|                               | T                |                                                                                      |                                                                              |            |                  | History                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                            | <u></u>                                                                                                                                                                                                              | Literature Cutoff Data                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|-------------------------------|------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                               | Eull Eu          | /pe                                                                                  |                                                                              | -11-1      | Aut              | nor                                                                                                                                                                                                                                                                                                                                                                                        | NDC                                                                                                                                                                        |                                                                                                                                                                                                                      | Literature Cutoff Date                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                               | Full EV          | aluation                                                                             | J. C. Bat                                                                    | cheider ar | ia A. I          | M. HUISI, MI. S. DASUIIIA MDS 165, 1 (2022) 1-MAT-2022                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| $Q(\beta^{-}) = -581$         | .3 12; S(r       | n)=7192.0                                                                            | <i>12</i> ; S(p)=                                                            | 8403 14;   | $Q(\alpha)=$     | -1116 6 2021Wa16                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Other Reaction                | ons:             |                                                                                      |                                                                              |            |                  |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Isotope shift                 | data: see        | , e.g., 198                                                                          | 8Au04, 19                                                                    | 994Ji02, 1 | 995At            | 108.                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                               |                  |                                                                                      |                                                                              |            |                  | <sup>186</sup> W Levels                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                               |                  |                                                                                      |                                                                              |            | 0                | Cross Reference (XREF) F                                                                                                                                                                                                                                                                                                                                                                   | Flags                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                               | A<br>B<br>C<br>D | <sup>186</sup> Ta /<br><sup>186</sup> Re<br><sup>186</sup> W(2<br><sup>186</sup> W(1 | $\beta^{-}$ decay<br>$\varepsilon$ decay (3<br>$\gamma, \gamma'$ )<br>n, n') | .7185 d)   | E<br>F<br>G<br>H | <sup>186</sup> W(n,n'γ)<br>Coulomb excitation<br><sup>186</sup> W(d,d'), (p,p'), (α,α')<br><sup>184</sup> W(t,p)                                                                                                                                                                                                                                                                           | I<br>J<br>)                                                                                                                                                                | <sup>186</sup> W( <sup>136</sup> Xe,<br><sup>186</sup> W( <sup>238</sup> U, <sup>23</sup> )                                                                                                                          | $^{136}$ Xe' $\gamma$ )<br>$^{38}$ U' $\gamma$ ): delayed $\gamma$ 's                                                                                                                                                                                                                                                                                    |  |  |  |
| E(level) <sup>†</sup>         | $J^{\pi}$        | Т                                                                                    | 1/2                                                                          | XRE        | F                |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                            | Comments                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 0.0                           | 0+               | stable <sup>@</sup>                                                                  |                                                                              | ABCDEFO    | GHIJ             | $\Delta < r^2 > (^{186}W - ^{184}W) = 0.0$                                                                                                                                                                                                                                                                                                                                                 | 085 fm <sup>2</sup>                                                                                                                                                        | 4 (1994Ji02).                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 122.632                       | 15 2+            | 1.0                                                                                  | 40 ns 10                                                                     | ABCDEFO    | GHIJ             | $\mu = +0.621 \ 17$                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                               |                  |                                                                                      |                                                                              |            |                  | of 1976St23). Other:<br>(1991St04).<br>Q: from Coulomb excita<br>data: Q/Q(2 <sup>+ 182</sup> W)=<br>(1971Ob02). Q<0 (197<br>$T_{1/2}$ : Weighted ave. of<br>from B(E2)=3.42 5 (st<br>(1959Bi10), and 1.01<br>systematics of B(E2)<br>(see 2016Pr01). Other<br>(1967Ku07); 1.38 ns<br>Mossbauer); $\geq$ 1.15 ns<br>Exci. dataset.<br>J <sup><math>\pi</math></sup> : direct E2 Coulomb et | 0.62 3 f<br>ation rec<br>0.882 1<br>)73K108<br>1.036 ns<br>see Coul<br>ns 4 ( $\alpha$<br>2 <sup>+</sup> $\rightarrow$ 0<br>rs: 1.30<br>12 (197)<br>5 6 (197)<br>excitatio | From g-factor ration (202<br>7 (1968Pe06),<br>).<br>s 10 (1975Ka11)<br>omb Exci. data<br>$\alpha'\gamma$ ) (1962Bi0<br>+ values of nei<br>ns 21 (1967As<br>0Me09, Mossba<br>2Hi14, Mossba<br>n from 0 <sup>+</sup> . | atio in Coulomb excitation<br>(1StZZ, from 1977RuZV). Other<br>0.908 24 (1969Ch23), 0.906 18<br>$l - {}^{186}$ Ta $\beta^-$ decay), 1.08 ns 3<br>aset), 1.12 ns 7 (p,p' $\gamma$ )<br>(5) – considered following the<br>ghboring even-even W isotopes<br>(03), 1.116 ns 21 pulsed beam<br>auer); 1.39 ns 12 (1971Ob02,<br>uer) – all are listed in Coul. |  |  |  |
| 396.551 <sup>&amp;</sup> .    | 18 4+            | 36.4                                                                                 | ps 25                                                                        | A DEFC     | GHIJ             | μ=+1.28 <i>10</i> ; Q=-2.6 <i>13</i><br>B(E4)↑=0.14 + <i>15</i> - <i>10</i><br>μ: from transient field in<br><sup>186</sup> W(123 keV level).<br>Q: from Coulomb excita<br>B(E4)↑: from Coulomb<br>T <sub>1/2</sub> : from B(E2)=1.63<br>Coul. Exci.                                                                                                                                       | ntegral I<br>ation rec<br>excitation<br>11 in C                                                                                                                            | PAC (2020StZV<br>prientation (202<br>on.<br>oulomb excitat                                                                                                                                                           | <ul> <li>7 - from 1985St07); relative to</li> <li>21StZZ - from 1970McZQ).</li> <li>ion. Other: 38 ps 3 (1986Bi13 -</li> <li>member of g s, band</li> </ul>                                                                                                                                                                                              |  |  |  |
| 737.960 <sup><i>a</i></sup> 2 | 0 2+             | 4.7                                                                                  | 8 ps <i>16</i>                                                               | A CDEFC    | GHIJ             | $\mu = +0.39 \ 8$ $Q = +1.3 \ 3$ $\mu: \text{ from transient field in } 186 \text{W}(123 \text{ keV level}).$ $Q: \text{ from Coulomb excita}$ $1.3 \ 3 \ (2014 \text{StZZ from } 2016 \text{St14 compared to} (1970 \text{McZQ}).$ $T_{1/2}: \text{ from B(E2)=0.140}$                                                                                                                    | ntegral I<br>ation rec<br>n revisec<br>o those<br>) 4 in C                                                                                                                 | PAC (2020StZV<br>prientation (202<br>d value of 1.2 3<br>in 1977Ob02 a<br>oulomb excitat                                                                                                                             | 7, from 1985St07); relative to<br>(1StZZ, from 1977Ob02). Other:<br>3 (1977Mc11). Opposite signs in<br>nd 1977Mc11. 0.7 <i>4</i><br>ion.                                                                                                                                                                                                                 |  |  |  |

Continued on next page (footnotes at end of table)

# <sup>186</sup>W Levels (continued)

| E(level) <sup>†</sup>           | $\mathbf{J}^{\pi}$      | T <sub>1/2</sub> |   | XREF     | Comments                                                                                                                                                 |
|---------------------------------|-------------------------|------------------|---|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                         |                  |   |          | $J^{\pi}$ : direct E2 Coulomb excitation from $0^+$ .                                                                                                    |
| 809.26 <sup>&amp;</sup> 3       | 6+                      | 4.0 ps 3         | A | EFGHI J  | $\mu = +1.9 \ 4$                                                                                                                                         |
|                                 |                         |                  |   |          | $\mu$ : from transient field integral PAC (2020StZV, from 1985St07);                                                                                     |
|                                 |                         |                  |   |          | relative to $^{186}$ W(123 keV level).                                                                                                                   |
|                                 |                         |                  |   |          | $I_{1/2}$ : Irom B(E2)=1./0 12 in Coulomb excitation.<br>$I^{\pi}$ : E2 4124 to $A^+$ 306: Coulomb excited member of a schend                            |
| 867 786 <sup>0</sup> 71         | 2+                      |                  | ٨ | DEE TI   | $J^{\pi}$ : E1 183 $\alpha$ from $3^{-}$ 1045: D+O common to $2^{+}$ and $4^{+}$                                                                         |
| 883.597 <sup>e</sup> 25         | $(0^+)$                 |                  | A | EFG T    | J. E1 1057 from 5 1045, D+Q gammas to 2 and 4.<br>$I^{\pi}$ : from $\sigma(90^{\circ})/\sigma(125^{\circ})$ in (d d').                                   |
| 952.745 <sup>°</sup> 24         | $(2)^{-}$               | 0.193 ns 15      | A | DEF IJ   | $J^{\pi}$ : E1 215 $\gamma$ to 2 <sup>+</sup> 738; M1+E2 92.7 $\gamma$ from 3 <sup>-</sup> 1045.                                                         |
|                                 |                         |                  |   |          | $T_{1/2}$ : from <sup>186</sup> Ta $\beta^-$ decay (1975Ka11).                                                                                           |
| 1006.734 <sup><i>a</i></sup> 20 | 4+                      |                  | A | EFG IJ   | J <sup><math>\pi</math></sup> : stretched E2 884 $\gamma$ to 2 <sup>+</sup> ; D+Q 610 $\gamma$ to 4 <sup>+</sup> . 2 <sup>+</sup> is favored by $\sigma$ |
| +                               |                         |                  |   |          | ratio in $(d,d')$ , however.                                                                                                                             |
| $1014.97^+$ 10                  | $(2^+,3,4^+)$           |                  | A | AFEC T   | $J^{n}$ : gammas to $2^{+}$ and $4^{+}$ .                                                                                                                |
| 1050.254 10                     | 2                       |                  | A | uerg 1   | $I^{\pi}$ : E2 1030y to g.s.: (M1+E2) 908y to 2 <sup>+</sup> : O 634y to 4 <sup>+</sup> . 4 <sup>+</sup> from                                            |
|                                 |                         |                  |   |          | $\sigma(90^\circ)/\sigma(125^\circ)$ in (d,d'); However, note that in (d,d'), $\beta^-$ decay and                                                        |
|                                 |                         |                  |   |          | one $(n,n'\gamma)$ study, this level has been designated as the 4 <sup>+</sup> member                                                                    |
| d                               |                         |                  |   |          | of the $\gamma$ band.                                                                                                                                    |
| 1045.401 <sup><i>a</i></sup> 20 | 3-                      |                  | A | dEFGHI J | $B(E3)\uparrow=0.101\ 8$                                                                                                                                 |
|                                 |                         |                  |   |          | $I^{\pi}$ : direct E3 Coulomb excitation from $0^+$ .                                                                                                    |
| $1150^{f}$ 2                    | $(0^{+})$               |                  |   | G        | $I^{\pi}$ : from $\sigma$ ratio in (d d').                                                                                                               |
| 1171.63 <sup>°</sup> 4          | $(4)^{-}$               |                  | A | ΕIJ      | $J^{\pi}$ : 218.93 $\gamma$ Q to (2) <sup>-</sup> ; D(+Q) 309 $\gamma$ to 3 <sup>+</sup> ; band assignment.                                              |
| 1197.30 <sup>b</sup> 3          | 5+                      |                  |   | EF I     | $J^{\pi}$ : Q $\gamma$ to 3 <sup>+</sup> ; largely quadrupole D+Q 801 $\gamma$ to 4 <sup>+</sup> ; band                                                  |
|                                 |                         |                  |   |          | assignment in multiple Coulomb excitation.                                                                                                               |
| 1279.19 <sup>‡</sup> 23         | (1,2,3)                 |                  | Α |          | $J^{\pi}$ : gammas to $2^+$ and $2^-$ .                                                                                                                  |
| 1285.419 <sup>J</sup> 21        | $2^{+}$                 | 4.0 ps 4         | A | EFG      | $J^{\pi}$ : direct E2 Coulomb excitation from $0^+$ .                                                                                                    |
| 1208 03 <sup>6</sup> 3          | A <sup>+</sup>          |                  | ۸ | FCT      | $I_{1/2}$ : from B(E2) and branching in Coulomb excitation.<br>$I^{\pi}$ : D+O 9022 to $A^+$ : stretched E2 11762 to $2^+$ 1973Gu02 report               |
| 1290.95 5                       | -                       |                  | n | LUI      | $(^{186}\text{Ta} \beta \text{-decay}) = 1298 \text{ keV} \gamma \text{-ray from this level. The placement}$                                             |
|                                 |                         |                  |   |          | is not consistent with the assigned $J^{\pi}=4^+$ and not adopted. Reported                                                                              |
| ,                               |                         |                  |   |          | peak may be due to summing.                                                                                                                              |
| 1322.137 <sup>d</sup> 25        | 5-                      |                  |   | EgIJ     | $J^{\pi}$ : 276.72 $\gamma$ Q to 3 <sup>-</sup> ; band assignment.                                                                                       |
| 1322.41 19                      | (2+)                    |                  | A | g        | $J^{\pi}$ : 1322 $\gamma$ to 0 <sup>+</sup> ; 460 $\gamma$ to 3 <sup>+</sup> ; possible 316 $\gamma$ to 4 <sup>+</sup> 1006 level.                       |
| 1349.0 <sup><b>c</b></sup> 4    | 8+                      | 1.08 ps 7        |   | EF I     | $T_{1/2}$ : from B(E2) in Coulomb excitation.                                                                                                            |
| 1398 08 <sup>a</sup> 4          | 6+                      |                  |   | EFG T1   | $J^{\pi}$ : E2 to 6°; Coulomb excited member of g.s. band.<br>$I^{\pi}$ : stretched O gammas to 4 <sup>+</sup> : 589 $\gamma$ to 6 <sup>+</sup>          |
| 1453.449? 23                    | Ũ                       |                  |   | E        | $J^{\pi}$ : gammas to 2 <sup>+</sup> and 3 <sup>+</sup> , so $J^{\pi} = (1^+, 2, 3, 4^+)$ . 2 <sup>+</sup> favored by                                    |
|                                 |                         |                  |   |          | 1988GoZC in $(n,n'\gamma)$ .                                                                                                                             |
| 1458.38? 4                      |                         |                  |   | E        | $J^{\pi}$ : gammas to 2 <sup>+</sup> , so $J^{\pi} = (0^+, 1, 2, 3, 4^+)$ . 3 <sup>+</sup> favored by 1988GoZC in                                        |
| 1463.42.15                      | $(2^+, 3^+)$            | <0.1 ns          | Α |          | $I^{\pi}$ ; gammas to 3 <sup>-</sup> : (E1) 511 $\gamma$ to 2 <sup>-</sup> 953 level.                                                                    |
| 1100112 10                      | (_ ,0 )                 |                  |   |          | $T_{1/2}$ : from <sup>186</sup> Ta $\beta^-$ decay (1975Ka11).                                                                                           |
|                                 |                         |                  |   |          | Presumed to differ from 1463.8 level in $(n,n'\gamma)$ based on $\gamma$ branching.                                                                      |
| 1463.77 <i>3</i>                | $(2^{-}, 3^{-}, 4^{-})$ |                  |   | E        | $J^{\pi}$ : (M1+E2) 418 $\gamma$ to 3 <sup>-</sup> ; possible $\gamma$ to (4 <sup>-</sup> ).                                                             |
|                                 |                         |                  |   |          | presumed to differ from 1463.4 level in $\beta^-$ decay based on $\gamma$                                                                                |
| 1514.64 <sup>°</sup> 25         | (6)-                    |                  |   | I        | $J^{\pi}$ : 343 $\gamma$ to (4) <sup>-</sup> , band assignment.                                                                                          |
| 1517.2 <sup>8</sup> 6           | (7 <sup>-</sup> )       | 18 µs 1          |   | Ĵ        | $J^{\pi}$ : gammas to 6 <sup>+</sup> and (5 <sup>-</sup> ); proposed as bandhead for $K^{\pi}=7^{-}$                                                     |
|                                 |                         |                  |   |          | configuration based on $T_{1/2}$ and model calculation of level energy                                                                                   |
|                                 |                         |                  |   |          | (1998Wh02).                                                                                                                                              |

 $T_{1/2}$ : from (<sup>238</sup>U,<sup>238</sup>U' $\gamma$ ): delayed  $\gamma$ 's.

Continued on next page (footnotes at end of table)

# <sup>186</sup>W Levels (continued)

| E(level) <sup>†</sup>        | $\mathrm{J}^{\pi}$                | T <sub>1/2</sub> | 2 | KREF     | Comments                                                                                                                                                                                                            |
|------------------------------|-----------------------------------|------------------|---|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1521.32.3                    | $(4^{+})$                         | <u>.</u>         | A | EG       | $J^{\pi}$ : stretched O 783 $\gamma$ to 2 <sup>+</sup> : $\gamma$ to 4 <sup>+</sup> .                                                                                                                               |
| 1532.32 3                    | $2^{(+)},3^{(+)}$                 |                  |   | Е        | $J^{\pi}$ : (M1+E2) 1409.7 $\gamma$ to 2 <sup>+</sup> : D gammas to 2 <sup>-</sup> and 3 <sup>-</sup> .                                                                                                             |
| 1563.37 3                    | 1                                 |                  |   | Е        | $J^{\pi}$ : D 1563 $\gamma$ to 0 <sup>+</sup> ; D+Q 1440.75 $\gamma$ to 2 <sup>+</sup> .                                                                                                                            |
| 1607.52 5                    | $(2^+, 3, 4^+)$                   |                  |   | E gh     | $J^{\pi}$ : gammas to 4 <sup>+</sup> and 2 <sup>+</sup> .                                                                                                                                                           |
| 1608.07 10                   | $(2^+,3)$                         |                  | Α | gh       | $J^{\pi}$ : gammas to $2^+$ and $2^-$ and $4^+$ .                                                                                                                                                                   |
| 1628.27 5                    | (3 <sup>-</sup> ,5 <sup>-</sup> ) |                  |   | Еg       | $J^{\pi}$ : significantly mixed (M1+E2) 457 $\gamma$ to 4 <sup>-</sup> ; possibly stretched Q $\gamma$ to 3 <sup>-</sup> .                                                                                          |
| 1628.40 18                   | (2+,3,4+)                         |                  | A | g        | E(level): see comment on 1628.4 level. $J^{\pi}$ : gammas to 2 <sup>+</sup> and 4 <sup>+</sup> .                                                                                                                    |
|                              |                                   |                  |   |          | E(level): assumed to differ from 1628.3 level excited in $(n,n'\gamma)$ because three gammas which deexcite this level in $\beta^-$ decay are absent in $(n,n'\gamma)$ .                                            |
| 1642.46 5                    | (3,4)                             |                  |   | E GH     | XREF: E(?). $J^{\pi}$ : D+Q gammas to 3 <sup>+</sup> and 4 <sup>+</sup> , $\gamma$ to 4 <sup>+</sup> .                                                                                                              |
| 1652.76 <sup>b</sup> 19      | 7+                                |                  |   | I        |                                                                                                                                                                                                                     |
| 1661.39 <i>17</i>            | (2 <sup>-</sup> ,3 <sup>-</sup> ) | 4.92 ns 10       | A |          | T <sub>1/2</sub> : from <sup>186</sup> Ta $β^-$ decay (1975Ka11).<br>J <sup>π</sup> : 339γ to (2 <sup>+</sup> ) 1322 level; 800γ to 3 <sup>+</sup> 862 level; E1 γ to (2 <sup>+</sup> ,3 <sup>+</sup> ) 1463 level. |
| 1672.4 <sup>e</sup> 3        | 6+                                |                  |   | I        |                                                                                                                                                                                                                     |
| 1709.74 3                    | 3                                 |                  |   | E        | $J^{\pi}$ : D(+Q) gammas to 2 <sup>+</sup> and 4 <sup>+</sup> .                                                                                                                                                     |
| 1713.5 <sup>d</sup> 4        | $(7^{-})$                         |                  |   | т        | $I^{\pi}$ : 391.4 $\gamma$ to 5 <sup>-</sup> , band assignment.                                                                                                                                                     |
| 1722 4                       | (, )                              |                  |   | GH       |                                                                                                                                                                                                                     |
| 1737.5 <mark>8</mark> 10     | (8-)                              |                  |   | J        | $J^{\pi}$ : $\gamma$ to (7 <sup>-</sup> ); band assignment.                                                                                                                                                         |
| 1829.4 4                     | $(2^+,3,4^+)$                     |                  | A |          | $J^{\pi}$ : 1093 $\gamma$ to 2 <sup>+</sup> ; 823 $\gamma$ to 4 <sup>+</sup> 1006 level.                                                                                                                            |
| 1903.95 <sup>a</sup> 22      | 8'                                |                  |   | F I<br>T | $J^{\pi}$ : band assignment in multiple Coulomb excitation.                                                                                                                                                         |
| 19/9.0° 5                    | (8)                               |                  |   | CH I     | $J^{*}$ : 464 $\gamma$ to (6), band assignment.                                                                                                                                                                     |
| 2001.9 <sup>&amp;</sup> 5    | 10+                               | 0.49 ps +14-5    |   | FG I     | $T_{1/2}$ : from B(E2) in Coulomb excitation.<br>$I^{\pi}$ : F2 to 8 <sup>+</sup> : Coulomb excited member of g s hand                                                                                              |
| 2059 4                       |                                   |                  |   | GH       | J. E2 to b ; Coulomb excited memoer of g.s. band.                                                                                                                                                                   |
| 2116 5                       |                                   |                  |   | Н        |                                                                                                                                                                                                                     |
| 2117.8 <sup>h</sup> 10       | (9 <sup>-</sup> )                 |                  |   | J        | $J^{\pi}$ : gammas to (8 <sup>-</sup> ) and (7 <sup>-</sup> ); band assignment.                                                                                                                                     |
| 2142.7 <mark>°</mark> 5      | 8+                                |                  |   | I        |                                                                                                                                                                                                                     |
| 2166.5 7                     |                                   |                  | Α |          | 1429 $\gamma$ to 2 <sup>+</sup> 738; 1213 $\gamma$ to (2) <sup>-</sup> 952 level.                                                                                                                                   |
| 2212.0 <sup>d</sup> 6        | (9 <sup>-</sup> )                 |                  |   | I        | $J^{\pi}$ : 498.5 $\gamma$ to (7 <sup>-</sup> ), band assignment.                                                                                                                                                   |
| 2220.1 <sup>b</sup> 4        | 9+                                |                  |   | I        |                                                                                                                                                                                                                     |
| 2270.5 5                     |                                   |                  | Α | GH       |                                                                                                                                                                                                                     |
| 2285.8 <sup>h</sup> 15       | (10 <sup>-</sup> )                |                  |   | J        | $J^{\pi}$ : $\gamma$ to (9 <sup>-</sup> ); band assignment.                                                                                                                                                         |
| 2339 4                       |                                   |                  |   | GH       |                                                                                                                                                                                                                     |
| 2378 9                       |                                   |                  |   | G        |                                                                                                                                                                                                                     |
| 2511.0 <sup><i>a</i></sup> 4 | 10+                               |                  |   | FΙ       | $J^{\pi}$ : 607.1 Q to 8 <sup>+</sup> , band assignment.                                                                                                                                                            |
| 2522.8 <sup>n</sup> 17       | (11 <sup>-</sup> )                |                  |   | J        | $J^{\pi}$ : $\gamma$ to (10 <sup>-</sup> ); band assignment.                                                                                                                                                        |
| 2555.8° 7                    | $(10)^{-}$                        |                  |   | I        | $J^{\pi}$ : 576.8 $\gamma$ to (8) <sup>-</sup> , band assignment.                                                                                                                                                   |
| 2556.8 7<br>2588 10          | 1#                                |                  | C | G        |                                                                                                                                                                                                                     |
| 2672.8? 20                   | 10+                               |                  |   | J        | $J^{\pi}$ : (11 <sup>+</sup> ) in ( <sup>238</sup> U, <sup>238</sup> U' $\gamma$ ).                                                                                                                                 |
| 2707.1° 7                    | 10+                               |                  |   | I        |                                                                                                                                                                                                                     |
| 2750.4 <sup>∞</sup> 7        | (12 <sup>+</sup> )                | 0.20 ps +6-2     |   | FΙ       | $T_{1/2}$ : from B(E2) in Coulomb excitation.<br>J <sup><math>\pi</math></sup> : band assignment in multiple Coulomb excitation.                                                                                    |
| 2806.5 <sup>d</sup> 7        | (11 <sup>-</sup> )                |                  |   | I        | $J^{\pi}$ : 594.5 $\gamma$ to (9 <sup>-</sup> ), band assignment.                                                                                                                                                   |
| 2837.8 <sup>h</sup> 17       | (12 <sup>-</sup> )                |                  |   | J        | $J^{\pi}$ : gammas to (11 <sup>-</sup> ) and (10 <sup>-</sup> ); band assignment.                                                                                                                                   |
|                              |                                   |                  |   |          |                                                                                                                                                                                                                     |

Continued on next page (footnotes at end of table)

#### <sup>186</sup>W Levels (continued)

| E(level) <sup>†</sup>        | $J^{\pi}$          | T <sub>1/2</sub>   | XRE | F | Comments                                                                                                                                    |
|------------------------------|--------------------|--------------------|-----|---|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2863.8 7                     | 1#                 |                    | С   |   |                                                                                                                                             |
| 2887.3 <sup>b</sup> 6        | $11^{+}$           |                    |     | I |                                                                                                                                             |
| 3035.8 7                     | 1 <sup>#</sup>     |                    | С   |   |                                                                                                                                             |
| 3055.8 7                     | $(1)^{\#}$         |                    | С   |   |                                                                                                                                             |
| 3067.8 7                     | (1) <sup>#</sup>   |                    | С   |   |                                                                                                                                             |
| 3143.8 20                    |                    |                    |     | J | $J^{\pi}$ : (13 <sup>+</sup> ) in ( <sup>238</sup> U, <sup>238</sup> U' $\gamma$ ).                                                         |
| 3171.8 7                     | 1 <sup>#</sup>     |                    | С   |   |                                                                                                                                             |
| 3188.2 <sup><i>a</i></sup> 5 | $12^{+}$           |                    | F   | Ι | $J^{\pi}$ : band assignment in multiple Coulomb excitation.                                                                                 |
| 3237.8° 8                    | $(12)^{-}$         |                    |     | I | $J^{\pi}$ : 682.0 $\gamma$ to (10) <sup>-</sup> , band assignment.                                                                          |
| 3317.8 7                     | 1#                 |                    | C   |   |                                                                                                                                             |
| 3362.8 21                    | #                  |                    |     | J | $J^{\pi}$ : (14 <sup>+</sup> ) in ( <sup>258</sup> U, <sup>258</sup> U' $\gamma$ ).                                                         |
| 3363.8 7                     | 1 <b>#</b>         |                    | C   | - |                                                                                                                                             |
| 33/1.2° 8                    | 12'<br>• <b>#</b>  |                    | _   | 1 |                                                                                                                                             |
| 3378.87                      | 1"                 |                    | C   |   |                                                                                                                                             |
| 3393.8 7                     | 1"                 |                    | C   |   |                                                                                                                                             |
| 3428.0 10                    | 1#                 |                    | C   |   |                                                                                                                                             |
| 3477.0 10                    | 1#                 |                    | С   |   |                                                                                                                                             |
| 3483.3 <sup><i>a</i></sup> 8 | (13-)              |                    |     | Ι | $J^{\pi}$ : 676.8 $\gamma$ to (11 <sup>-</sup> ), band assignment.                                                                          |
| 3533.8 22                    | (1 ( + )           | <b>7 7 1 0 0 5</b> |     | J | $J^{\pi}$ : (14 <sup>+</sup> ) in ( <sup>238</sup> U, <sup>238</sup> U' $\gamma$ ).                                                         |
| 3542.8 21                    | (16 <sup>+</sup> ) | 7.5 s +48-35       |     | J | E(level): Other: 3560 59 – from measured mass difference between isomer and ground state in 2012Re19.                                       |
|                              |                    |                    |     |   | J <sup><math>\pi</math></sup> : possible configuration: ( $\pi$ 5/2[402])+( $\pi$ 9/2[514])+( $\nu$ 7/2[503])+( $\nu$ 11/2[615]) (1998Wb02) |
|                              |                    |                    |     |   | $T_{1/2}$ : From 2012Re19 – <sup>9</sup> Be( <sup>197</sup> Au,x). Other: 3 ms < $T_{1/2}$ < 30 s (1998Wh02).                               |
| 3561.9 <sup>&amp;</sup> 8    | (14+)              | 0.183 ps 20        | F   | I | $T_{1/2}$ : from B(E2) in Coulomb excitation.<br>J <sup><math>\pi</math></sup> : band assignment in multiple Coulomb excitation.            |
| 3913.3 <sup>a</sup> 7        | $14^{+}$           |                    |     | I |                                                                                                                                             |
| 6417.3 6                     | 1-                 | 0.0075 eV 9        | С   |   | $J^{\pi}$ : E1 6417 $\gamma$ to 0 <sup>+</sup> g.s.<br>T <sub>1/2</sub> : from $(\gamma, \gamma')$ .                                        |

<sup>†</sup> From least-squares adjustment of adopted E $\gamma$ , allowing  $\Delta E=1$  keV for E $\gamma$  values to which authors did not assign an uncertainty.

<sup>‡</sup> Existence of level is inconsistent with  $(n,n'\gamma)$  because the strongest gammas deexciting it were either absent or differently placed in an  $(n,n'\gamma)$  study which was expected to excite all levels below E $\approx$ 1200 for which J=1 to 4 (1978Av05). This level has been proposed in  $\beta^-$  decay alone.

<sup>#</sup> From  $\gamma$  correlations in  $(\gamma, \gamma')$ .

<sup>@</sup> From search for double β decay: 2ν2β- decay to g.s. of <sup>186</sup>Os: ≥2.3(2.8)×10<sup>19</sup> y at 90%(68%) confidence limit (C.L.) (2009Be27,2010Be41,2011Be39), ≥2.6(4.1)×10<sup>18</sup> y at 90%(68%) C.L. (2003Da09), ≥3.7(5.3)×10<sup>18</sup> y at 90%(68%) C.L. (2003Da24), ≥1.4(2.5)×10<sup>18</sup> y at 90%(68%) C.L. (2005Da47); 2ν2β- decay to 1st excited state at 137 of <sup>186</sup>Os: ≥1.8(3.6)×10<sup>20</sup> y at 90%(68%) C.L. (2009Be27,2010Be41,2011Be39), ≥1.0(1.3)×10<sup>19</sup> y at 90%(68%) C.L. (2003Da09,2003Da24); 0v2β- decay to g.s. of <sup>186</sup>Os: ≥2.1(4.2)×10<sup>20</sup> y at 90%(68%) C.L. (2009Be27,2010Be41), ≥1.0×10<sup>21</sup> y (2011Be39), ≥1.1(1.6)×10<sup>21</sup> y at 90%(68%) C.L. (2003Da09), ≥1.1(2.1)×10<sup>21</sup> y at 90%(68%) C.L. (2003Da24), ≥1.1(1.7)×10<sup>19</sup> y at 90%(68%) C.L. (2005Da47), ≥2.7×10<sup>20</sup> y (1995Ge14); 0v2β- decay to 1st excited state at 137 of <sup>186</sup>Os: ≥2.1(4.2)×10<sup>20</sup> y at 90%(68%) C.L. (2009Be27,2010Be41), ≥9.0×10<sup>20</sup> y (2011Be39), ≥1.1(1.6)×10<sup>21</sup> y at 90%(68%) C.L. (2003Da09), ≥1.1(2.0)×10<sup>21</sup> y at 90%(68%) C.L. (2003Da24), ≥2.4×10<sup>20</sup> y (1995Ge14); 0v2β- M1 decay to g.s. of <sup>186</sup>Os: ≥5.8(6.8)×10<sup>19</sup> y at 90%(68%) C.L. (2009Be27,2010Be41,2011Be39), ≥1.2(1.4)×10<sup>20</sup> y at 90%(68%) C.L. (2003Da09,2003Da24); 0v2β- M2 decay to g.s. of <sup>186</sup>Os: ≥1.1×10<sup>19</sup> y (2011Be39); 0v2β- bM decay to g.s. of <sup>186</sup>Os:

#### <sup>186</sup>W Levels (continued)

 $\geq 1.1 \times 10^{19}$  y (2011Be39); From search for  $\alpha$  decay:  $\geq 2.82 \times 10^{21}$  y (2004Co26),  $\geq 1.7 \times 10^{20}$  y (2003Da05,2003Bi13),  $\geq 2.7 \times 10^{19}$  y (2003Ce01),  $\geq 6.5 \times 10^{18}$  y (1995Ge17,1997Ge15), each at 90% C.L.,  $\geq 2.3 \times 10^{17}$  y (1960Be13). Other:  $> 6 \times 10^{15}$  y (from specific activity, 1952Ri01).

- <sup>&</sup> Band(A):  $K^{\pi}=0^+$  g.s. band (1989Ku04). Rotational parameters: A=20.3, B=-0.03.
- <sup>*a*</sup> Band(B):  $K^{\pi}=2^+$ :  $\alpha=0$ .  $\gamma$  band (1989Ku04). Rotational parameters: A=20, B=-0.03. The 1006 level is adopted as the J=4 member here, contrary to some earlier designations of the 1030 level (now assigned 2<sup>+</sup>) as that member.
- <sup>b</sup> Band(b): K=2<sup>+</sup> band:  $\alpha$ =1.  $\gamma$  band (2021Pr11).
- <sup>*c*</sup> Band(C): Possible  $K^{\pi}=2^{-}$  band:  $\alpha=0$ . Octupole band (2021Pr11). Rotational parameters: A=15, B=0.02.
- <sup>d</sup> Band(c): K=2<sup>-</sup> band:  $\alpha$ =1. Octupole band (2021Pr11).
- <sup>*e*</sup> Band(D): Possible K=0  $\beta$  band (1988GoZC). Rotational parameters: A=26, B=-0.03.
- <sup>*f*</sup> Band(E): Possible  $K^{\pi}=0^+$  band (1988GoZC). Rotational parameter: A=22.6.
- <sup>g</sup> Band(F):  $K^{\pi}=7^{-}$ ,  $(\pi 9/2[514]) + (\pi 5/2[402])$  (1998Wh02). Rotational parameter: A=13.8. An alternative ( $\nu 3/2[512]) + (\nu 3/2[51$
- 11/2[615]) configuration cannot be excluded (1998Wh02), but its calculated energy is somewhat high.
- <sup>h</sup> Band(G):  $\pi$ =(-), high-K band (1998Wh02). Rotational parameters: A=6.2, B=-0.05.

|                        |                      |                        |                          |                                    | Add                | opted Levels, ( | Gammas (cont              | inued)                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|----------------------|------------------------|--------------------------|------------------------------------|--------------------|-----------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                        |                          |                                    |                    | $\gamma(1)$     | <sup>.86</sup> W)         |                                                                                                                                                                                                                                                                                                                                                                                              |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$   | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Mult. <sup>f</sup> | $\delta^{f}$    | $\alpha^{\boldsymbol{h}}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                     |
| 122.632                | 2+                   | 122.64 <sup>#</sup> 2  | 100                      | 0.0 0+                             | E2                 |                 | 1.767                     | B(E2)(W.u.)=112.4 <i>15</i><br>$\alpha$ (K)=0.584 9; $\alpha$ (L)=0.897 <i>13</i> ; $\alpha$ (M)=0.226 4<br>$\alpha$ (N)=0.0533 8; $\alpha$ (O)=0.00734 <i>11</i> ; $\alpha$ (P)=4.40×10 <sup>-5</sup> 7<br>E <sub>γ</sub> : Other E <sub>γ</sub> : 122.3 <i>1</i> from $\beta^-$ decay.<br>Mult.: from subshell ratios in $\varepsilon$ decay.                                              |
| 396.551                | 4+                   | 273.93 <sup>#</sup> 5  | 100                      | 122.632 2+                         | E2                 |                 | 0.1120                    | B(E2)(W.u.)=144 +11-10<br>$\alpha$ (K)=0.0725 11; $\alpha$ (L)=0.0301 5; $\alpha$ (M)=0.00738 11<br>$\alpha$ (M)=0.00175 25: $\alpha$ (Q)=0.000252 4: $\alpha$ (Q)=0.11×10=6 0                                                                                                                                                                                                               |
| 737.960                | 2+                   | 341.0 10               | ≈0.9                     | 396.551 4+                         | [E2]               |                 | 0.0584 10                 | $\begin{array}{l} \alpha(N)=0.00175125; \ \alpha(O)=0.0002554; \ \alpha(P)=6.11\times10^{-6}9\\ \alpha(K)=0.04097; \ \alpha(L)=0.0134124; \ \alpha(M)=0.003256\\ \alpha(N)=0.00077214; \ \alpha(O)=0.000113620; \ \alpha(P)=3.58\times10^{-6}6\\ B(E2)(W.u.)=1.9+12-10\\ Absent in \ (n,n'\gamma). \end{array}$                                                                              |
|                        |                      | 615.31 <sup>#</sup> 2  | 94 <sup><i>a</i></sup> 3 | 122.632 2+                         | M1+E2 <sup>g</sup> | -11 +3-4        | 0.01293 24                | B(M1)(W.u.)=8×10 <sup>-5</sup> +8-4; B(E2)(W.u.)=10.1 7<br>$\alpha$ (K)=0.01020 <i>19</i> ; $\alpha$ (L)=0.00210 <i>4</i> ; $\alpha$ (M)=0.000492 8<br>$\alpha$ (N)=0.0001177 <i>19</i> ; $\alpha$ (O)=1.82×10 <sup>-5</sup> <i>3</i> ; $\alpha$ (P)=9.43×10 <sup>-7</sup> <i>19</i><br>Mult.,δ: from Coulomb excitation. Other δ: -4.1 5 from (n,n'γ).                                      |
|                        |                      | 737.97 <sup>#</sup> 8  | 100 <sup>#</sup> 2       | 0.0 0+                             | E2                 |                 | 0.00849                   | B(E2)(W.u.)=4.35 +28-26<br>$\alpha$ (K)=0.00682 <i>10</i> ; $\alpha$ (L)=0.001288 <i>18</i> ; $\alpha$ (M)=0.000299 <i>5</i><br>$\alpha$ (N)=7.16×10 <sup>-5</sup> <i>10</i> ; $\alpha$ (O)=1.123×10 <sup>-5</sup> <i>16</i> ; $\alpha$ (P)=6.33×10 <sup>-7</sup> <i>9</i>                                                                                                                   |
| 809.26                 | 6+                   | 412.69 <sup>#</sup> 2  | 100                      | 396.551 4+                         | E2                 |                 | 0.0344                    | B(E2)(W.u.)=181 +15-13<br>$\alpha$ (K)=0.0253 4; $\alpha$ (L)=0.00697 10; $\alpha$ (M)=0.001672 24<br>$\alpha$ (N)=0.000398 6; $\alpha$ (O)=5.96×10 <sup>-5</sup> 9; $\alpha$ (P)=2.27×10 <sup>-6</sup> 4<br>E <sub><math>\gamma</math></sub> : Other E $\gamma$ : 412.0 2 in $\beta$ <sup>-</sup> decay.                                                                                    |
| 862.286                | 3+                   | 465.70 <sup>#</sup> 2  | 9.0 <sup>#</sup> 7       | 396.551 4+                         | D+Q <mark>8</mark> | -4.0 5          |                           | ,                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                      | 739.73 <sup>#</sup> 8  | 100.0 <sup>#</sup> 23    | 122.632 2+                         | D+Q <mark>8</mark> | -72             | 0.0087 3                  |                                                                                                                                                                                                                                                                                                                                                                                              |
| 883.597                | $(0^{+})$            | 760.96 <sup>#</sup> 2  | 100                      | 122.632 2+                         |                    |                 |                           | $E_{\gamma}$ : Other $E_{\gamma}$ : 759.4 5 in $\beta^-$ decay.                                                                                                                                                                                                                                                                                                                              |
| 952.745                | (2)-                 | 91.0 5                 | 4.4 18                   | 862.286 3+                         | (E1)               |                 | 0.478 10                  | B(E1)(W.u.)= $5.5 \times 10^{-5} + 32 - 26$<br>$\alpha$ (K)=0.388 8; $\alpha$ (L)=0.0694 15; $\alpha$ (M)=0.0158 4<br>$\alpha$ (N)=0.00374 8; $\alpha$ (O)=0.000561 12; $\alpha$ (P)= $2.73 \times 10^{-5} 6$<br>Mult.: from intensity balance at the 952 level in <sup>186</sup> Ta $\beta^-$ decay.                                                                                        |
|                        |                      | 214.75 <sup>#</sup> 4  | 100 4                    | 737.960 2+                         | E1                 |                 | 0.0523                    | B(E1)(W.u.)=9.4×10 <sup>-5</sup> +11-10<br>$\alpha$ (K)=0.0434 6; $\alpha$ (L)=0.00687 10; $\alpha$ (M)=0.001560 22<br>$\alpha$ (N)=0.000371 6; $\alpha$ (O)=5.82×10 <sup>-5</sup> 9; $\alpha$ (P)=3.44×10 <sup>-6</sup> 5<br>Mult.: from $\alpha$ (K)exp, $\alpha$ (L)exp in <sup>186</sup> Ta $\beta$ <sup>-</sup> decay.                                                                  |
|                        |                      | 830.11 <sup>#</sup> 3  | 3.3 <sup>#</sup> 3       | 122.632 2+                         | (E1+M2)            | +0.23 10        | 0.0044 18                 | B(E1)(W.u.)=5.1×10 <sup>-8</sup> +15-13; B(M2)(W.u.)=0.018 +26-13<br>α(K)=0.0037 15; α(L)=0.0006 3; α(M)=0.00013 6<br>α(N)=3.1×10 <sup>-5</sup> 14; α(O)=5.1×10 <sup>-6</sup> 23; α(P)=3.5×10 <sup>-7</sup> 16<br>I <sub>γ</sub> : =3.5 6 in β <sup>-</sup> decay, but 830γ may include a sum γ<br>contribution there.<br>Mult.: D+Q from $\gamma(\theta)$ in (n,n'γ); Δπ from decay scheme. |

6

 $^{186}_{74}\mathrm{W}_{112}\text{--}6$ 

L

|                        |               |                                                                 |                                                                     | -                                                                          | Adopted Leve          | els, Gammas  | (continued   | <u>)</u>                                                                                                                                                                                                                                                                                                                                                        |
|------------------------|---------------|-----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |               |                                                                 |                                                                     |                                                                            | $\gamma(^{186}$       | W) (continue | ed)          |                                                                                                                                                                                                                                                                                                                                                                 |
| E <sub>i</sub> (level) | $J^{\pi}_{i}$ | $E_{\gamma}^{\dagger}$                                          | $I_{\gamma}^{\dagger}$                                              | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$                                        | Mult. <sup>f</sup>    | $\delta^f$   | $\alpha^{h}$ | Comments                                                                                                                                                                                                                                                                                                                                                        |
| 1006.734               | 4+            | $144.5^{b} 3$<br>268.85 <sup>#</sup> 5<br>610.22 <sup>#</sup> 2 | 0.7 <sup>b</sup> 1<br>14.4 <sup>#</sup> 10<br>100.0 <sup>#</sup> 26 | 862.286 3 <sup>+</sup><br>737.960 2 <sup>+</sup><br>396.551 4 <sup>+</sup> | Q<br>D+Q <sup>g</sup> | -1.21 10     |              | $I_{\gamma}$ : Other: 24 9 from $\beta^-$ decay.                                                                                                                                                                                                                                                                                                                |
|                        |               | 884.08 <sup>#</sup> 2                                           | 74 <sup>#</sup> 6                                                   | 122.632 2+                                                                 | E2                    |              | 0.00579      | $\alpha$ (K)=0.00472 7; $\alpha$ (L)=0.000827 12; $\alpha$ (M)=0.000191 3<br>$\alpha$ (N)=4.57×10 <sup>-5</sup> 7; $\alpha$ (O)=7.24×10 <sup>-6</sup> 11; $\alpha$ (P)=4.38×10 <sup>-7</sup> 7<br>Other I $\gamma$ : <12 from Coulomb excitation; 57 7 from $\beta^-$<br>decay.                                                                                 |
| 1014.97                | (2+,3,4+)     | 277.0 1                                                         | 100 20                                                              | 737.960 2+                                                                 |                       |              |              | $E_{\gamma}$ : A $\gamma$ with similar energy is placed between the 1322.1 and 1045 levels in $(n,n'\gamma)$ .                                                                                                                                                                                                                                                  |
|                        | - 1           | 618.3 <i>3</i><br>893.0 <i>10</i>                               | 40 20<br>60 8                                                       | 396.551 4 <sup>+</sup><br>122.632 2 <sup>+</sup>                           |                       |              |              | $E_{\gamma}$ : Absent in $(n,n'\gamma)$ .<br>$E_{\gamma}$ : Absent in $(n,n'\gamma)$ .                                                                                                                                                                                                                                                                          |
| 1030.234               | 2*            | $146.6^{b} 3$<br>292.4 <sup>b</sup> 6                           | <30<br>14.4 <sup>b</sup> 9                                          | 883.597 (0 <sup>+</sup> )<br>737.960 2 <sup>+</sup>                        |                       |              |              | E <sub>γ</sub> : Other: 292.97 multiply placed in $(n,n'\gamma)$ .<br>I <sub>γ</sub> : Other: 10.9 9 for triplet in $(n,n'\gamma)$ . Other: <400 for doublet in <sup>186</sup> Ta $\beta^-$ decay.                                                                                                                                                              |
|                        |               | 633.70 <sup>#</sup> 2                                           | 61 <sup>#</sup> 7                                                   | 396.551 4+                                                                 | 0                     |              |              | $E_{\gamma}$ : Other: 635.0 5 in $\beta^-$ decay.                                                                                                                                                                                                                                                                                                               |
|                        |               | 907.58 <sup>#</sup> 2                                           | 100 <sup>#</sup> 9                                                  | 122.632 2+                                                                 | (M1+E2) <sup>g</sup>  | +7.1 3       | 0.00562      |                                                                                                                                                                                                                                                                                                                                                                 |
|                        |               | 1030.23 <sup>#</sup> 2                                          | 85 <sup>#</sup> 7                                                   | 0.0 0 <sup>+</sup>                                                         | E2                    |              | 0.00425      | $\alpha(K)=0.00349 5; \alpha(L)=0.000582 9; \alpha(M)=0.0001333 19$<br>$\alpha(N)=3.20\times10^{-5} 5; \alpha(O)=5.11\times10^{-6} 8; \alpha(P)=3.24\times10^{-7} 5$<br>Absent in $\beta^-$ decay                                                                                                                                                               |
| 1045.401               | 3-            | 92.7 3                                                          | 14.5 26                                                             | 952.745 (2)-                                                               | M1+E2                 | 1.3 5        | 5.52 18      | $\alpha(K)=2.4 \ 10; \ \alpha(L)=2.3 \ 6; \ \alpha(M)=0.58 \ 16 \ \alpha(N)=0.14 \ 4; \ \alpha(O)=0.019 \ 5; \ \alpha(P)=0.00024 \ 10 \ Mult.\delta; \ from Coulomb excitation.$                                                                                                                                                                                |
|                        |               | 183.08 <sup>#</sup> 2                                           | 31 5                                                                | 862.286 3+                                                                 | E1                    |              | 0.0785       | $\alpha(K)=0.0650 \ 9; \ \alpha(L)=0.01045 \ 15; \ \alpha(M)=0.00237 \ 4$<br>$\alpha(N)=0.000564 \ 8; \ \alpha(O)=8.79\times10^{-5} \ 13; \ \alpha(P)=5.04\times10^{-6} \ 7$<br>$I_{\gamma}: \ Other: \ 48 \ 3 \ in \ (n,n'\gamma).$<br>Mult.: from Coulomb excitation.<br>$\delta(D+Q)=+0.02 \ 2 \ from \ (n,n'\gamma).$                                       |
|                        |               | 307.51# 6                                                       | 100 5                                                               | 737.960 2+                                                                 | E1                    |              | 0.0216       | $\alpha(K)=0.0180 \ 3; \ \alpha(L)=0.00276 \ 4; \ \alpha(M)=0.000626 \ 9$<br>$\alpha(N)=0.0001494 \ 21; \ \alpha(O)=2.37\times10^{-5} \ 4; \ \alpha(P)=1.482\times10^{-6}$<br>21<br>Mult : from Coulomb excitation                                                                                                                                              |
|                        |               | 649.5 5                                                         | ≈0.3                                                                | 396.551 4+                                                                 |                       |              |              | $\delta(D+Q)=+0.02 \ 3 \ \text{from } (n,n'\gamma).$<br>$I_{\gamma}$ : other: 100 <i>15</i> in $(n,n'\gamma).$<br>$E_{\gamma}$ : A comparable and more precise 650.25 <i>11</i> $\gamma$ unplaced<br>in $(n,n'\gamma)$ . If considered, yields significant difference of<br>the $\chi^2$ compared to that of the $\chi^2$ critical in the least<br>squares fit. |

7

 $^{186}_{74}\mathrm{W}_{112}\text{-}7$ 

|                        |                                         |                                                                          |                                                                  | A                                                                            | dopted Leve        | els, Gamma | s (continued) |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|------------------------|-----------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------|------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        | $\gamma$ <sup>(186</sup> W) (continued) |                                                                          |                                                                  |                                                                              |                    |            |               |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                    | ${\rm E}_{\gamma}^{\dagger}$                                             | $I_{\gamma}^{\dagger}$                                           | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                                     | Mult. <sup>f</sup> | $\delta^f$ | $\alpha^{h}$  | Comments                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 1045.401               | 3-                                      | 922.77 <sup>#</sup> 2<br>(1045)                                          | 12.5 <sup>#</sup> 13                                             | $\begin{array}{c} 122.632 \\ 0.0 \\ 0^+ \end{array}$                         | [E3]               |            |               | I <sub>γ</sub> : other: 11.9 26 ( <sup>186</sup> Ta $β^-$ decay).<br>Mult.: 1045 level directly populated by E3 Coulomb excitation.                                                                                                                                                                                                                                    |  |  |  |  |
| 1171.63                | (4) <sup>-</sup>                        | 126.31 <sup>#</sup> 20<br>164.77 <sup>#</sup> 7<br>218.93 <sup>#</sup> 6 | 8.3 <sup>#</sup> 12<br>15.9 <sup>#</sup> 12<br>41 <sup>#</sup> 3 | $1045.401 \ 3^{-}$<br>$1006.734 \ 4^{+}$<br>$952.745 \ (2)^{-}$              | 0                  |            |               |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 1197.30                | 5+                                      | $309.38^{\#} 8$<br>$190.6^{b} 3$                                         | $100^{\#} 4$<br>< $1^{b}$                                        | 862.286 3 <sup>+</sup><br>1006.734 4 <sup>+</sup>                            | Q<br>D(+Q)         | +0.02 2    |               |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                        |                                         | 335.04 <sup>#</sup> 5<br>388.17 <sup>#</sup> 13                          | 22.7 <sup>#</sup> 17<br>6.7 <sup>#</sup> 7                       | 862.286 3 <sup>+</sup><br>809.26 6 <sup>+</sup>                              | Q                  |            |               |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 1279.19                | (1,2,3)                                 | 800.74 <sup>#</sup> 2<br>327.2 5<br>541.4 5                              | 100 <sup>#</sup> 10<br>100 33<br>≈33                             | 396.551 4 <sup>+</sup><br>952.745 (2) <sup>-</sup><br>737.960 2 <sup>+</sup> | D+Q                | -8.0 8     |               | Absent in $(n,n'\gamma)$ .<br>Absent in $(n,n'\gamma)$ .                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 1285.419               | 2+                                      | 401.56 <sup>#</sup> <i>17</i><br>547.41 <sup>#</sup> <i>3</i>            | 5.8 <sup>#</sup> 8<br>40 <sup>#</sup> 3                          | 883.597 (0 <sup>+</sup> )<br>737.960 2 <sup>+</sup>                          | [E2]<br>D+Q        |            |               | B(E2)(W.u.)=5.2 +10-9<br>E <sub><math>\gamma</math></sub> : Other: 546.3 5 in $\beta^-$ decay.                                                                                                                                                                                                                                                                         |  |  |  |  |
|                        |                                         |                                                                          |                                                                  |                                                                              |                    |            |               | I <sub>γ</sub> : Other: <24 in Coulomb excitation; ≈200 for poorly<br>established 546.3γ in <sup>186</sup> Ta β <sup>-</sup> decay (if the total I(547γ)<br>is placed from this level).                                                                                                                                                                                |  |  |  |  |
|                        |                                         | 1162.81 <sup>#</sup> 2                                                   | 95 <sup>#</sup> 9                                                | 122.632 2+                                                                   | M1+E2 <sup>g</sup> | +6 1       | 0.00344 7     | B(M1)(W.u.)= $3.7 \times 10^{-5} + 29 - 15$ ; B(E2)(W.u.)= $0.40 + 10 - 8$<br>$\alpha$ (K)= $0.00284$ 6; $\alpha$ (L)= $0.000457$ 8; $\alpha$ (M)= $0.0001042$ 18<br>$\alpha$ (N)= $2.50 \times 10^{-5}$ 5; $\alpha$ (O)= $4.02 \times 10^{-6}$ 7; $\alpha$ (P)= $2.64 \times 10^{-7}$ 5;<br>$\alpha$ (IPF)= $1.88 \times 10^{-6}$ 3<br>Mult : from Coulomb excitation |  |  |  |  |
|                        |                                         |                                                                          |                                                                  |                                                                              |                    |            |               | $\delta$ : +13 +70-6 in Coulomb excitation, -0.25 5 or +6 1 in (n,n' $\gamma$ ).<br>Other Ly: 96 20 or 128 10 in Coulomb excitation                                                                                                                                                                                                                                    |  |  |  |  |
|                        |                                         | 1285.40 <sup>#</sup> 5                                                   | 100 <sup>#</sup> 10                                              | 0.0 0+                                                                       | E2                 |            | 0.00277       | B(E2)(W.u.)=0.26 +6-5<br>$\alpha$ (K)=0.00229 4; $\alpha$ (L)=0.000361 5; $\alpha$ (M)=8.21×10 <sup>-5</sup> 12<br>$\alpha$ (N)=1.97×10 <sup>-5</sup> 3; $\alpha$ (O)=3.18×10 <sup>-6</sup> 5; $\alpha$ (P)=2.12×10 <sup>-7</sup> 3;<br>$\alpha$ (IPF)=1.520×10 <sup>-5</sup> 22                                                                                       |  |  |  |  |
| 1298.93                | 4+                                      | 268.5 <sup>b</sup> 4                                                     | 72 <mark>b</mark> 3                                              | 1030.234 2+                                                                  |                    |            |               |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                        |                                         | 292.2 <sup>b</sup> 6                                                     | 7.1 <sup>b</sup> 6                                               | 1006.734 4+                                                                  |                    |            |               | $E_{\gamma}$ , $I_{\gamma}$ : Other: 292.97 and <44, respectively (n, n' $\gamma$ ).                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                        |                                         | 902.40 <sup>#</sup> 3                                                    | 51 <sup>#</sup> 5                                                | 396.551 4+                                                                   | D+Q <mark>8</mark> | +1.7 2     |               |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                        |                                         | 1176.27# 3                                                               | 100 <sup>#</sup> 10                                              | 122.632 2+                                                                   | E2                 |            | 0.00327       | $\begin{aligned} &\alpha(\text{K}) = 0.00271 \ 4; \ \alpha(\text{L}) = 0.000435 \ 6; \ \alpha(\text{M}) = 9.93 \times 10^{-5} \ 14 \\ &\alpha(\text{N}) = 2.38 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.83 \times 10^{-6} \ 6; \ \alpha(\text{P}) = 2.51 \times 10^{-7} \ 4; \\ &\alpha(\text{IPF}) = 2.66 \times 10^{-6} \ 4 \end{aligned}$                         |  |  |  |  |
| 1322.137               | 5-                                      | 150.5 <sup>b</sup> 3                                                     | 9.9 <mark>b</mark> 4                                             | 1171.63 (4)-                                                                 |                    |            |               | $E_{\gamma}$ : Other: 150 ( <sup>238</sup> U, <sup>238</sup> U' $\gamma$ ), absent in (n,n' $\gamma$ ).                                                                                                                                                                                                                                                                |  |  |  |  |
|                        |                                         | 276.72 <sup>#</sup> 2                                                    | 100 <sup>#</sup> 6                                               | 1045.401 3-                                                                  | Q                  |            |               |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

 $\infty$ 

From ENSDF

L

|                        |                      |                                  |                        |                         | Adopte                | d Levels,          | Gammas (     | (continued)  |                                                                                                                                                                                                                                                                      |
|------------------------|----------------------|----------------------------------|------------------------|-------------------------|-----------------------|--------------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                                  |                        |                         |                       | $\gamma(^{186}W)$  | (continue    | d)           |                                                                                                                                                                                                                                                                      |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$           | $I_{\gamma}^{\dagger}$ | $E_f$                   | $\mathbf{J}_f^{\pi}$  | Mult. <sup>f</sup> | $\delta^{f}$ | $\alpha^{h}$ | Comments                                                                                                                                                                                                                                                             |
| 1322.137               | 5-                   | 315.44 <sup>#</sup> 3            | 50 <sup>#</sup> 4      | 1006.734 4              | +                     | D(+Q)              | -0.1 3       | 0.190 16     | $\alpha(K)=0.158 \ 15; \ \alpha(L)=0.0248 \ 10; \ \alpha(M)=0.00564 \ 19 \ \alpha(N)=0.00136 \ 5; \ \alpha(O)=0.000222 \ 10; \ \alpha(P)=1.58\times10^{-5} \ 15$                                                                                                     |
| 1322.41                | (2+)                 | 315.6 2                          | 100 17                 | 1006.734 4              | <b>!</b> +            | [E2]               |              | 0.0731       | $\alpha(K) = 0.0499 \ 7; \ \alpha(L) = 0.0177 \ 3; \ \alpha(M) = 0.00431 \ 7 \ \alpha(N) = 0.001025 \ 15; \ \alpha(O) = 0.0001496 \ 22; \ \alpha(P) = 4.32 \times 10^{-6} \ 6 \ I_{\gamma}; see comment on 315.44\gamma from 1322.1 level.$                          |
|                        |                      | 440.0 <sup>&amp;</sup> 10        | 53 10                  | 883.597 (               | 0+)                   |                    |              |              | -,                                                                                                                                                                                                                                                                   |
|                        |                      | 460.0 <sup>j</sup> 5             | ≈17                    | 862.286 3               | ;+                    |                    |              |              | Absent in $(n,n'\gamma)$ .                                                                                                                                                                                                                                           |
|                        |                      | 1199.5 <mark>&amp;</mark> 10     | ≈17                    | 122.632 2               | 2+                    |                    |              |              |                                                                                                                                                                                                                                                                      |
|                        | - 1                  | 1322.0 15                        | ≈20                    | 0.0 0                   | ) <sup>+</sup>        |                    |              |              | Absent in $(n,n'\gamma)$ .                                                                                                                                                                                                                                           |
| 1349.0                 | 8+                   | 540.0 <sup><i>a</i></sup>        | 100                    | 809.26 6                | )+                    | E2                 |              | 0.01738      | B(E2)(W.u.)=178 +13-12<br>$\alpha$ (K)=0.01344 19; $\alpha$ (L)=0.00302 5; $\alpha$ (M)=0.000713 10<br>$\alpha$ (N)=0.0001703 24; $\alpha$ (O)=2.61×10 <sup>-5</sup> 4; $\alpha$ (P)=1.234×10 <sup>-6</sup><br>18<br>Mult.: From Coulomb excitation.                 |
| 1398.08                | 6+                   | 200.7 <sup>b</sup> 3             | 5.2 <sup>b</sup> 2     | 1197.30 5               | ;+                    |                    |              |              |                                                                                                                                                                                                                                                                      |
|                        |                      | 391.46 <sup>#</sup> 5            | 100 <sup>#</sup> 8     | 1006.734 4              | +                     | Q                  |              |              |                                                                                                                                                                                                                                                                      |
|                        |                      | 588.70 <sup>#</sup> 5            | 54 <sup>#</sup> 9      | 809.26 6                | <b>5</b> <sup>+</sup> |                    |              |              |                                                                                                                                                                                                                                                                      |
|                        |                      | 1001.55 <sup>#</sup> 6           | 45 <sup>#</sup> 4      | 396.551 4               | Ļ+                    | Q                  |              |              |                                                                                                                                                                                                                                                                      |
| 1453.449?              |                      | 423.16 <sup>#</sup> <i>j</i> 9   | 11.5 <sup>#</sup> 10   | 1030.234 2              | 2+                    |                    |              |              |                                                                                                                                                                                                                                                                      |
|                        |                      | 591.18 <sup>#</sup> <i>j</i> 3   | 31 <sup>#</sup> 3      | 862.286 3               | 5+                    |                    |              |              |                                                                                                                                                                                                                                                                      |
|                        |                      | 715.45 <sup>#</sup> <i>j</i> 3   | 100 <sup>#</sup> 9     | 737.960 2               | 2+                    |                    |              |              |                                                                                                                                                                                                                                                                      |
|                        |                      | 1330.84 <sup>#</sup> <i>J</i> 3  | 43 <sup>#</sup> 5      | 122.632 2               | 2+                    |                    |              |              |                                                                                                                                                                                                                                                                      |
| 1458.38?               |                      | 720.42 <sup>#</sup> <i>J</i> 9   | 11.9 <sup>#</sup> 16   | 737.960 2               | +                     |                    |              |              |                                                                                                                                                                                                                                                                      |
| 1.462.42               | (2+ 2+)              | 1335.74 <sup>#</sup> <i>J</i> 3  | 100 <sup>#</sup> 11    | 122.632 2               | +                     |                    |              | 051          |                                                                                                                                                                                                                                                                      |
| 1463.42                | (21,31)              | 184.2 <i>3</i><br>417.7 <i>2</i> | 1.37<br>33 <i>3</i>    | 1279.19 (<br>1045.401 3 | 1,2,3)<br>;-          | [D,E2]             |              | 0.5 4        | Absent in $(n,n'\gamma)$ .<br>$\gamma$ in $(n,n'\gamma)$ with similar $E\gamma$ (but inappropriate<br>multipolarity for this placement) is placed from 1463.8<br>level.                                                                                              |
|                        |                      | 448.0 11                         | 1.3 7                  | 1014.97 (2              | $2^+, 3, 4^+)$        |                    |              |              | Absent in $(n,n'\gamma)$ .                                                                                                                                                                                                                                           |
|                        |                      | 457.0 11                         | 5.7 7                  | 1006.734 4              | ↓+                    | (171)              |              | 0.00(70      | $\gamma$ in $(n,n'\gamma)$ with similar energy is placed from 1628 level.                                                                                                                                                                                            |
|                        |                      | 510.6 5                          | 100 /                  | 952.745 (2              | 2)                    | (EI)               |              | 0.00679      | $\alpha(K)=0.005/0.8; \alpha(L)=0.000843.12; \alpha(M)=0.000190.3$<br>$\alpha(N)=4.55\times10^{-5}.7; \alpha(O)=7.32\times10^{-6}.11; \alpha(P)=4.88\times10^{-7}.7$<br>Mult.: from $\alpha(K)$ exp in <sup>186</sup> Ta $\beta^-$ decay.<br>Absent in $(n, n'\chi)$ |
|                        |                      | 601.0 5                          | 1.3 7                  | 862.286 3               | +                     |                    |              |              | Absent in $(n,n'\gamma)$ .                                                                                                                                                                                                                                           |
|                        |                      | 726.0 5                          | 2.7 <sup>d</sup> 7     | 737.960 2               | +                     |                    |              |              | Absent in $(n,n'\gamma)$ .                                                                                                                                                                                                                                           |

9

I

|                        |                                                   |                                                          |                                            |                                      | Adop                       | ted Levels,                 | Gammas       | (continued)               |                                                                                                                                                                                                                                                                         |
|------------------------|---------------------------------------------------|----------------------------------------------------------|--------------------------------------------|--------------------------------------|----------------------------|-----------------------------|--------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                   |                                                          |                                            |                                      |                            | $\gamma$ ( <sup>186</sup> W | ) (continue  | d)                        |                                                                                                                                                                                                                                                                         |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                              | $E_{\gamma}^{\dagger}$                                   | $I_{\gamma}^{\dagger}$                     | E <sub>f</sub>                       | $J_f^\pi$                  | Mult.f                      | $\delta^{f}$ | $\alpha^{\boldsymbol{h}}$ | Comments                                                                                                                                                                                                                                                                |
| 1463.77                | (2 <sup>-</sup> ,3 <sup>-</sup> ,4 <sup>-</sup> ) | 292.97 <sup>i#</sup><br>418.37 <sup>#</sup> 2            | <35 <sup>#</sup><br>100 <sup>#</sup> 7     | 1171.63 (4<br>1045.401 3             | 4) <sup>-</sup>            | (M1+E2)                     | -4.7 3       | 0.0357 6                  | α(K)=0.0267 5; α(L)=0.00688 10; α(M)=0.001643 24 α(N)=0.000391 6; α(O)=5.90×10-5 9; α(P)=2.43×10-6 5 Mult.: D+Q from γ(θ) in (n,n'γ); δ implausibly large for Δπ=yes.                                                                                                   |
| 1514.64                | (6) <sup>-</sup>                                  | 192.5 <sup>b</sup> 3<br>343.0 <sup>b</sup> 4             | <5 <sup>b</sup><br>100 <sup>b</sup>        | 1322.137 5<br>1171.63 (4             | -<br>4) <sup>-</sup>       |                             |              |                           |                                                                                                                                                                                                                                                                         |
| 1517.2                 | (7 <sup>-</sup> )                                 | 119 <sup>‡</sup>                                         |                                            | 1398.08 6                            | +                          |                             |              |                           |                                                                                                                                                                                                                                                                         |
|                        |                                                   | 195 <sup>‡</sup>                                         | е                                          | 1322.137 5                           | -                          | [E2]                        |              | 0.336                     | $\alpha$ (K)=0.181 3; $\alpha$ (L)=0.1178 17; $\alpha$ (M)=0.0293 5<br>$\alpha$ (N)=0.00694 10; $\alpha$ (O)=0.000977 14; $\alpha$ (P)=1.423×10 <sup>-5</sup> 20<br>E <sub><math>\gamma</math></sub> : possibly the unplaced 195.36 5 transition of (n,n' $\gamma$ ).   |
|                        |                                                   | 708 <sup>‡</sup>                                         |                                            | 809.26 6                             | +                          |                             |              |                           | $E_{\gamma}$ : possibly the unplaced 708.67 8 transition of $(n,n'\gamma)$ ;                                                                                                                                                                                            |
| 1521.32                | (4 <sup>+</sup> )                                 | 488.0 15                                                 |                                            | 1030.234 2                           | +                          |                             |              |                           | $I(709\gamma)$ : $I(195\gamma)$ =0.25 8:1.00 10 in (n,n' $\gamma$ ).<br>E <sub><math>\gamma</math></sub> : Placed by 1973Gu02 from 1520 level. A comparable 486.93 4 $\gamma$ in (n,n' $\gamma$ ) is placed from a 1532 level.                                          |
|                        |                                                   | 567.2 3                                                  |                                            | 952.745 (ź                           | 2)-                        |                             |              |                           | $E_{\gamma}$ : Placement from 1973Gu02 ( <sup>186</sup> Ta β- decay). A comparable and more precise 567.10 2 γ is unplaced in (n,n'γ). If considered, yields significant difference of the $\chi^2$ compared to that of the $\chi^2$ critical in the least squares fit. |
|                        |                                                   | 659.05 <sup>#</sup> 5                                    | 44 <sup><b>#</b></sup> 4                   | 862.286 3                            | +                          |                             |              |                           |                                                                                                                                                                                                                                                                         |
|                        |                                                   | 783.34 <sup>#</sup> 3                                    | 100 <sup>#</sup> 13                        | 737.960 2                            | +                          | Q                           |              |                           |                                                                                                                                                                                                                                                                         |
|                        |                                                   | 1124.53 <sup>#</sup> 16                                  | 17.9 <sup>#</sup> 18                       | 396.551 4                            | +                          |                             |              |                           |                                                                                                                                                                                                                                                                         |
|                        |                                                   | 1399.26 <sup>#</sup> 13                                  | ≈0.8                                       | 122.632 2                            | +                          |                             |              |                           | $E_{\gamma}$ : Other: 1398 <i>l</i> and placement from 1973Gu02 ( <sup>186</sup> Ta<br>β- decay). Unplaced in (n,n'γ).                                                                                                                                                  |
| 1532.32                | $2^{(+)}, 3^{(+)}$                                | 486.93 <sup>#</sup> 4                                    | 33 <sup>#</sup> 3                          | 1045.401 3                           | -                          | D(+Q)                       | +0.04 6      |                           |                                                                                                                                                                                                                                                                         |
|                        |                                                   | 579.57 <sup>#</sup> 2                                    | 100 <sup>#</sup> 10                        | 952.745 (2                           | 2)-                        | D(+Q)                       | +0.01 2      |                           |                                                                                                                                                                                                                                                                         |
|                        |                                                   | 1409.71 <sup>#</sup> 4                                   | 68 <sup>#</sup> 6                          | 122.632 2                            | ,+<br>,                    | (M1+E2)                     | +8.5 8       | 0.00238                   | α(K)=0.00195 3; α(L)=0.000301 5; α(M)=6.83×10-5 10 α(N)=1.641×10-5 24; α(O)=2.65×10-6 4; α(P)=1.81×10-7 3; α(IPF)=4.22×10-5 6 Mult.: D+Q from γ(θ) in (n,n'γ); δ implausibly large for Δπ=ves.                                                                          |
| 1563.37                | 1                                                 | 1440.75 <sup>#</sup> 3                                   | 100 <sup>#</sup> 9                         | 122.632 2                            | +                          | D+O                         |              |                           | $\delta$ : +0.05 4 or -4.1 6 from (n.n' $\gamma$ ).                                                                                                                                                                                                                     |
| /                      |                                                   | 1563.34 <sup>#</sup> 4                                   | 69 <sup>#</sup> 7                          | 0.0 0                                | +                          | D                           |              |                           |                                                                                                                                                                                                                                                                         |
| 1607.52                | $(2^+, 3, 4^+)$                                   | 561.96 <sup>#</sup> 13                                   | 13.4 <sup>#</sup> 21                       | 1045.401 3                           | -                          |                             |              |                           |                                                                                                                                                                                                                                                                         |
|                        |                                                   | 1210.98 <sup>#</sup> 4                                   | 100 <sup>#</sup> 9                         | 396.551 4                            | +                          | Q(+D)                       |              |                           | $\delta = +0.105$ or $1/\delta = -0.015$ from $(n, n'\gamma)$ .                                                                                                                                                                                                         |
| 1608.07                | (2+,3)                                            | 1484.62 <sup>#</sup><br>309.2 <i>1</i><br>654.9 <i>5</i> | <65 <sup>#</sup><br>100 <i>11</i><br>67 22 | 122.632 2<br>1298.93 4<br>952.745 (2 | (+<br>+<br>2) <sup>-</sup> | /                           |              |                           | $E_{\gamma}, I_{\gamma}$ : for multiplet in $(n, n'\gamma)$ .                                                                                                                                                                                                           |

10

From ENSDF

 $^{186}_{74}\mathrm{W}_{112}\text{--}10$ 

 $^{186}_{74}\mathrm{W}_{112}$ -10

L

|                        | Adopted Levels, Gammas (continued) |                                                                                                                   |                                                                |                                                                                                      |                      |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
|------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|-------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        |                                    |                                                                                                                   |                                                                |                                                                                                      |                      | $\gamma$ ( <sup>186</sup> W) (c | continued)                    |                           |                                                                                                                                                                                                                                                          |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                 | $E_{\gamma}^{\dagger}$                                                                                            | $I_{\gamma}^{\dagger}$                                         | $E_f$                                                                                                | $\mathbf{J}_f^{\pi}$ | Mult. <sup>f</sup>              | $\delta f$                    | $\alpha^{\boldsymbol{h}}$ | Comments                                                                                                                                                                                                                                                 |  |  |  |
| 1608.07                | (2+,3)                             | 745.0 <i>10</i><br>869.5 <i>5</i><br>1210.0 <sup><i>c</i></sup> <i>15</i><br>1485.0 <sup><i>c</i></sup> <i>15</i> | $\approx 11 \\ \approx 11 \\ \approx 11^{c} \\ \approx 11^{c}$ | 862.286 3 <sup>+</sup><br>737.960 2 <sup>+</sup><br>396.551 4 <sup>+</sup><br>122.632 2 <sup>+</sup> | -<br>-<br>-          |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
| 1628.27                | (3 <sup>-</sup> ,5 <sup>-</sup> )  | 456.63 <sup>#</sup> 4                                                                                             | 100 <sup>#</sup> 9                                             | 1171.63 (4)                                                                                          | )-                   | (M1+E2)                         | -8 1                          | 0.0271 5                  | α(K)=0.0205 4; α(L)=0.00510 8; α(M)=0.001213 18 α(N)=0.000289 5; α(O)=4.38×10-5 7; α(P)=1.86×10-6 4 Mult.: D+Q from γ(θ) in (n,n'γ); δ implausibly large for E1+M2.                                                                                      |  |  |  |
|                        |                                    | 582.84 <sup>#</sup> 6                                                                                             | 76 <sup>#</sup> 7                                              | 1045.401 3-                                                                                          |                      | Q                               |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
|                        |                                    | 621.71 <sup>#</sup> 10                                                                                            | 43 <sup>#</sup> 4                                              | 1006.734 4+                                                                                          |                      |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
| 1628.40                | $(2^+, 3, 4^+)$                    | 583.2 2                                                                                                           | 100 14                                                         | 1045.401 3-                                                                                          | -                    |                                 |                               |                           | Line with similar E $\gamma$ is placed from 1628.3 level in                                                                                                                                                                                              |  |  |  |
|                        |                                    | 596.5 <i>5</i><br>622.0 <i>5</i>                                                                                  | ≈23                                                            | $1030.234 \ 2^+ \ 1006.734 \ 4^+$                                                                    |                      |                                 |                               |                           | Absent in $(n,n'\gamma)$ .<br>Line with similar E $\gamma$ is placed from 1628.3 level in                                                                                                                                                                |  |  |  |
|                        |                                    | 1001 0 15                                                                                                         | 14                                                             | 206 551 4+                                                                                           |                      |                                 |                               |                           | $(n,n'\gamma).$                                                                                                                                                                                                                                          |  |  |  |
|                        |                                    | $1231.0 \ 15$                                                                                                     | ≈14                                                            | 396.551 4                                                                                            |                      |                                 |                               |                           | Absent in $(n, n' \gamma)$ .                                                                                                                                                                                                                             |  |  |  |
| 1612 16                | (2, 4)                             | $1507.0^{\circ}$ 15                                                                                               | 100# 14                                                        | 122.032 2*                                                                                           |                      |                                 | 10.25.2                       |                           | Absent in $(n, n \gamma)$ .                                                                                                                                                                                                                              |  |  |  |
| 1042.40                | (3,4)                              | $1245.02^{\#}5$                                                                                                   | $06^{\#}0$                                                     | $3965514^+$                                                                                          |                      | D+Q<br>D+O                      | $\pm 0.23$ 2<br>$\pm 0.40$ 10 |                           |                                                                                                                                                                                                                                                          |  |  |  |
|                        |                                    | 12+3.92 = 3<br>1520.2 <sup>#</sup> 2                                                                              | $21^{\#}$                                                      | 122 632 2+                                                                                           |                      | D⊤Q                             | +0.+0 10                      |                           |                                                                                                                                                                                                                                                          |  |  |  |
| 1652 76                | 7+                                 | $254.6^{b}.3$                                                                                                     | $<1^{b}$                                                       | 1398.08 6+                                                                                           |                      |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
| 1052.70                | ,                                  | $455.6^{b}.4$                                                                                                     | 100 <sup>b</sup>                                               | 1197 30 5 <sup>+</sup>                                                                               |                      | $O^{b}$                         |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
|                        |                                    | 843.4 <sup>b</sup> 4                                                                                              | $49.4^{b}23$                                                   | 809.26 6+                                                                                            |                      | $D^{b}$                         |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
| 1661.39                | (2 <sup>-</sup> ,3 <sup>-</sup> )  | 197.9 <i>1</i>                                                                                                    | 100                                                            | 1463.42 (2*                                                                                          | +,3+)                | E1                              |                               | 0.0643                    | B(E1)(W.u.)=4.71×10 <sup>-6</sup> +20-19<br>α(K)=0.0533 8; α(L)=0.00851 12; α(M)=0.00193 3<br>α(N)=0.000460 7; α(O)=7.18×10 <sup>-5</sup> 11;<br>α(P)=4.18×10 <sup>-6</sup> 6<br>Mult.: from α(K)exp, α(L)exp in <sup>186</sup> Ta β <sup>-</sup> decay. |  |  |  |
|                        |                                    | 338.5 <i>10</i><br>383 2 5                                                                                        | 1.0 5                                                          | $1322.41 (2^{+})$                                                                                    | +)<br>23)            |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
|                        |                                    | 646.6 <i>10</i>                                                                                                   | ≈0.3                                                           | 1279.19 (1, 1014.97 (2)                                                                              | $^{+},3,4^{+})$      |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
|                        |                                    | 709.0 <i>10</i><br>799.8 <i>5</i>                                                                                 | 2.0 <sup>d</sup> 5<br>4.8 5                                    | 952.745 (2)<br>862.286 3 <sup>+</sup>                                                                | )-                   |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
| 1672.4                 | 6+                                 | 373.6 <sup>b</sup> 4                                                                                              | 100 <mark>b</mark>                                             | 1298.93 4+                                                                                           |                      |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
|                        |                                    | 1275.7 <sup>b</sup> 4                                                                                             | 66 <mark>b</mark> 3                                            | 396.551 4+                                                                                           |                      |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |
| 1709.74                | 3                                  | 1313.16 <sup>#</sup> 3                                                                                            | 87 <sup>#</sup> 8                                              | 396.551 4+                                                                                           |                      | D(+Q)                           | -0.02 3                       |                           |                                                                                                                                                                                                                                                          |  |  |  |
|                        |                                    | 1587.15 <sup>#</sup> 4                                                                                            | 100 <sup>#</sup> 10                                            | 122.632 2+                                                                                           |                      | D(+Q)                           | -0.01 2                       |                           |                                                                                                                                                                                                                                                          |  |  |  |
| 1713.5                 | (7 <sup>-</sup> )                  | 391.4 <i>4</i>                                                                                                    | 100                                                            | 1322.137 5-                                                                                          |                      |                                 |                               |                           |                                                                                                                                                                                                                                                          |  |  |  |

From ENSDF

|                        | Adopted Levels, Gammas (continued)      |                                                                                                                |                                                                                            |                                                                |                                                     |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
|------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        | $\gamma$ <sup>(186</sup> W) (continued) |                                                                                                                |                                                                                            |                                                                |                                                     |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                    | $E_{\gamma}^{\dagger}$                                                                                         | $I_{\gamma}^{\dagger}$                                                                     | $E_f$                                                          | $\mathrm{J}_f^\pi$                                  | Mult. <sup>f</sup>               | $\alpha^{h}$ | Comments                                                                                                                                                                                                                                                        |  |  |  |  |
| 1737.5                 | (8-)                                    | 220‡                                                                                                           |                                                                                            | 1517.2                                                         | (7 <sup>-</sup> )                                   |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 1829.4                 | (2+,3,4+)                               | 814.0 <i>5</i><br>823.0 <i>5</i>                                                                               | $\approx 50^{d}$<br>$\approx 50$<br>$\approx 100$                                          | 1014.97<br>1006.734<br>737.060                                 | $(2^+,3,4^+)$<br>4 <sup>+</sup><br>2 <sup>+</sup>   |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 1903.95                | 8+                                      | 251.2 3                                                                                                        | ~100                                                                                       | 1652.76                                                        | 2<br>7+                                             |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
|                        |                                         | 506.1 <i>4</i><br>554.9 <i>4</i><br>1094.5 <i>4</i>                                                            | 100<br>6.6 2<br>5.0 2                                                                      | 1398.08<br>1349.0<br>809.26                                    | 6+<br>8+<br>6+                                      | Q<br>D<br>O                      |              | $E_{\gamma}$ : Other: 509 5 (Coulomb excitation).<br>$E_{\gamma}$ : Other: 559 5 (Coulomb excitation).                                                                                                                                                          |  |  |  |  |
| 1979.0                 | $(8)^{-}$                               | 464.4 4                                                                                                        | 100                                                                                        | 1514.64                                                        | (6) <sup>-</sup>                                    | Č.                               |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2001.9                 | 10+                                     | 653.2 <sup><i>a</i></sup>                                                                                      | 100                                                                                        | 1349.0                                                         | 8+                                                  | E2                               | 0.01113      | B(E2)(W.u.)=152 +18-34<br>$\alpha$ (K)=0.00883 13; $\alpha$ (L)=0.001771 25; $\alpha$ (M)=0.000414 6<br>$\alpha$ (N)=9.90×10 <sup>-5</sup> 14; $\alpha$ (O)=1.539×10 <sup>-5</sup> 22; $\alpha$ (P)=8.17×10 <sup>-7</sup> 12<br>Mult.: from Coulomb excitation. |  |  |  |  |
| 2117.8                 | (9 <sup>-</sup> )                       | 380 <sup>‡</sup><br>601 <sup>‡</sup>                                                                           | е                                                                                          | 1737.5<br>1517.2                                               | (8 <sup>-</sup> )<br>(7 <sup>-</sup> )              |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2142.7                 | 8+                                      | 470.3 <sup>b</sup> 4                                                                                           | 100 <sup>b</sup>                                                                           | 1672.4                                                         | 6+                                                  |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2166.5                 |                                         | 703.0 <i>10</i><br>1213.0 <i>15</i><br>1429 <i>1</i>                                                           | $ \begin{array}{c} \approx 100 \\ \approx 40 \\ \approx 50 \end{array} $                   | 1463.42<br>952.745<br>737.960                                  | $(2^+,3^+)$<br>$(2)^-$<br>$2^+$                     |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2212.0                 | (9 <sup>-</sup> )                       | 498.5 <sup>b</sup> 4                                                                                           | 100 <sup>b</sup>                                                                           | 1713.5                                                         | (7 <sup>-</sup> )                                   | ,                                |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2220.1                 | 9+                                      | 567.3 <sup>b</sup> 4<br>871.2 <sup>b</sup> 4                                                                   | $\frac{100^{b}}{15^{b}} 4$                                                                 | 1652.76<br>1349.0                                              | 7 <sup>+</sup><br>8 <sup>+</sup>                    | Q <sup>D</sup>                   |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2270.5                 |                                         | 442.0 <i>10</i><br>641.6 <i>10</i><br>947.5 <i>10</i><br>1238.0 <i>15</i><br>1319.0 <i>15</i><br>1409 <i>1</i> | $100 \ 19$<br>$\approx 44$<br>$\approx 31$<br>$\approx 25$<br>$\approx 31$<br>$\approx 63$ | 1829.4<br>1628.40<br>1322.41<br>1030.234<br>952.745<br>862.286 | $(2^+,3,4^+) (2^+,3,4^+) (2^+) 2^+ (2)^- 3^+$       |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2285.8                 | (10 <sup>-</sup> )                      | 168 <sup>‡</sup>                                                                                               | L                                                                                          | 2117.8                                                         | (9 <sup>-</sup> )                                   | L                                |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2511.0                 | 10+                                     | $509.1^{b} 4$<br>$607.1^{b} 4$<br>$1161 9^{b} 4$                                                               | $14.1^{b} 18$ $100^{b}$ $<4^{b}$                                                           | 2001.9<br>1903.95<br>1349.0                                    | 10 <sup>+</sup><br>8 <sup>+</sup><br>8 <sup>+</sup> | D <sup>b</sup><br>Q <sup>b</sup> |              | $E_{\gamma}$ : Other: 608 5 (Coulomb excitation).                                                                                                                                                                                                               |  |  |  |  |
| 2522.8                 | $(11^{-})$                              | 237                                                                                                            |                                                                                            | 2285.8                                                         | $(10^{-})$                                          |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2555.8                 | (10)-                                   | 576.8 <sup>b</sup> 4                                                                                           | 100 <sup>b</sup>                                                                           | 1979.0                                                         | (8) <sup>-</sup>                                    |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2556.8                 | 1                                       | 2434 <sup>@</sup><br>2557 <sup>@</sup> 1                                                                       | 37 <sup>@</sup> 9<br>100 <sup>@</sup>                                                      | 122.632<br>0.0                                                 | 2 <sup>+</sup><br>0 <sup>+</sup>                    |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2672.8?                |                                         | 387 <sup>‡</sup> <i>j</i>                                                                                      | 1                                                                                          | 2285.8                                                         | (10 <sup>-</sup> )                                  |                                  |              |                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2707.1<br>2750.4       | 10 <sup>+</sup><br>(12 <sup>+</sup> )   | 564.4 <sup>0</sup> 4<br>748.5 4                                                                                | 100 <sup>0</sup><br>100                                                                    | 2142.7<br>2001.9                                               | 8 <sup>+</sup><br>10 <sup>+</sup>                   | E2                               |              | B(E2)(W.u.)=191 +22-45                                                                                                                                                                                                                                          |  |  |  |  |

 $^{186}_{74}\mathrm{W}_{112}\text{--}12$ 

From ENSDF

 $^{186}_{74}\mathrm{W}_{112}$ -12

## $\gamma(^{186}W)$ (continued)

| $2806.5$ $(11^-)$ $594.5^b 4$ $100^b$ $2212.0$ $(9^-)$ $2837.8$ $(12^-)$ $165^{\ddagger}$ $2672.8?$ $315^{\ddagger}$ $2522.8$ $(11^-)$ $552^{\ddagger}$ $e$ $2285.8$ $2863.8$ 1 $2741^{\textcircled{0}}$ $102^{\textcircled{0}} 22$ $2863.8$ 1 $2741^{\textcircled{0}}$ $102^{\textcircled{0}} 222$ $2864^{\textcircled{0}} 1$ $100^{\textcircled{0}}$ $0.0$ $2887.3$ $11^+$ $667.2^b 4$ $100^b$ $220.1$ $9^+$ $3035.8$ $1$ $2913^{\textcircled{0}}$ $65^{\textcircled{0}} 24$ $22.632$ $2^+$ $3035.8$ $1$ $2913^{\textcircled{0}}$ $65^{\textcircled{0}} 24$ $122.632$ $2^+$ $3056^{\textcircled{0}} 1$ $100^{\textcircled{0}}$ $0.0$ $0^+$ $305.8$ $(1)$ $2945^{\textcircled{0}}$ $100^{\textcircled{0}} 4.3$ $12.632$ $2^+$ $3068^{\textcircled{0}} 1$ $83^{\textcircled{0}}$ $0.0$ $3143.8$ $306^{\ddagger}$ $83^{\textcircled{0}}$ $0.0$ $3188.2$ $12^+$ $677.1^b 4$ $100^b$ $2511.0$ $188.2$ $12^+$ $677.1^b 4$ $100^b$ $2558.8$ $1186.3^b 4$ $<20^b$ $2001.9$ $10^+$ $3237.8$ $(12^-)$ $682.0^b 4$ $100^b$ $2558.8$ $10^ 318^{\textcircled{0}} 1$ $79^{\textcircled{0}}$ $0.0$ $0^+$                                                                                                                                                                                                                                                                                                                                                                               | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$           | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$                     | Comments                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|----------------------------------|------------------------|--------------------------------------------------------|----------------------------------------------------------------------------|
| 2806.5       (11 <sup>-</sup> )       594.5 <sup>b</sup> 4       100 <sup>b</sup> 2212.0       (9 <sup>-</sup> )         2837.8       (12 <sup>-</sup> )       165 <sup>‡</sup> 2672.8 <sup>+</sup> 315 <sup>‡</sup> 2522.8       (11 <sup>-</sup> )         552 <sup>‡</sup> e       2285.8       (10 <sup>-</sup> )         2863.8       1       2741 <sup>@</sup> 102 <sup>@</sup> 22       122.632       2 <sup>+</sup> 2887.3       11 <sup>+</sup> 667.2 <sup>b</sup> 4       100 <sup>b</sup> 220.1       9 <sup>+</sup> 3035.8       1       2913 <sup>@</sup> 65 <sup>@</sup> 24       122.632       2 <sup>+</sup> 3036 <sup>®</sup> 1       100 <sup>@</sup> 0.0       0 <sup>+</sup> 3055.8       (1)       2943 <sup>@</sup> 100 <sup>@</sup> 43       122.632       2 <sup>+</sup> 3066 <sup>®</sup> 1       59 <sup>°</sup> 24       122.632       2 <sup>+</sup> 3056 <sup>®</sup> 1       50 <sup>°</sup> 24       122.632       2 <sup>+</sup> 3055.8       (1)       2943 <sup>@</sup> 100 <sup>@</sup> 43       122.632       2 <sup>+</sup> 3068 <sup>®</sup> 1       83 <sup>@</sup> 0.0       0 <sup>+</sup> 3143.8       306 <sup>‡</sup> 2837.8       (12 <sup>-</sup> )       3171.8       1       3049 <sup>@</sup> 57 <sup>®</sup> 10       122.632       2 <sup>+</sup> 5 <sup>*</sup> |                        |                      |                                  |                        |                                                        | $E_{\gamma}$ : Other: 748.5 (Coulomb excitation).                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2806.5                 | $(11^{-})$           | 504 5 <mark>b</mark> 1           | 100 <mark>b</mark>     | 2212.0 (0 <sup>-</sup> )                               | Mult.: Q in $(10^{\circ} \text{Xe}, 10^{\circ} \text{Xe} \gamma)$ and RUL. |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2800.5                 | $(11^{-})$           | 165                              | 100                    | 2212.0 (9)                                             |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2037.0                 | (12)                 | 315                              |                        | 2572.8. (11 <sup>-</sup> )                             |                                                                            |
| 2863.8       1       2741       102       22       122.632       2 <sup>+</sup> 2864       1       100       0.0       0 <sup>+</sup> 2887.3       11 <sup>+</sup> 667.2 <sup>b</sup> 4       100 <sup>b</sup> 2220.1       9 <sup>+</sup> 3035.8       1       2913       65       24       122.632       2 <sup>+</sup> 3036       1       100       0.0       0 <sup>+</sup> 3055.8       (1)       2933       100       24       122.632       2 <sup>+</sup> 3056.8       (1)       2945       100       43       122.632       2 <sup>+</sup> 3066.7.8       (1)       2945       100       43       122.632       2 <sup>+</sup> 3068       1       83       0.0       0 <sup>+</sup> 306       306       306       306       43       122.632       2 <sup>+</sup> 3171.8       1       3049       57       10       122.632       2 <sup>+</sup> 3172       1       100       0.0       0 <sup>+</sup> 3188.2       12 <sup>+</sup> 677.1 <sup>b</sup> 4       100 <sup>b</sup> 2511.0       10 <sup>+</sup> E <sub>y</sub> : Other: 677 5 (Coul. excitation).         3237.8       (12) <sup>-</sup> 682.0 <sup>b</sup> 4       100 <sup>b</sup>                                                                                                                                                                                                                                                                                                                |                        |                      | 552                              | е                      | 2322.0 (11 <sup>-</sup> )<br>2285.8 (10 <sup>-</sup> ) |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2863.8                 | 1                    | 2741 <sup>@</sup>                | $102^{@} 22$           | $122.632 2^+$                                          |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2005.0                 | 1                    | $2864^{@}$ 1                     | $100^{@}$              | $0.0  0^+$                                             |                                                                            |
| 3035.8       1       2913       65       24       122.632       2 <sup>+</sup> 3035.8       1       2933       100       24       122.632       2 <sup>+</sup> 3055.8       (1)       2933       100       24       122.632       2 <sup>+</sup> 3066       1       54       0.0       0 <sup>+</sup> 3067.8       (1)       2945       100       43       122.632       2 <sup>+</sup> 3068       1       83       0.0       0 <sup>+</sup> 3143.8       306 <sup>‡</sup> 2837.8       (12 <sup>-</sup> )         3171.8       1       3049       57       10       122.632       2 <sup>+</sup> 3188.2       12 <sup>+</sup> 677.1 <sup>b</sup> 4       100 <sup>b</sup> 2511.0       10 <sup>+</sup> E <sub>y</sub> : Other: 677 5 (Coul. excitation).         3237.8       (12) <sup>-</sup> 682.0 <sup>b</sup> 4       100 <sup>b</sup> 2555.8       (10) <sup>-</sup> 3317.8       1       3195       100 <sup>a</sup> 20       122.632       2 <sup>+</sup> 3318       1       79 <sup>a</sup> 0.0       0 <sup>+</sup> 126.52       2 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                | 2887.3                 | 11+                  | 667.2 <sup>b</sup> 4             | 100 <sup>b</sup>       | 2220.1 9 <sup>+</sup>                                  |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3035.8                 | 1                    | 2913 <sup>@</sup>                | 65 <sup>@</sup> 24     | 122.632 2+                                             |                                                                            |
| $3055.8$ (1) $2933^{@}$ $100^{@} 24$ $122.632 2^{+}$ $3066^{@} 1$ $54^{@}$ $0.0 0^{+}$ $3067.8$ (1) $2945^{@} 100^{@} 43$ $122.632 2^{+}$ $3068^{@} 1$ $83^{@}$ $0.0 0^{+}$ $3143.8$ $306^{\ddagger}$ $2837.8 (12^{-})$ $3172^{@} 1$ $100^{@} 0.0 0^{+}$ $3188.2$ $12^{+}$ $677.1^{b} 4$ $100^{b}$ $2511.0 10^{+}$ $1186.3^{b} 4$ $<20^{b}$ $2001.9 10^{+}$ $E_{\gamma}$ : Other: 677 5 (Coul. excitation). $3237.8 (12)^{-}$ $682.0^{b} 4$ $100^{b}$ $2555.8 (10)^{-}$ $3318^{@} 1$ $79^{@}$ $0.0 0^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                      | 3036 <sup>@</sup> 1              | 100 <sup>@</sup>       | $0.0  0^+$                                             |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3055.8                 | (1)                  | 2933 <sup>@</sup>                | 100 <sup>@</sup> 24    | 122.632 2+                                             |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      | 3056 <sup>@</sup> 1              | 54 <sup>@</sup>        | 0.0 0+                                                 |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3067.8                 | (1)                  | 2945 <sup>@</sup>                | 100 <sup>@</sup> 43    | 122.632 2+                                             |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      | 3068 <sup>@</sup> 1              | 83 <sup>@</sup>        | $0.0  0^+$                                             |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3143.8                 |                      | 306 <sup>‡</sup>                 |                        | 2837.8 (12 <sup>-</sup> )                              |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3171.8                 | 1                    | 3049 <sup>@</sup>                | 57 <sup>@</sup> 10     | 122.632 2+                                             |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      | 3172 <sup>@</sup> 1              | 100 <sup>@</sup>       | $0.0  0^+$                                             |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3188.2                 | $12^{+}$             | 677.1 <sup>b</sup> 4             | 100 <sup>b</sup>       | 2511.0 10 <sup>+</sup>                                 | $E_{\gamma}$ : Other: 677 5 (Coul. excitation).                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      | 1186.3 <sup>b</sup> 4            | <20 <sup>b</sup>       | 2001.9 10 <sup>+</sup>                                 |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3237.8                 | $(12)^{-}$           | 682.0 <sup>b</sup> 4             | 100 <sup>b</sup>       | 2555.8 (10) <sup>-</sup>                               |                                                                            |
| $3318^{\textcircled{0}}$ / $79^{\textcircled{0}}$ 0.0 0 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3317.8                 | 1                    | 3195 <sup>@</sup>                | 100 <sup>(a)</sup> 20  | 122.632 2+                                             |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                      | 3318 <sup><sup>(0)</sup> 1</sup> | 79 <sup>@</sup>        | $0.0  0^+$                                             |                                                                            |
| 3362.8 219 <sup>+</sup> 3143.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3362.8                 |                      | 219                              | Ø                      | 3143.8                                                 |                                                                            |
| $3363.8  1 \qquad 3241 \\ \hline 0 \qquad 100 \\ \hline 18 \qquad 122.632  2^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3363.8                 | 1                    | 3241                             | 100 18                 | 122.632 2+                                             |                                                                            |
| $3364 \stackrel{\text{\tiny CM}}{=} 1  60 \stackrel{\text{\tiny CM}}{=} 0.0  0^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                      | 3364 <sup>w</sup> 1              | 60 <sup>w</sup>        | 0.0 0+                                                 |                                                                            |
| $3371.2$ $12^+$ $664.1^0$ 4 $100^0$ $2707.1$ $10^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3371.2                 | 12+                  | 664.1 <sup>0</sup> 4             | 1000                   | 2707.1 10+                                             |                                                                            |
| $3378.8  1  3256^{\circ\circ}  47^{\circ\circ}  8  122.632  2^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3378.8                 | 1                    | 3256 <sup>w</sup>                | 47 <sup>°°</sup> 8     | 122.632 2+                                             |                                                                            |
| $3379 \circ 1  100 \circ 0.0  0^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                      | 3379 1                           | 100                    | $0.0  0^+$                                             |                                                                            |
| $3393.8  1  32/1^{\circ}  55^{\circ}  24  122.632  2'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3393.8                 | 1                    | $52/1^{\circ}$                   | $55^{\circ} 24$        | 122.632 2+                                             |                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3428.0                 | 1                    | 3394 - 1<br>3428 1               | 100 -                  | $0.0 0^{+}$<br>0.0 0^{+}                               | E.: from $(\gamma \gamma')$                                                |
| $3477.0  1 \qquad 3477  I \qquad 0.0  0^+ \qquad E_{\gamma}: \text{ from } (\gamma, \gamma').$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3477.0                 | 1                    | 3477 1                           |                        | $0.0 	0^+$                                             | $E_{\gamma}$ : from $(\gamma, \gamma')$ .                                  |
| $3483.3  (13^{-})  676.8^{b} \ 4  100^{b}  2806.5  (11^{-})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3483.3                 | (13-)                | 676.8 <mark>b</mark> 4           | 100 <mark>b</mark>     | 2806.5 (11 <sup>-</sup> )                              | ·                                                                          |
| 3533.8 390 <sup>‡</sup> 3143.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3533.8                 |                      | 390 <sup>‡</sup>                 |                        | 3143.8                                                 |                                                                            |

13

 $^{186}_{74}\mathrm{W}_{112}\text{--}13$ 

L

#### $\gamma(^{186}W)$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$               | $I_{\gamma}^{\dagger}$ | $E_f$            | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>f</sup> | $\delta^{f}$ | Comments                                                                                                                                              |    |
|------------------------|----------------------|--------------------------------------|------------------------|------------------|------------------------|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3542.8                 | (16+)                | 180 <sup>‡</sup><br>399 <sup>‡</sup> | е                      | 3362.8<br>3143.8 |                        |                    |              |                                                                                                                                                       |    |
| 3561.9                 | (14 <sup>+</sup> )   | 811.5 <sup>b</sup> 4                 | 100 <sup>b</sup>       | 2750.4           | (12+)                  | E2 <sup>b</sup>    |              | B(E2)(W.u.)=139 +18-14<br>E <sub>γ</sub> : Other: 811.5 (Coul. Excitation)<br>Mult.: Q in ( $^{136}$ Xe, $^{136}$ Xe'γ) and RUL.                      | R. |
| 3913.3                 | $14^{+}$             | 725.1 <sup>b</sup> 4                 | 100 <sup>b</sup>       | 3188.2           | $12^{+}$               |                    |              |                                                                                                                                                       |    |
| 6417.3                 | 1-                   | 5678 <sup>@</sup>                    | 5 <sup>@</sup> 3       | 737.960          | $2^{+}$                | E1                 |              | $B(E1)(W.u.)=6.0\times10^{-7}$ 36                                                                                                                     |    |
|                        |                      | 6295 <sup>@</sup>                    | 100 <sup>@</sup> 19    | 122.632          | 2+                     | E1+M2              | -0.095 23    | B(E1)(W.u.)=8.80×10 <sup>-6</sup> 11; B(M2)(W.u.)=0.009 5<br>Mult., $\delta$ : from $\gamma(\theta)$ and linear polarization in $(\gamma, \gamma')$ . |    |
|                        |                      | 6418 <sup>@</sup>                    | 49 <sup>@</sup>        | 0.0              | $0^{+}$                | E1                 |              | B(E1)(W.u.)= $4.1 \times 10^{-6} 5$<br>Mult.: from $\gamma(\theta)$ and linear polarization in $(\gamma, \gamma')$ .                                  |    |

 $^{\dagger}$  From  $^{186}\mathrm{Ta}\,\beta^-$  decay, unless noted otherwise.

<sup>‡</sup> From  $(^{238}\text{U}, ^{238}\text{U'}\gamma)$ ; uncertainty unstated by authors.

<sup>#</sup> From  $(n,n'\gamma)$ .

<sup>@</sup> From  $(\gamma, \gamma')$ .

14

<sup>&</sup> An unplaced  $\gamma$  of similar energy exists in  $(n,n'\gamma)$ , but  $E\gamma$  does not fit this placement.

<sup>*a*</sup> From Coulomb excitation. <sup>*b*</sup> From ( $^{136}$ Xe, $^{136}$ Xe' $\gamma$ ).

<sup>c</sup> The 1210.98 4 and 1484.62 gammas with  $I(1211\gamma)$ : $I(1485\gamma)=0.97$  9:0.57 6 reported in  $(n,n'\gamma)$  are assumed by the evaluators to differ from the 1210.0 15 and 1485.0 15 gammas seen in 186 Ta  $\beta^-$  decay; the 745.0 and 869.5 gammas of comparable strength and the relatively strong 654.9 $\gamma$ , placed from the same level as the 1210 $\gamma$  and 1485 $\gamma$  in decay, are absent in  $(n,n'\gamma)$ .

<sup>d</sup> I $\gamma$  may be overestimated; possible sum- $\gamma$  contribution.

<sup>e</sup> Based on line widths in level scheme drawing (fig. 3 of 1998Wh02), this is the strongest  $\gamma$  deexciting the parent level.

<sup>f</sup> From  $(n,n'\gamma)$ , unless noted otherwise.

<sup>g</sup> For a theoretical estimate of  $\delta$  for this transition, see 1996Na08 and/or 1994Mo07. Note that 1994Mo07 indicate that the 884 $\gamma$  is the [third 2<sup>+</sup>]-level to [first  $2^+$ ]-level transition; however, the 907.6y constitutes that transition, as adopted here and assumed by 1996Na08.

<sup>h</sup> Additional information 1.

<sup>*i*</sup> Multiply placed.

<sup>*j*</sup> Placement of transition in the level scheme is uncertain.

#### Level Scheme

Intensities: Relative photon branching from each level



 $^{186}_{\ 74}\rm{W}_{112}$ 

**Adopted Levels, Gammas** Legend Level Scheme (continued) Intensities: Relative photon branching from each level  $--- \rightarrow \gamma$  Decay (Uncertain) + <sup>564</sup> 10  $10^{+}$ 2707.1 8 ŝ \_2<u>672.8</u> 25-- - -200-10 200-10 200-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 10-10 Г 1(10) 2556.8 2555.8  $(11^{-})$ 2522.8  $10^{+}$ 2511.0 6 4 <u>8 8 8 9 9</u> 6 4 8 8 9 9 9 80,  $(10^{-})$ Ş 2285.8 ¥ -8-2270.5 - 93 - 93 - 1  $\frac{\overline{9^+}}{(9^-)}$ .6 2220.1 2212.0 8 8 -4 -6,-2166.5 8 6-69  $+ 6_{3,2} \Big|_{2,2}$  $\frac{8^+}{(9^-)}$ 1 464 100 1 2142.7 ¥. 2117.8  $\frac{10^{+}}{(8)^{-}}$ 2001.9 0.49 ps +14-5 100-10 55-15 55-17 1979.0 1903.95 8+  $(2^+, 3, 4^+)$ 8 1829.4 -20'E 2  $(8^{-})$ 1737.5 ¥  $(7^{-})$ 1713.5 ¥  $\frac{\frac{6^{+}}{6^{+}}}{\frac{7^{+}}{(2^{+},3,4^{+})}}$ ¥ 1672.4 1652.76 1628.40 (7-) 1517.2 18 µs 1 (6)-¥ 1514.64  $(2^+, 3^+)$ 1463.42  $< 0.1 \ \mathrm{ns}$ 6+ 1398.08 1  $\frac{\frac{8^{+}}{(2^{+})}}{(2^{+})}$ 1.08 ps 7 ÷ 1349.0 1322.41 1322.137 5-1030.234 1014.97  $\frac{2^+}{(2^+,3,4^+)}$  $\frac{(2)}{(2)^{-1}}$ 1006.734 952.745 0.193 ns 15 3+ 862.286 6+ 4.0 ps 3 809.26  $2^{+}$ 737.960 4.78 ps 16 122.632  $2^{+}$ 1.040 ns 10  $0^+$ 0.0 stable

 $^{186}_{74}W_{112}$ 

Legend

#### Level Scheme (continued)

Intensities: Relative photon branching from each level



 $^{186}_{\ 74}W_{112}$ 

#### **Adopted Levels, Gammas** Legend Level Scheme (continued) Intensities: Relative photon branching from each level γ Decay (Uncertain) 1 150.34 Do $+ \frac{1}{1} \frac{1}{99, 1} \frac{1}{90, 1} \frac{1}{9$ ----Ś $\frac{\frac{1}{2^{(+)},3^{(+)}}}{(4^+)}$ 1563.37 <u>1532.32</u> <u>1521.32</u> <u>1517.2</u> Ð න 98 98 8 8 8-5-9 18 µs 1 <u>^</u>-.8 1841 $\frac{\overline{(6)^-}}{(2^-,3^-,4^-)}$ 1514.64 6-2-2-2 $\begin{array}{c} \begin{array}{c} - - - - \gamma_{2}, \gamma_{2}, q_{2} \\ - - - - \gamma_{2}, \gamma_{3}, q_{3} \\ - - - - \gamma_{2}, \gamma_{3}, q_{3} \\ - - - \gamma_{2}, \gamma_{3}, q_{3} \\ - \gamma_{3}, q_{3}, \gamma_{3}, q_{3} \\ - \gamma_{3}, \gamma_{3}, \gamma_{3}, \gamma_{3} \\ - \gamma_{3}, \gamma_{3}, \gamma_{3}, \gamma_{3}, \gamma_{3} \\ - \gamma_{3}, \gamma_{3}, \gamma_{3}, \gamma_{3} \\ - \gamma_{3}, \gamma_{3}, \gamma_{3}, \gamma_{3}, \gamma_{3} \\ - \gamma_{3}, \gamma_{3},$ ~~` 1463.77 30-1463.42 <0.1 ns \_ \_ 1001 cz 1 <u>1458.38</u> <u>1453.449</u> $\bar{6^{+}}$ 1398.08 . 0:055 1349.0 1.08 ps 7 8+ 5-1322.137 (1,2,3) 1279.19 $\frac{5^+}{(4)^-}$ 1197.30 1171.63 ¥ 3-1045.401 $\frac{2^+}{(2^+,3,4^+)}$ 1030.234 \* ¥ 1014.97 $4^{+}$ 1006.734 1 Т 1 (2)-<u>952.745</u> 0.193 ns 15 3+ 862.286 6+ 809.26 4.0 ps 3 1 1 737.960 4.78 ps 16 $2^{+}$ $4^+$ <u>396.551</u> 36.4 ps 25 <u>122.632</u> 1.040 ns *10* $2^{+}$ $0^+$ 0.0 stable

 $^{186}_{\ 74}W_{112}$ 

![](_page_18_Figure_3.jpeg)

 $^{186}_{74}W_{112}$ 

#### Level Scheme (continued)

Intensities: Relative photon branching from each level

![](_page_19_Figure_6.jpeg)

 $^{186}_{~74}\rm{W}_{112}$ 

![](_page_20_Figure_4.jpeg)

 $^{186}_{\ 74}W_{112}$ 

![](_page_21_Figure_4.jpeg)

 $^{186}_{\ 74}\rm{W}_{112}$