History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	M. S. Basunia	NDS 110, 999 (2009)	1-Nov-2008					

Parent: ¹⁸⁷Au: E=120.6 2; $J^{\pi}=9/2^{(-)}$; $T_{1/2}=2.3$ s *1*; %IT decay=100.0

1983Br26: On-line mass-separated sources of ^{187m}Au from ¹⁷⁸Hf(¹⁴N,5n) reaction, E=103 MeV, on natural Hf foils at Oak Ridge Isochronous Cyclotron UNISOR facility.

1978Bo05: On-line mass separated ¹⁸⁷Hg from Au(p,xn)Hg; Detector: Ge(Li), Si(Li); Measured E γ , I γ , α , $\gamma\gamma$ coin, ceG-coin, Gce (t), deduced levels, J, π , mult.

¹⁸⁷Au Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0 19.5 2	$1/2^{(+)}$ $3/2^{(+)}$ [†] [‡]	6 ns <i>1</i>	T _{1/2} : From Ce(19.5L)(t) (1978Bo05).
120.6 2	9/2-‡	2.3 s 1	$T_{1/2}$: From Ce(t)-1983Br26. The uncertainty is at 95% confidence level.

[†] For (prolate) configuration: $3/2^{+}[402]$ (19.5 keV level) and configuration: $1/2^{+}[400]$ (g.s.) B(M1)=0.0018; and for (oblate) configuration: $3/2^{+}[431]$ (19.5 keV) and configuration: $1/2^{+}[431]$ (g.s.) B(M1)=0.59, calculated by 1978Bo05.

^{\ddagger} The hindrance of 101.1 γ E3 isomeric transition is consistent with the analogous h9/2 to d3/2 E3 transitions in ¹⁹¹Tl to ²⁰¹Tl.

 $\gamma(^{187}\mathrm{Au})$

E_{γ}^{\dagger}	Ι _γ ‡#	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α@	$I_{(\gamma+ce)}^{\#}$	Comments
19.5 <i>4</i>		19.5	3/2 ⁽⁺⁾	0.0	1/2 ⁽⁺⁾	(M1+E2)	7.×10 ³ 6		$\alpha(L)=5.E3 5; \alpha(M)=1.3\times10^{3} 13; \alpha(N+)=4.E2 4 \alpha(N)=3.E2 3; \alpha(O)=5.E1 5; \alpha(P)=0.083 6$
									Mult.: Assigned from an estimated M/N subshell ratio, observing a conversion electron spectrum (fig 5-1978Bo05) by the evaluator.
101.1 2	0.83 2	120.6	9/2-	19.5	3/2 ⁽⁺⁾	E3	119.7 22	100	$\begin{aligned} &\alpha(\text{K}) = 0.927 \ 14; \ \alpha(\text{L}) = 87.3 \ 16; \\ &\alpha(\text{M}) = 24.5 \ 5; \ \alpha(\text{N}+) = 7.07 \ 13 \\ &\alpha(\text{N}) = 6.10 \ 11; \ \alpha(\text{O}) = 0.970 \ 18; \\ &\alpha(\text{P}) = 0.00184 \ 3 \\ &\text{Mult.:} \ \alpha(\text{L}) \exp = 75 \ 20, \ \text{L1/L2} < 0.1, \\ &\text{L2/L3} \approx 1.3 \ (1978Bo05). \end{aligned}$

[†] From 1978Bo05.

^{\ddagger} Deduced from TI/(1+CC).

[#] Absolute intensity per 100 decays.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁸⁷Au IT decay (2.3 s) 1983Br26,1978Bo05

¹⁸⁷₇₉Au₁₀₈