min 3 are 20, respectively, in the ¹⁸⁷ Hg α decay. ¹⁸³ Pt at 84.62 keV from this level. $\alpha T_{1/2}$ (calculated) from 1997m025. xpecting the K X-rays contribution both from decays. 4).				
				 Additional information 1. E(level): a level energy of 59 keV 16 deduced from mass doublet method in 2003Au02. μ,Q: μ from 1979Da06 (LASER spectroscopy), Q from 1986Ul02 (radiative detection of optical pumping)-Sternheimer shielding corrected. In 1989Ra17 Q=+0.45 33. J^π: spin measured by pulsed laser beam (1979Kr11). Parity from comparison of experimental μ with Schmidt limit for configuration v i_{13/2}). T_{1/2}: from 1970Ha18. Evaluator assumed 4870α 20 from this level. Please see the T_{1/2} comments at the g.s. level. Other: 3 min (1960Al20). %α: Estimated by the evaluator using α T_{1/2} (calculated) from 1997m025. 1970Ha18 reports %α>2.5×10⁻⁴, expecting the K X-rays contribution both from the ¹⁸⁷Hg g.s. and Isomeric state ε decays. 						
161.57 24	(9/2+)	33 ns	A	$T_{1/2}$: from ¹⁸⁷ Tl ε decay (1983CoZP). J ^{π} : This level gets more low-spin feeding compared to the 167.7 keV level and so J ^{π} =11/2 ⁺ for the 167.7 keV level suggests 9/2 ⁺ for this level. A B(E2) of 1.3 W.u. which is very slow for an E2 transition suggests a 9/2 ⁺ [624] configuration for this level, consistent with the ground-state Nilsson assignments for all the N=107 jotones (2008WoZY)						
167.3+x [#] 4	(11/2 ⁺)		A C	J ^{π} : This level J ^{π} =11/2 ⁺ f 2008WoZY	gets less low-spin feedin for this level suggests 9/2	ng compared to the 161.5 keV level and so $^{+}$ for the 161.5 keV level (¹⁸⁷ Tl ε decay –				
$401.8 + x^{@} 4$ $424.0 + x^{a} 3$	(13/2 ⁺) (17/2 ⁺)		C A C							

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

				¹⁸⁷ Hg	Levels (c	continued)		
E(level) [†]	J ^π ‡	XREF	E(level) [†]	Jπ‡	XREF	E(level) [†]	Jπ‡	XREF
437.0+x 4	$(15/2^+)$	С	$1801.4 + x^{a} 6$	$(25/2^+)$	С	2999.9+x ^{&} 14	(33/2 ⁻)	С
535.6+x [#] 4	$(15/2^+)$	С	1922.9+x [#] 5	$(27/2^+)$	С	3169.4+x [#] 9	$(35/2^+)$	С
729.8+x [@] 4	$(17/2^+)$	С	2067.2+x 6		С	3301.4+x <i>13</i>		С
917.0+x [#] 4	$(19/2^+)$	С	2072.7+x ^{&} 11	$(25/2^{-})$	С	3435.2+x [@] 10	$(37/2^+)$	С
1020.2+x ^{<i>a</i>} 4	$(21/2^+)$	С	2155.4+x [@] 6	$(29/2^+)$	С	3714.9+x ^{&} 17		С
1078.3+x 4	$(19/2^+)$	С	2411.4+x ^{&} <i>13</i>	$(29/2^{-})$	С	3839.5+x [#] 10	$(39/2^+)$	С
1175.8+x [@] 4	$(21/2^+)$	С	2478.6+x 8	$(29/2^+)$	С	4024.4+x 17		С
1383.1+x [#] 4	$(23/2^+)$	С	2524.4+x [#] 7	$(31/2^+)$	С	4134.2+x [@] 14	$(41/2^+)$	С
1586.2+x [@] 4	$(25/2^+)$	С	2773.0+x [@] 8	$(33/2^+)$	С	4870.2+x? [@] 17		С
1756.7+x ^{&} 5	$(21/2^{-})$	С	2791.4+x 8	$(33/2^+)$	С			

 † From a least-squares adjustment to the $\gamma\text{-ray energies}.$

[‡] From interlocking stretched E2 transitions and M1+E2 transitions. The yrast sequence can be determined through the 3435 level $(37/2^+)$. Both $\Delta J=2$ bands are determined from decay of the upper yrast levels. The parities of the other bands are determined by the multipolarities of the transitions and the spins are those proposed by 1988Ha15.

[#] Band(A): $\Delta J=2$ band, $\alpha = -1/2$.

[@] Band(B): $\Delta J=2$ band, $\alpha = +1/2$.

[&] Band(C): negative parity band.

^{*a*} Band(D): ground-state band.

$\gamma(^{187}\text{Hg})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
161.57	(9/2+)	161.5 3	100	0.0+x	13/2 ⁽⁺⁾	[E2]	0.859	B(E2)(W.u.)=1.32 E _{γ} : From ¹⁸⁷ Tl ε decay.
167.3+x	$(11/2^+)$	167.3 5	100	0.0+x	$13/2^{(+)}$	D+Q		
401.8+x	$(13/2^+)$	234.5 5	100	167.3+x	$(11/2^+)$	D+Q		
424.0+x	$(17/2^+)$	424.0 3	100	0.0+x	$13/2^{(+)}$	E2		
437.0+x	$(15/2^+)$	437.0 5	100	0.0+x	$13/2^{(+)}$	M1+E2		
535.6+x	$(15/2^+)$	133.8 5	11 7	401.8+x	$(13/2^+)$	D+Q		
		368.4 5	100 19	167.3+x	$(11/2^+)$	(Q)		
		535.7 5	39 14	0.0+x	$13/2^{(+)}$	M1(+E2)		
729.8+x	$(17/2^+)$	194.1 5	15 5	535.6+x	$(15/2^+)$	M1(+E2)		
		327.9 5	100 27	401.8+x	$(13/2^+)$	Q		
917.0+x	$(19/2^+)$	187.2 5	6.6 23	729.8+x	$(17/2^+)$	D+Q		
		381.6 5	100 19	535.6+x	$(15/2^+)$	E2		
		492.7 5	25 6	424.0+x	$(17/2^+)$	M1(+E2)		
1020.2 + x	$(21/2^+)$	596.1 <i>3</i>	100	424.0+x	$(17/2^+)$	E2		
1078.3+x	$(19/2^+)$	641.3 5	100 18	437.0+x	$(15/2^+)$	E2		
		654.3 5	55 15	424.0+x	$(17/2^+)$	M1(+E2)		
1175.8+x	$(21/2^+)$	258.7 5	6.9 25	917.0+x	$(19/2^+)$	M1(+E2)		
		445.9 5	100 19	729.8+x	$(17/2^+)$	E2		
		752.1 5	45 16	424.0+x	$(17/2^+)$	(Q)		
1383.1+x	$(23/2^+)$	207.5 5	6.3 22	1175.8+x	$(21/2^+)$	D+Q		
		362.7 5	22 7	1020.2 + x	$(21/2^+)$	M1+E2		
		466.1 5	100 19	917.0+x	$(19/2^+)$	E2		
1586.2+x	$(25/2^{+})$	203.1 5	2.0 10	1383.1+x	$(23/2^{+})$	D+Q		
		410.2.5	18 4	1175.8+x	$(21/2^{+})$	E2		
17567	(21/2-)	566.0 3	100 18	1020.2+x	$(21/2^+)$	E2		
1/36./+x	(21/2)	0/8.5 3	100 33	1078.3+x	$(19/2^{+})$	EI		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]
1756.7+x	$(21/2^{-})$	736.5 5	44 17	1020.2+x (2	$21/2^+$)	(D)
1801.4+x	$(25/2^+)$	625.6 5	100 20	1175.8+x (2	$21/2^+$)	E2
		781 <i>I</i>	≈50	1020.2+x (2	$21/2^+$)	
1922.9+x	$(27/2^+)$	336.7 5	9.5 4	1586.2+x (2	$25/2^+)$	D+Q
		539.8 <i>5</i>	100 18	1383.1+x (2	$23/2^+)$	E2
2067.2+x		1047.0 5	100	1020.2+x (2	$21/2^+)$	
2072.7+x	$(25/2^{-})$	316 <i>1</i>	100	1756.7+x (2	$21/2^{-}$)	
2155.4+x	$(29/2^+)$	232 1	≈3.8	1922.9+x (2	27/2+)	
		569.4 5	100 23	1586.2+x (2	$25/2^+)$	E2
2411.4+x	$(29/2^{-})$	338.7 5	100	2072.7+x (2	25/2-)	E2
2478.6+x	$(29/2^+)$	677.2 5	100	1801.4+x (2	25/2+)	(Q)
2524.4+x	$(31/2^+)$	369 [#] 1		2155.4+x (2	$29/2^{+}$)	
		601.5 5	100 27	1922.9+x (2	$27/2^+$)	E2
2773.0+x	$(33/2^+)$	617.6 5	100	2155.4+x (2	$29/2^+$)	E2
2791.4+x	$(33/2^+)$	636.0 5	100	2155.4+x (2	$29/2^+$)	Q
2999.9+x	$(33/2^{-})$	588.5 <i>5</i>	100	2411.4+x (2	$29/2^{-}$)	(Q)
3169.4+x	$(35/2^+)$	645.0 5	100	2524.4+x (3	$31/2^+$)	E2
3301.4+x		510 <i>1</i>	100	2791.4+x (.	$33/2^+)$	
3435.2+x	$(37/2^+)$	662.2 5	100	2773.0+x (3	$33/2^+)$	E2
3714.9+x		715 <i>1</i>	100	2999.9+x (.	33/2-)	
3839.5+x	$(39/2^+)$	670.1 5	100	3169.4+x (3	35/2+)	(Q)
4024.4+x		723 1	100	3301.4+x		
4134.2+x	$(41/2^+)$	699 <i>1</i>	100	3435.2+x (3	37/2+)	
4870.2+x?		736 [#] 1	100	4134.2+x (4	41/2+)	

γ ⁽¹⁸⁷Hg) (continued)

[†] From (²⁸Si,4n γ), except otherwise noted.

[±] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

1.9 min 3

	Adopted Levels, Gammas	Legend
	Level Scheme	
Intensitie	s: Relative photon branching from each level	
97 92 		4870.2+x_
		4134.2+x 4024.4+x
		<u>3839.5+x</u> 3714.0+x
		<u> </u>
		<u>3435.2+x</u>
(35/2+)	ê	<u>3301.4+x</u>
(33/2 ⁻)		2999.9+x
(33/2+)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2791.4+x_
(33/2 ⁺)		2773.0+x
(31/2+)		2524.4+x
(29/2+)		2478.6+x
(29/2)	24 8°.	2411.4+x_
(29/2+)		م ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب
(25/2 ⁻)		
		2067.2+x
(27/2+)	<u>ب</u>	<u> </u>
$\frac{(25/2^+)}{(21/2^-)}$	······	1801.4+x
		1/30.7+x
(25/2 ⁺)	• · · · ·	▼1586.2+x
(23/2+)		1383.1+x
(21/2+)		↓ 1175 8+x
(19/2 ⁺)		1078.3+x
(21/2 ⁺)		1020.2+x
3/2(-)		0.0

 $^{187}_{80} {\rm Hg}_{107}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{187}_{80} Hg_{107}$

Adopted Levels, Gammas

¹⁸⁷₈₀Hg₁₀₇