Adopted Levels, Gammas

					History								
		Туре		Author	Citation	Literature Cutoff Date							
		Full Evaluat	tion M	. S. Basunia	NDS 110,999 (2009)	1-Nov-2008							
$Q(\beta^{-})=-9.2$ Note: Curre $Q(\beta^{-})$: Calc	2×10^3 4; S nt evaluation ulated by 1	$S(n)=1.133 \times 10^4 7$; S on has used the follo 997Mo25.	(p)=-10 wing Q r	10 16; $Q(\alpha) = 2$ ecord -8500	7779 4 2012Wa38 1128E1 8 -1019	<i>19</i> 7789 14 2003Au03.							
					¹⁸⁷ Bi Levels								
Cross Reference (XREF) Flags													
				A 191 B 191 C 107	At α decay (1.7 ms) At α decay (2.1 ms) Ag(⁸³ Kr,3n γ),								
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments							
0.0	(9/2 ⁻)	37 ms 2	BC	$%\alpha$ =100 %α: From 2 adopted in calculatio (1997Mo2 %α≈99.	2006An11 – source of v n 1985Co06; source of v ns predict partial β halfl 25), implying $\%\epsilon + \%\beta^+ \approx$	alue is not clear. Other: $%\alpha \ge 50$ – value value unclear. Gross β decay theory life to Be ≈4 s (1973Ta30) or 2.4 s ≈0.8 or 1.3, respectively, and hence							
63 10	(7/2-)		В	T _{1/2} : Weigh (7000 α (t) 1984ScZC +9-5 (76 E(level): De (¹⁹¹ At α of I ^{π} : From sy	ted average of 40 ms 2 -1999Ba45), 45 ms 11 2). Others: 35 ms +14- $12\alpha(t)$, 1999Ba45), 21 r duced from the shape o decay (2.1 ms)).	$(7000\alpha(t)-2006An11)$, 32 ms 3 $(7000\alpha(t)-2002Hu14)$, 35 ms 4 (6986 $\alpha(t)$ - 8 (6994 $\alpha(t)$ and 7605 $\alpha(t)$ 2003Ke08), 25 ms ns +29-8 (7367 $\alpha(t)$, 1999Ba45). f the α -decay spectrum and simulation							
112 20	(1/2 ⁺)	0.370 ms 20	A C	simulation $\%\alpha$ =100 $\%\alpha$: From 2 adopted in T _{1/2} : From 0.31 ms 4 (1984ScZ α is quest E(level): Us from ¹⁸⁷ E Consisten decreasing	to results (2003Ke08). 2006An11 – source of v 1985Co06; source of v 7721 α (t)–2006An11. O -19–9 (7552 α (t) (2003K Q), this α is absent in 2 ionable. ing E α =7721 15 from t i(g.s.) to ¹⁸³ Tl(g.s.) in t with observed smooth g N.	value is not clear. Other: $\Re \alpha \ge 50$ – value value unclear. Where: 0.29 ms +9-5 (7721 α (t)- 1999Ba45), Ke08)), 0.8 ms 6 for an E=7583 10 α 2003Ke08 and 1999Ba45; assignment of this his level to ¹⁸³ Tl(g.s.) and E α =7612 15 1999Ba45. E α =7714 15 (2003Ke08). decrease of E(s _{1/2}) state in Bi with							
252 [#]	(13/2 ⁺)	3.2 μs +76–20	С	J ^{π} : Supporte the low en T _{1/2} : Deduc 1984Sc13	by the measured value nergy M2 transitions for ed from four 252γ ever to deduce lifetimes fro	e of $T_{1/2}$ considering the characteristics of risomeric states in this mass region. Its using the procedure described in m a small number of events.							
450 [#]	$(17/2^+)$		С										
$720^{\#}$	$(21/2^+)$		C										
1063"	$(25/2^{+})$		C										

[†] From γ-ray energies, assuming ΔE=1 keV for all γ-rays, except otherwise noted.
[‡] From systematics of h_{9/2} and s_{1/2} 2p-1h states in odd-A Bi isotopes and Band assignment.
[#] Band(A): π i_{13/2} band (tentative).

Adopted Levels, Gammas (continued)

$\gamma(^{187}\text{Bi})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
252	(13/2+)	252	100	0.0	(9/2 ⁻)	[M2(+E3)]	Mult.: From characteristics of the low energy M2 transitions for isomeric states in this mass region.
450 720 1063	$(17/2^+)$ $(21/2^+)$ $(25/2^+)$	198 270 343	100 100 100	252 450 720	(13/2 ⁺) (17/2 ⁺) (21/2 ⁺)		C

[†] From ¹⁰⁷Ag(83 Kr,3n γ).

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level

 $^{187}_{83}{\rm Bi}_{104}$

Adopted Levels, Gammas

 $^{187}_{83}{
m Bi}_{104}$