${}^{186}_{74}W_{112}$ -1

¹⁸⁶Re ε decay (3.7185 d) 2000Mi03,1994Sc39

History Author Literature Cutoff Date Type Citation J. C. Batchelder and A. M. Hurst, M. S. Basunia NDS 183, 1 (2022) 1-Mar-2022 Full Evaluation

Parent: ¹⁸⁶Re: E=0.0; $J^{\pi}=1^{-}$; $T_{1/2}=3.7185 \text{ d} 5$; $Q(\varepsilon)=581.3 12$; $\%\varepsilon$ decay=7.50 10

¹⁸⁶Re-% ε decay: From %I(W K x ray)=6.02 7 (1994Sc39) (assuming $\omega_{\rm K}$ =0.958, ε K=0.7906 from ε K=0.7931 (g.s.) and 0.7819 (122.64 level) (theory) for ≈ 3.5 :1 feeding of g.s. and 122.64 level, $\% I\gamma(122)=0.6026$ 25 (see gamma table) and $\alpha(K)(122.64)$ from E2 theory). In 2016Lu16 from text it appears that the efficiency calibration of the detectors below 250 keV was weakly established - so their data are not considered for deducing the ε branching of ¹⁸⁶Re. Also note %I γ (137) (¹⁸⁶Os)=10.12 42 (2016Lu16) compared to 9.47 3, deduced value in ¹⁸⁶Re β^- decay.

Others: 2016Lu16, 1964Ma36, 1969La11, 1991Co17, 1991Go23, 2000Wo02, 1972Se06.

¹⁸⁶W Levels

E(level)	J^{π}	T _{1/2}			
0.0	0^{+}				
122.64 2	2^{+}	1.040 ns 10			

 ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(458.7 12)	122.64	1.67 1	7.776 4	εK=0.7838 2; εL=0.1638 1; εM+=0.05242 4
				$I(\varepsilon + \beta^+)$: from %I $\gamma(122)$ and $\alpha(122)$.
(581.3 12)	0.0	5.83 10	7.465 8	εK=0.79456 8; εL=0.15595 6; εM+=0.04948 3
				$I(\varepsilon + \beta^+)$: from $\%\varepsilon = 7.50$ 10 minus $\%\varepsilon$ (to 122 level)=1.67 1.

 $\gamma(^{186}W)$

[†] Absolute intensity per 100 decays.

Summary of experimental I(x-ray) (%) compared with calculated values. Note that data shown under 1972Se06 and 1991Go23 are relative intensities normalized so $I(137\gamma, {}^{186}Os)=10.0$ 1). For data in 2016Lu16, see ${}^{186}Re \ \% \varepsilon$ comments above.

Radiation W L x ra	197 av	2Se06	1991Co	017	1991G	o23	1994Sc39 1.91 21	2016Lu16	Calculated 1.95 8
W L _α χι	ray 2	.64 2							
W L $_{\beta}$ x ray 0.60 10 W K α_2 x rav 1.89 1				1.83	4	1.75 4	1.61 6	1.72 4	
W K α_1 x ray 3.31 1					3.15	7	3.02 6	2.71 10	2.95 7
W K β_2 x	ray				0.28	1	0.268 6	0.258 11	0.225 5
W K β_1 x	ray 1	.16 1			1.05	3	0.986 20	0.866 35	0.646 16
₩Кα х з	ray		4.46	13					4.73 7
Os 137 γ	1	0.0 1	9.45	16	10.0	1	9.39 9	10.12 42	[9.47 3]
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.	α^{\dagger}		Comments
122.64 2	0.6026 25	122.64	2^{+}	0.0	0^{+}	E2	1.767	$\alpha(K)=0.584~9; \alpha(K)=0.584~9; \alpha(K)=0.566~9; \alpha(K)=0.566~9; \alpha(K)=0.566~9; \alpha(K)=0.566~9; $	L)=0.897 13; $\alpha(M)$ =

=0.226~4

 $\alpha(N)=0.0533 8; \alpha(O)=0.00734 11; \alpha(P)=4.40\times10^{-5} 7$ E_{γ} : From adopted gammas. Other: $E_{\gamma}=122.61$ (1972Se06).

 I_{γ} : Weighted average of 0.565% 24 (2016Lu16), 0.600% 13

(1991Co17), 0.603% 6 (1994Sc39), 0.604% 3 (2000Mi03),

Continued on next page (footnotes at end of table)

$^{186} \mathrm{Re}~\varepsilon$ decay (3.7185 d) 2000Mi03,1994Sc39 (continued)

$\gamma(^{186}W)$ (continued)

 E_i (level) Eγ

Comments

0.597% 8 (2000Wo02). Others: 0.606 9 (1991Go23, if I(137 γ)=9.47), 0.606 19 (1972Se06, if I(137 γ)=9.47). Mult.: K:L2:L3:M=0.32 8:0.267 27:0.222 11:0.100 15 (1969La11). Other: 1964Ma36.

[†] Additional information 1.
[‡] Absolute intensity per 100 decays.

¹⁸⁶Re ε decay (3.7185 d) 2000Mi03,1994Sc39

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

