¹⁸⁶Ir ε decay (1.90 h) 1975Ya10

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. C. Batchelder and A. M. Hurst, M. S. Basunia	NDS 183, 1 (2022)	1-Mar-2022

Parent: ¹⁸⁶Ir: E=0.0+x; $J^{\pi}=2^{-}$; $T_{1/2}=1.90$ h 5; $Q(\varepsilon)=3828$ 17; $\%\varepsilon+\%\beta^{+}$ decay ≈75.0

¹⁸⁶Ir- $\%\varepsilon + \%\beta^+$ decay: $\%\varepsilon + \beta^+ \approx 75$ based on value for %IT of between 20 and 30 (1991Be25); an uncertainty of 5% has been assumed for the purpose of calculating ε feeding and log *ft* values. This value should be considered a lower limit due to the uncertainty of the %IT value.

Other references: 1990Ed01, 1970FiZZ, 1970ZaZV, 1962Bo22, 1955Sm42. The level scheme is that of 1975Ya10.

¹⁸⁶Os Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	2.0×10 ¹⁵ y 11	T _{1/2} : From Adopted Levels.
137.14 <i>3</i>	2+	868 ps 12	$T_{1/2}$: From Adopted Levels.
434.10 6	4+		-/- *
767.44 6	2+		
910.40 7	3+		
1070.45 7	4+		
1351.88 8	4+		
1480.02 9	(3)-		
1640.75 12			
1653.51 12	$2^+, 3, 4^+$		
1754.45 8	$2^{(+)}$		J=2 from $1754\gamma(\theta,H,T)$ (1990Ed01).
1848.38 9	2+,3		
2919.85 16	$1,2^{+}$		

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

E(decay)†	E(level)	$I\beta^+$ ^{†#}	Iɛ#	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\#}$	Comments
(908 17)	2919.85		1.31 16	6.93 7	1.31 16	εK=0.8026; εL=0.1497 4; εM+=0.04762 15
(1980 17)	1848.38	0.065 9	5.0 6	7.05 6	5.1 5	av Eβ=447 9; εK=0.8048; εL=0.13891 21; εM+=0.04366 7
(2074 17)	1754.45	0.33 4	18.6 20	6.53 6	18.9 <i>16</i>	av Eβ=489 9; εK=0.8013 9; εL=0.13791 23; εM+=0.04332 8
						From $1754\gamma(\theta,H,T)$ (1990Ed01), β transition is $\approx 35\%$ L=0, $\approx 65\%$ L=1 if J=2 for Ir parent.
(2174 17)	1653.51	0.037 6	1.51 21	7.66 7	1.55 21	av E β =533 9; ε K=0.7965 11; ε L=0.1367 3; ε M+=0.04292
(2187 17)	1640.75	0.029 4	1.13 14	7.79 7	1.16 12	av E β =539 9; ε K=0.7958 11; ε L=0.1365 3; ε M+=0.04287
(2348 17)	1480.02	0.23 5	5.9 13	7.14 10	4.6 11	av E β =609 9; ε K=0.7858 15; ε L=0.1343 3; ε M+=0.04213 10
(2476 17)	1351.88	0.010 6	0.7 4	9.47 ¹ <i>u</i> 25	0.7 4	av Eβ=672 9; εK=0.7974; εL=0.14338 21; εM+=0.04537 8
(2758 17)	1070.45	0.058 16	2.1 6	9.17 ¹ <i>u</i> 12	2.0 6	av E <i>β</i> =791 9; <i>ε</i> K=0.7890; <i>ε</i> L=0.14031 24; <i>ε</i> M+=0.04432 8
(2918 17)	910.40	0.75 18	6.0 14	7.32 11	5.8 12	av Eβ=861 9; εK=0.728 3; εL=0.1230 5; εM+=0.03854 16
(3061 17)	767.44	2.2 4	14 <i>3</i>	7.00 9	19 <i>3</i>	av Eβ=924 9; εK=0.708 3; εL=0.1195 6; εM+=0.03741 17
(3394 17)	434.10	0.42 11	5.2 14	9.15 ¹ <i>u</i> 12	6.4 15	av E β =1063 9; ε K=0.7517 16; ε L=0.1313 4; ε M+=0.04135 11

 ε, β^+ radiations

¹⁸⁶Ir ε decay (1.90 h) 1975Ya10 (continued)

ϵ, β^+ radiations (continued)

E(decay)†	E(level)	Ιβ ⁺ †#	Ιε [#]	$\log ft^{\ddagger}$	$\mathrm{I}(\varepsilon + \beta^+)^{\text{\#}}$	Comments
(3691 17)	137.14	≤3.7	≤10	≥7.3	≤14	av Eβ=1206 9; εK=0.605 4; εL=0.1014 7; εM+=0.03170 20

[†] Measured β^+ endpoint energies [intensities] are reported by 1962Bo22 as 3400 *I*, 2600 20, 1930 44, 1300 *I*2, and 800 22 keV. Presumably, the strong 1930 keV branch feeds the 767 and 910 levels, and the 2600 keV group feeds the 137 keV level (expected endpoint energies 2040, 1900 and 2670, respectively). The very weak 3400 keV group implies Q≥4422, cf. adopted Q=3828 (2021Wa16); it is unclear whether this represents an impurity or first forbidden unique g.s. feeding with very large analysis uncertainty.

[±] Calculated assuming negligible excitation energy for ¹⁸⁶Ir parent level (expected E<1.5; see ¹⁸⁶Ir, Adopted Levels), and allowing 5% uncertainty in $\%\epsilon + \%\beta^+$.

[#] Absolute intensity per 100 decays.

¹⁸⁶Ir ε decay (1.90 h) **1975Ya10** (continued)

 $\gamma(^{186}\text{Os})$

I γ normalization: Normalized assuming I(γ +ce)(137+767+1754+2920)=75, i.e. the sum of the transitions to the ground state = 75%. I(ε + β ⁺ to g.s.)=0 is assumed; a transition from 2⁻ to 0⁺ would be a first forbidden unique transition with a logft of >9, with a corresponding branching ratio of <0.3%. In addition the positron measurements of 1962Bo22 suggest very little or no g.s. β ⁺ feeding. The total unplaced I γ is about 21%. I γ normalization would become 0.114 8 if all unplaced gammas with E>2000 were to feed the g.s.

Eγ	I_{γ}^{c}	E_i (level)	\mathbf{J}_i^{π}	E_f J ²	Mult. ^{&}	$\delta^{\&b}$	α^{a}	Comments
137.14 <i>3</i> ×276.59 <i>6</i>	241 [@] 24 6.1 [@] 15	137.14	2+	0.0 0	E2		1.271	%Iγ=52 6 α (K)=0.434 6; α (L)=0.632 9; α (M)=0.1611 23 α (N)=0.0386 6; α (O)=0.00575 8; α (P)=3.96×10 ⁻⁵ 6 %Iγ=0.60 15 Eγ matches that for known 1629 to 1352 transition. coincidence data supports this assignment.
(281.50 [†] 11)	0.17 [†] 6	1351.88	4+	1070.45 4	- (E2)		0.1107	%I γ =0.07 α (K)=0.0695 10; α (L)=0.0312 5; α (M)=0.00775 11 α (N)=0.00187 3; α (O)=0.000289 4; α (P)=6.91×10 ⁻⁶ 10
296.93 5	90 [@] 12	434.10	4+	137.14 2	- E2		0.0942	%I γ =9.4 4 α (K)=0.0606 9; α (L)=0.0255 4; α (M)=0.00631 9 α (N)=0.001522 22; α (O)=0.000236 4; α (P)=6.08×10 ⁻⁶ 9
301.87 20 ^x 329.67 14 ^x 361.55 14 ^x 384.67 7	6.2 [@] 12 2.0 4 4.8 5 9.4 5	1653.51	2+,3,4+	1351.88 4	-			$\%$ I γ =0.59 12 $\%$ I γ =0.19 4 $\%$ I γ =0.46 6 $\%$ I γ =0.89 8
409.60 22	6.5 [@] 6	1480.02	(3)-	1070.45 4	-			%Iy=0.62 7
441.48 11	3.6 [@] 25	1351.88	4+	910.40 3	M1+E2	+13.3 +22-17	0.0315	%I γ =0.35 <i>15</i> α (K)=0.0231 <i>4</i> ; α (L)=0.00642 <i>9</i> ; α (M)=0.001552 <i>22</i> α (N)=0.000376 <i>6</i> ; α (Q)=6.02×10 ⁻⁵ <i>9</i> ; α (P)=2.44×10 ⁻⁶ <i>4</i>
476.26 14	7.3 12	910.40	3+	434.10 4	E2+M1	-22 10	0.0258 5	% $I\gamma=0.71 \ I3$ $\alpha(K)=0.0192 \ 4; \ \alpha(L)=0.00504 \ 8; \ \alpha(M)=0.001212 \ I8$ $\alpha(N)=0.000293 \ 5; \ \alpha(O)=4.73\times10^{-5} \ 7; \ \alpha(P)=2.04\times10^{-6} \ 4$
569.63 12	13.1 [@] 18	1480.02	(3)-	910.40 3	E1		0.00582	%I γ =1.2 2 α (K)=0.00488 7; α (L)=0.000730 11; α (M)=0.0001658 24 α (N)=4.03×10 ⁻⁵ 6; α (O)=6.86×10 ⁻⁶ 10; α (P)=4.81×10 ⁻⁷ 7
584.44 10	10.0 [@] 20	1351.88	4+	767.44 2	E2		0.01568	%I γ =0.97 21 α (K)=0.01211 17; α (L)=0.00274 4; α (M)=0.000650 10 α (N)=0.0001577 22; α (O)=2.58×10 ⁻⁵ 4; α (P)=1.294×10 ⁻⁶ 19
630.32 8	164 [@] 13	767.44	2+	137.14 2	M1+E2	-13.7 +17-23	0.01330	%I γ =15.8 <i>17</i> α (K)=0.01040 <i>15</i> ; α (L)=0.00223 <i>4</i> ; α (M)=0.000528 <i>8</i> α (N)=0.0001280 <i>18</i> ; α (O)=2.11×10 ⁻⁵ <i>3</i> ; α (P)=1.115×10 ⁻⁶ <i>16</i>

 $\boldsymbol{\omega}$

				¹⁸⁶ Ir	ε decay (1	.90 h) 1975Y	a10 (contin	ued)
					<u> </u>	¹⁸⁶ Os) (continue	ed)	
Eγ	$I_{\gamma}{}^{c}$	E_i (level)	\mathbf{J}_i^{π}	$E_f \underline{J}_f^{\pi}$	Mult. ^{&}	δ ^{&b}	α^{a}	Comments
636.32 9	17 [@] 5	1070.45	4+	434.10 4+	M1+E2	+24 +26-8	0.01294	%I γ =1.6 5 α (K)=0.01012 15; α (L)=0.00216 3; α (M)=0.000512 8 α (N)=0.0001242 18; α (O)=2.04×10 ⁻⁵ 3; α (P)=1.084×10 ⁻⁶ 16
x685.13 11	14.4 [@] 12							%I γ =1.37 15 E $_{\gamma}$: Likely feeds 687 keV state based on coincidence data.
^x 687.43 14	12.7 7							$\%1\gamma=1.21$ 11
712.574 10	29 [@] ‡ 10	1480.02	(3)-	767.44 2+	[E1]		0.00370	%I γ =3.3 4 α (K)=0.00311 5; α (L)=0.000458 7; α (M)=0.0001039 15 α (N)=2.52×10 ⁻⁵ 4; α (O)=4.32×10 ⁻⁶ 6; α (P)=3.10×10 ⁻⁷ 5
730.35 <i>17</i> 742.99 <i>14</i>	5.5 [@] 6 6.1 4	1640.75 1653.51	2+,3,4+	910.40 3 ⁺ 910.40 3 ⁺				%Iy=0.52 7 %Iy=0.58 6
767.46 10	193 [@] 16	767.44	2+	0.0 0+	E2		0.00856	%I γ =18.5 21 α (K)=0.00684 10; α (L)=0.001323 19; α (M)=0.000310 5 α (N)=7.53×10 ⁻⁵ 11; α (O)=1.254×10 ⁻⁵ 18; α (P)=7.34×10 ⁻⁷ 11
773.24 10	123 [@] 11	910.40	3+	137.14 2+	M1+E2	-60 +12-20	0.00842	%I γ =11.7 <i>I4</i> α (K)=0.00674 <i>I0</i> ; α (L)=0.001298 <i>I9</i> ; α (M)=0.000304 <i>5</i> α (N)=7.39×10 ⁻⁵ <i>I1</i> ; α (O)=1.231×10 ⁻⁵ <i>I8</i> ; α (P)=7.23×10 ⁻⁷ <i>I1</i>
777.85 22	7.5 6	1848.38	2+,3	1070.45 4+				%Iy=0.71 8
^x 783.20 14	17.9 [@] 16							%Iy=1.7 2
844.08 11	21.6 12	1754.45	$2^{(+)}$	910.40 3+				$\%$ I γ =2.05 19
^x 858.65 17	4.9 4							$\%$ I γ =0.47 5
873.32 14	6.7 5	1640.75	2+ 2 4+	$767.44 \ 2^+$				$\%1\gamma = 0.64$ 7
880.1 3 x024 12 16	4.0 11	1055.51	21,3,41	/0/.44 2				$\%1\gamma = 0.58 \ 11$ $\%1\gamma = 0.63 \ 7$
$924.12\ 10$	$17.0^{@}.22$	1070 45	4+	127.14 0+	E2		0.00570	017 - 0.037
955.40 10	17.9 23	1070.45	4	137.14 2	E2		0.00570	$\alpha(K) = 0.00463\ 7;\ \alpha(L) = 0.000825\ 12;\ \alpha(M) = 0.000192\ 3$ $\alpha(N) = 4.66 \times 10^{-5}\ 7;\ \alpha(Q) = 7.84 \times 10^{-6}\ 11;\ \alpha(P) = 4.97 \times 10^{-7}\ 7$
938.00 <i>12</i> ^x 952.5 <i>3</i>	20.5 <i>13</i> 3.4 <i>4</i>	1848.38	2+,3	910.40 3+				%Iy=1.95 <i>19</i> %Iy=0.32 <i>4</i>
987.03 10	100	1754.45	$2^{(+)}$	767.44 2+				$\%I\gamma = 9.57$
^x 1018.77 19	4.6 9							%Iγ=0.44 <i>9</i>
x1024.54 24	4.4 5							$\%$ I γ =0.42 <i>10</i> Likely feeds 434 keV state based on coincidence data.
$1039.15 I_{3}$	1.50	1400.02	(2)	424 10 4+				$\frac{1}{1} = 0.00 \ 10$
1046.20 ¹¹ 16	9.3 8	1480.02	(3)	434.10 4				$\gamma_{01}\gamma=0.88 \ IO$ E _{γ} : not adopted. See general comments.
1037.23 12	3.2 - 12							Likely feeds 434 keV state based on coincidence data.

4

¹⁸⁶Ir ε decay (1.90 h) 1975Ya10 (continued)

γ (¹⁸⁶Os) (continued)

E_{γ}	I_{γ}^{c}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}		
1071.40 17	8.1 7	2919.85	1.2^{+}	1848.38	$2^{+}.3$	%Iv=0.77 9	
1081.26 24	9.1 7	1848.38	2+,3	767.44	2+	%Iy=0.86 9	
^x 1095.5 3	4.5 10		<i>,</i>			%Iy=0.43 10	
^x 1114.70 25	8.9 14					$\%$ I γ =0.85 15	
^x 1127.1 3	4.4 10					$\%$ I γ =0.42 10	
1165.4 3	3.5 9	2919.85	$1,2^{+}$	1754.45	$2^{(+)}$	$\%I\gamma = 0.339$	
^x 1316.7 4	9.7 9		,			$\%$ I γ =0.92 11	
1414.06 22	6.1 8	1848.38	$2^+, 3$	434.10	4+	$\%I\gamma = 0.58 9$	
^x 1455.23 22	7.2 14					$\%$ I γ =0.68 14	
1617.21 15	38 4	1754.45	$2^{(+)}$	137.14	2^{+}	$\%I\gamma = 3.65$	
1711.13 <i>1</i> 8	18.4 19	1848.38	2+,3	137.14	2+	$\%I\gamma = 1.75\ 22$	
1754.4 <i>3</i>	42 4	1754.45	$2^{(+)}$	0.0	0^{+}	$\%$ I γ =4.0 5	
^x 1910.2 4	5.9 16					$\%I\gamma = 0.56 \ 16$	
^x 2173.2 3	11.9 17					%Iy=1.13 18	
x2186.95.20	$27^{@} 3$					%Iv=2.5.4	
x2207.3 4	3.2.5					$\%$ I γ =0.30.5	
x2224.1 4	9.7 13					$\%I\gamma = 0.92$ 14	
^x 2275.8 3	4.2 7					$\%I\gamma = 0.407$	
x2472.08 23	5.3 10					$%I\gamma = 0.50 \ 10$	
^x 2508.8 3	4.5 9					$\%$ I γ =0.43 9	
^x 2517.4 3	3.2 8					$\%I\gamma = 0.30 \ 8$	
x2725.1 3	3.7 7					%Iγ=0.35 7	
^x 2793.1 4	3.6 6					$\%I\gamma = 0.34~6$	
^x 2797.8 4	3.1 5					$\%I\gamma = 0.295$	
x2904.7 3	7.1 11					$\%I\gamma = 0.67 \ 12$	
2920.2 4	2.2 4	2919.85	$1,2^{+}$	0.0	0^{+}	$\%I\gamma = 0.21 \ 4$	

From ENSDF

[†] E γ from adopted gammas (for known doublet); transition not observed in this decay. I γ <11 deduced by evaluators assuming adopted branching for parent level.

[‡] In ¹⁸⁶Ir ε decay (16.64 h), the 713 γ is a doublet; the observed 713 γ -773 γ and 713 γ -767 γ coin in ¹⁸⁶Ir ε decay (1.90 h) implies that it is a doublet here also. From I(570 γ) and adopted branching, I(713 γ)=29 *10* is expected from the 1480 level (cf. I γ (doublet)=35 *3*), leaving I(713 γ)=6 *10* to be placed from the 1623 level, known from other reaction or decay studies.

[#] Placement of a 1046 γ from the 1480 level has not been confirmed in ¹⁸⁶Ir ε decay (16.64 h) or (α ,2n γ) studies, even though its I γ should have been within their detection ranges; therefore the transition is not included in the Adopted Levels.

[@] γ of similar energy present in ¹⁸⁶Ir ε decay (16.64 h); intensity of Ir (1.90 h) component determined by decay analysis (1975Ya10).

& From adopted gammas.

^a Additional information 1.

^b If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^c For absolute intensity per 100 decays, multiply by ≈ 0.071 .

^d Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

¹⁸⁶Ir ε decay (1.90 h) 1975Ya10

 $^{186}_{76}\mathrm{Os}_{110}$

6