				History		
	Туре		Author		Citation	Literature Cutoff Date
	Full Evalu	ation J. C. Batchel	der and A. M. Hurs	t, M. S. Basunia	NDS 183, 1 (2022) 1-Mar-2022
$Q(\beta^{-}) = -3828$ Other Reaction	$\frac{3}{17}$; S(n)= $\frac{186}{186}$ W(¹	8265.4 9; S(p)=6470. ⁶ O,X), E=110 MeV (0 8; $Q(\alpha)=2821.2$ 9 (1997Ka34): measur	2021Wa16 red Doppler shift a	und FWHM for 713 ₇	/ from 12 ⁺ 2781 level.
For isotope sh	nift data, se	e 2006Av09.				
				¹⁸⁶ Os Levels		
			Cross Re	ference (XREF) F	lags	
		A ¹⁸⁶ Re β^- B ¹⁸⁶ Ir ε de C ¹⁸⁶ Ir ε de D ¹⁹⁰ Pt α de E ¹⁷⁶ Yb(¹⁴ C	decay (3.7185 d) cay (16.64 h) cay (1.90 h) ecay ζ,4ηγ)	F ¹⁸⁴ W(α,2nγ G ¹⁸⁷ Re(p,2nγ H ¹⁸⁵ Re(³ He,α I Coulomb ex J ¹⁸⁶ W(α,4nγ	() K ¹⁸⁶ () L ¹⁸⁸ 1) M Mu (citation ()	Os(γ,xn) Os(p,t) nonic atom
E(level) [†]	J^{π}	T _{1/2} ‡	XREF		Comme	nts
0.0 ^a	0+	2.0×10 ¹⁵ y 11	ABCDEFGHIJ LM	%α=100		
137.15 ^a 3	2+	868 ps 12	ABCDEFGHIJ LM	T _{1/2} : From 197 the 2 ⁺ , 100.1 decay to the 4 a 15,851 h m μ =+0.58 3	5Vi01. Others: \geq 3. -keV level in ¹⁸² W = 4 ⁺ , 329.4-keV level easurement).	3×10^{17} y for decay to and $\ge 6.0 \times 10^{18}$ y for in ¹⁸² W (2020Be23 - from
				Q=-1.63 4 μ : From 2020St Additional va transient integ Q: From muonic 1981Ho22). C -1.18 <i>16</i> (199 J ^{π} : E2 137 γ to C T _{1/2} : weighted t	ZV (based on 1976) lue: $+0.524 \ 30$ (201 gral PAC assuming T z x ray hyperfine str Dthers: $-1.61 \ 5$ (201 89Ra17). 0^+ g.s. average of 842 ps <i>I</i> .	St23 – Mossbauer). 6St14, from 1982Le02), $\Gamma_{1/2}=0.83$ ns. ucture (2021StZZ, from 4StZZ, from 1972Wa24), 2 from ¹⁸⁶ Re β decay, $\Gamma_{1/2}=0.83$ ns.
				Uncertainty th	1 840 ps 50 from ¹⁰	e. ε decay (16.64 h).
434.088 ^a 2	23 4+	26.4 ps 12	ABC EFGHIJ L	J^{π} : E2 297 γ to 2	2 ⁺ ; Coulomb excited	d member of g.s. band.
767.477 ^d	18 2+	1.88 ps 14	ABC EFGHIJ L	J^{π} : E2 767 γ to	0^{+} g.s.	
868.94 ^{<i>a</i>} 4	6+	3.03 ps +8-12	B EFG IJ L	J^{π} : E2 435 γ to 4	4 ⁺ ; Coulomb excited	d member of g.s. band.
910.473 ^{<i>a</i>}	22 3+	140 02 57	ABC EFGHIJ	J^{π} : M1+E2 773	γ to 2 ⁺ 137; M1+E	2 476 γ to 4 ⁺ 434.
1061.0° 10	0.	148 ps + 83 - 57	HI L	J^{n} : L=0 in (p,t).	$\frac{1}{2}$	
1070.48^{a} 3 1208.29^{e} 20	2^{+}	1.83 ps +31-23	B EF H L	J^{π} : stretched E2 636 γ to 4 ⁺ 43 J^{π} : M1 1071 γ to	933γ to 2 ⁺ in Could 34. o 2 ⁺ ; γ to 0 ⁺ ; E2(+)	M1) 252 γ from 4 ⁺ 1460
1275.61 ^d 3	5+		B EFG J	level. J^{π} : E2 365 γ to 2	3^+ 910; E2 407 γ to	6 ⁺ 869; E consistent
1351.94 ^{<i>f</i>} 7 1420.94 ^{<i>a</i>} 6 1452.3 4 1456 2 1460.74 ^{<i>e</i>} 17 1480.09 8	$ \begin{array}{c} 4^+ \\ 8^+ \\ (3^+) \\ 0^+ \\ 7 \\ 4^+ \\ (3)^- \end{array} $	3.2 ps +10-7 1.30 ps 6	BC EFGHIJ L B EFG IJ B F L B EF BC F H L	with that expendent of the second state of th	ected for J=5 memb 2^+ 768; log <i>ft</i> =8.4 f 6^+ ; Coulomb excited 767 is M1; absence 2^+ ; E2 591 γ to 6^+ . from 5^+ ; E1 570 γ to 57 level.	er of γ band. from 5 ⁺ . d member of g.s. band. of γ to g.s. ϕ 3 ⁺ 910 level; strong

Continued on next page (footnotes at end of table)

¹⁸⁶Os Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
1491.28 ^{<i>d</i>} 4	6+	1.77 ps +63-43	B EFG IJ	J^{π} : M1+E2 622 γ to 6 ⁺ ; E2 1057 γ to 4 ⁺ ; E consistent with expectations for J=6 γ -band member.
1559.8 ^{<i>f</i>} 3 1571 2	$(5)^{+}$		B EFGH J L	J^{π} : E2 649 γ to 3 ⁺ ; E2 284 γ to 5 ⁺ 1276; band assignment.
1623.2? <i>4</i> 1628.53 ^g <i>13</i>	5-	<1 ns	B B EFG J L	J^{π} : γ to 3 ⁺ and possibly to 4 ⁺ . J^{π} : E1 558 γ to 4 ⁺ ; J=5 from $\gamma(\theta)$ for oriented nuclei in 16.64 h ε decay.
1640.81 <i>11</i> 1653.58 <i>11</i> 1704.6 6	2 ⁺ ,3,4 ⁺ (4 ⁺)		C L C L B	T _{1/2} : from (^{14}C ,4n γ). J ^{π} : log <i>ft</i> =7.8 from 2 ⁻ , 730 γ to 3 ⁺ , so J ^{π} =1 ⁺ ,2,3,4 ⁺ . J ^{π} : strong 302 γ to 4 ⁺ ; log <i>ft</i> =7.7 from 2 ⁻ . J ^{π} : log <i>ft</i> =8.9 from 5 ⁺ ; strong 1567 γ to 2 ⁺ ; 352 γ from 5 ⁺ ,6 ⁺ .
1750.93 ^{<i>a</i>} 10 1754.50 7 1771.9 ^{<i>g</i>} 6	7^+ $2^{(+)}$ (6^-)		BEJ C E	J^{π} : Gammas to 5 ⁺ and 6 ⁺ ; Band assignment. J^{π} : 2 from 1754 $\gamma(\theta,H,T)$; 1754 γ to 0 ⁺ . J^{π} : D 143 γ to 5 ⁻ at 1628
1774.69 ^{<i>h</i>} 22	(7 ⁻)	8.36 ns <i>30</i>	B EFG J	$\mu = -0.27 \ 17$ $\mu = -0.22 \ 14$ from DPAD (2020StZV, from 1984Go06) if $T_{1/2} = 10.4$ ns; adjusted by evaluators to be consistent with adopted half-life.
				T _{1/2} : weighted average of 8.5 ns 3 from (^{14}C ,4n γ) and 8.1 ns 4 from (α ,4n γ). Other values: 10-15 ns (1973Ya05) from (p,2n γ); 10.5 ns 10 and 10.4 ns 8 from (α ,2n γ). The latter data from (α ,2n γ) were not adopted because probable feeding from the 2165 level (5.7 ns 4) would result in an apparently longer half-life.
1775.8 4	4+,5+		BFIL	J ^π : E2(+M1) 705γ to 4 ⁺ 1070; 907γ to 6 ⁺ ; anisotropy 705γ in ¹⁸⁶ Ir ε decay (16.64 h) inconsistent with J=6. However, suggested as J=6 member of K=4 band in Coulomb excitation.
1812.47 ^e 19 1848.42 8 1916.1 6 1937 2	$(6)^+$ 2 ⁺ ,3 4 ⁺ ,5,6 ⁺		BE C B L	J^{π} : E2 1378 γ to 4 ⁺ ; M1(+E2) 944 γ to 6 ⁺ ; band assignment. J^{π} : 778 γ to 4 ⁺ ; log <i>ft</i> =7.1 (log $f^{1u}t$ =8.5) from 2 ⁻ . J^{π} : gammas to 4 ⁺ and 6 ⁺ .
1937 2 1939.0 ^g 6 1953 2	(7^{-}) (0^{+})		E L	J^{π} : 310 γ Q to 5 ⁻ . J^{π} : L=(0) in (p,t).
1968.4 ^h 3 1976.0? 10 1990 2	(8 ⁻) 0 ⁺		EF J B L	J^{π} : ΔJ=1 (M1+E2) 194γ to (7 ⁻); no transition to J<7. J^{π} : γ to 5 ⁺ . J^{π} : L(p,t)=0.
2015.5 ^d 7	8+	1.8 ps 3	E IJ	J^{π} : γ to 6 ⁺ 1491; γ -band member excited in multiple Coulomb excitation.
2031.3 <i>4</i> 2056.65 <i>23</i> 2068.4 ^{<i>a</i>} <i>5</i>	4 ⁺ 5 ⁺ ,6 ⁺ 10 ⁺	0.41 ps <i>12</i>	B B L EF IJ	J^{π} : log ft =8.2 from 5 ⁺ ; E2 1265 γ to 2 ⁺ . J^{π} : E2 to 1622 γ to 4 ⁺ ; M1+E2 565 γ to 6 ⁺ . J^{π} : E2 647 γ to 8 ⁺ ; Coulomb excited member of g.s. band.
2081.57 <i>21</i> 2119.9? <i>10</i> 2133.8 ^g 8	4 ⁺ (8 ⁻)		B B E	$J_{1/2}^{\pi}$: M1+E2 1172 γ to 3 ⁺ ; M1+E2 806 γ to 5 ⁺ . J^{π} : γ to 6 ⁺ . J^{π} : Q 362 γ to (6 ⁻).
2135.1? 7 2165.6 ^{<i>i</i>} 3	3 ⁺ ,4 ⁺ ,5 ⁺ (9 ⁻)	5.7 ns 4	B E J	J^{π} : M1(+E2) 1701 γ to 4 ⁺ . J^{π} : M1 γ to (8 ⁻). $T_{1/2}$: Unweighted average of 5.3 ns 2 from (α ,4n γ) and 6.1 ns 2 from (¹⁴ C 4n γ)
2188.1 ^{<i>h</i>} 4 2222.8? 7	(9 ⁻) 4 ⁺		E J B	J^{π} : (M1) to (8 ⁻); γ to (7 ⁻); absence of γ to J<7. J^{π} : E0+M1+E2 1789 γ to 4 ⁺ 434 level.

Continued on next page (footnotes at end of table)

186Os Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XI	REF	Comments			
2234? 3			В					
2257.8 ^e 11	(8+)		E		J^{π} : γ to (6) ⁺ .			
2302.9? 10	o.+		В	_				
2319.1° 10	9 ⁺ (0 [−])		E	J	$J^{n}: Q 567 \gamma$ to $(7^{+}) 1751$; band assignment.			
2377.1.6	$(9^{+})^{+}$ 5 ⁺ .6 ⁺		В		J^{π} : M1 1508 γ to 6 ⁺ : 1943 γ to 4 ⁺ .			
2431.2^{i} 3	(10^{-})		E	J	J^{π} : D+O 266 γ to (10 ⁻); γ to (8 ⁻).			
2435.2 ^h 5	(10^{-})		Е		J^{π} : O 467 γ to 8 ⁻ .			
2559.7? 19			В					
2562.9 ^b 4	(10 ⁺)	<1 ns	Е	J	J ^π : D 397γ to (9 ⁻); 1142γ to 8 ⁺ ; 132γ to (10 ⁻).			
					$T_{1/2}$: from (¹⁴ C,4n γ).			
2587.6 ⁸ 11	(10^{-})		E		$J^{n}: Q \gamma$ to (8^{-}) , band assignment.			
2599.2 5	$4^{(+)}, 5, 6^{(+)}$		B		J [*] : gammas to 4 ⁺ and 6 ⁺ . I ^{π} : (M1+F2) 1737 γ to 6 ⁺ : 2172 γ to 4 ⁺			
2620.0 5	$(5^+, 6^+)$		B		J^{π} : M1 1751 γ to 6 ⁺ ; γ to 4 ⁺ .			
2624.9 ^d 13	(10 ⁺)	1.17 ps +33-43	E	IJ	J^{π} : γ to (8 ⁺); γ -band member excited in multiple Coulomb			
2666.5 9	$(6)^{+}$		В		J^{π} : E2 1107 γ to (5) ⁺ ; γ to 4 ⁺ ; log <i>ft</i> \approx 8.0 from 5 ⁺ ;			
					anisotropy of 1107 γ excludes J=4 and 5 in ¹⁸⁶ Ir ε decay (16.40 h).			
2698.6 ^h 6	(11^{-})		Е		J^{π} : Band assignment, 510.6 γ Q to (9 ⁻).			
2714.3 ⁱ 6	(11 ⁻)		Е		J^{π} : Band assignment, 283.0 γ D to (10 ⁻).			
2771.8? 11	(4 ⁺)		В		J^{π} : possible (E0+M1+E2) 2340 γ to 4 ⁺ .			
2781.7 ^{<i>a</i>} 5	12+	0.29 ps +23-4	E	IJ	J^{π} : E2 713 γ to 10 ⁺ ; Coulomb excited member of g.s. band.			
2787.9 ^e 15	$(10^+)^{\dagger}$		E		$\pi_{-}(M_{1}, E_{2}) = 24245 (10^{+}) := (-4)$			
2805.9° 4	(11^{-1})		E	J	J^{+} : (M1+E2) 243 γ to (10 ⁺) in (α ,4n γ).			
2852.28 12 2919.89 15	$(11^{-})^{n}$ $1,2^{+}$		C		J^{π} : 2920y to 0 ⁺ ; log <i>ft</i> =6.9 from 2 ⁻ .			
2958.1 ^d 15	(11^{+})		Е	J	J^{π} : 639 γ to 9 ⁺ ; band assignment.			
2958.4? 18	+		В		J^{π} : E2 1467 γ to 6 ⁺ 1491 level.			
2977.2 ^h 7	(12 ⁻) [#]		E					
2978.4? 5	(1 0 -)#		В		J^{n} : γ to 4^{+} .			
3007.0^{t} 7	$(12^{-})^{\prime\prime}$		E	_				
$3039.0^{\circ} 4$ 3110.12.10	(12^{+})		R E	J	$J^{\prime\prime}$: intraband gammas to (12 ⁺) and (11 ⁺).			
3123 2 <mark>8</mark> 15	$(12^{-})^{\#}$		ч Т					
3185.1? 10	(12)		В					
3186.4 ^j 7	(12^{+})		Е		$J^{\pi}: \Delta J=2 \ 1118 \ \text{keV} \ \gamma \ \text{to} \ (10^+).$			
3214.5? 5			В					
3221.4 9	(12^{+})		E		J^{n} : 1151 Q γ to 10 ⁺ .			
3252.7? 5	(6^{+})		B		J^{π} : possible E0+M1+E2 2383 7 γ to 6 ⁺ .			
3268.9? 3	(*)		B		J^{π} : possible E0+M1+E2 2399 γ to 6 ⁺ ; however, possible 3132 γ to 2 ⁺ . One of these gammas may be misplaced.			
3288.8 ^h 9	(13 ⁻) [#]		Е					
3293.7 [°] 7	(13 ⁺) [#]		Е					
3296.2 ^d 16	(12 ⁺) [#]		Е	J				
3309.1 ⁱ 8	(13 ⁻) [#]		Е					
3414.3? 4	(4 ⁺)		В		J^{π} : possible γ to 4 ⁺ and 6 ⁺ ; possible E0+M1+E2 1334 γ to 4 ⁺ .			
3425.5 <mark>8</mark> 16	(13 ⁻) [#]		E					

186Os Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XR	EF	Comments
3431.9 ^j 7	$(13^{+})^{\#}$		E		
3440.4 ^b 6	(14+)	≥0.92 ps	Е	IJ	J^{π} : (E2) 659 γ to 12 ⁺ ; excited in multiple Coulomb excitation.
3506.2 12	(13)		Ε		J^{π} : γ to (12^+) .
3557.4 ^h 12	(14 ⁻) [#]		E		
3558.4 ^{<i>a</i>} 8	14+		E	IJ	J^{π} : 580 Q γ to 12 ⁺ ; excited in multiple Coulomb excitation. Band assignment.
3623.8 ¹ 9	(14 ⁻) [#]		E		
3630.2 ^{<i>d</i>} 18	(13 ⁺) [#]			J	
3731.0 ^k 10	(15 ⁺)		E		J^{π} : Q 299 keV γ to (13 ⁺).
3760.8? ⁸ 18	(14 ⁻) [#]		E		
3816.5 [°] 7	$(15^+)^{\#}$		E		
3935.2 ⁰ 7	$(16^+)^{\#}_{\#}$		E	J	
3940.6 ⁿ 10	(15 ⁻)#		E		
3946.2 ¹ 9	(15 ⁻) [#]		E		
4062.4 ^g 19	(15 ⁻) [#]		E		
4100.0 ^k 10	$(16^+)^{\#}_{\#}$		E		
4169.8 ^{<i>n</i>} 16	(16 ⁻) [#]		E		
4242.2 ^{<i>i</i>} 13	(16 ⁺)		E		J^{π} : Q 684 keV γ to 14 ⁺ .
4283.1 11	$(16^{-})^{m}$		E		I^{π} , I^{\pm} , I^{\pm}
4351.5 10	(10) $(17^+)^{\#}$		E		J . Y 10 14 .
$4414.2^{*}10$	(17) (17^+)		E		
4465.4 11	(17) $(16^{-})^{\#}$		E		
4487.08 21	(10^{+})	<0.5 m	E	1	I^{π} . (E2) 550 keV or to (16 ⁺)
	(10)	<0.5 lis	L	5	$T_{1/2}$: from $({}^{14}C.4n\gamma)$.
4505.1 ^b 7	$(18^+)^{\#}$		Е	J	
4624.4 ⁱ 9	$(17^{-})^{\#}$		Е		
4637.1? ^h 10	(17 ⁻) [#]		Е		
4760.2 ⁸ 21	(17 ⁻) [#]		Е		
4818.7 ^h 19	(18 ⁻) [#]		Е		
4869.6 ^k 12	$(18^+)^{\#}$		Е		
4957.4 8	(19 ⁺) [#]		Е	J	$J^{\pi}: \Delta J=1$ to (18 ⁺).
4963.5 ¹ 16	$(18^+)^{\#}$		Е		
5025.7 ^m 8	(18 ⁻)	<2 ns	E	J	T _{1/2} : from (¹⁴ C,4n γ). J ^{π} : Q 531 keV γ to (18 ⁻).
5107.1 ^c 14	(19 ⁺) [#]		Е		
5167.8 ^b 7	$(20^+)^{\#}$		Е	J	
5243.9 ^m 13	(19 ⁻) [#]		Ε		
5331.9 ⁿ 8	(19 ⁻)	<1 ns	E	J	T _{1/2} : from (¹⁴ C,4n γ). J ^{π} : Q 708 keV γ to (17 ⁻).
5374.3 8	$(20^{+})^{\#}_{\mu}$		E	J	
5489.9 ⁿ 21	$(20^{-})^{\#}_{\#}$		E		
5496.4 9	$(20^+)^{\#}_{\#}$		E		
5501.0 8	$(20^{+})^{\#}_{\#}$		E	J	
5560.4 ⁿ 11	$(20^{-})^{\#}$		E		
5564.8 8	(20))			J	J [*] : possibly Q intraband γ to (18) 5025.

¹⁸⁶Os Levels (continued)

\mathbf{J}^{π}	T _{1/2} ‡	XRE	F	Comments				
$(20^+)^{\#}$		E						
(20^{+})		Ē	J	J^{π} : 201 D γ to (20 ⁺).				
$(20^+)^{\#}$		Е						
(21^{-})			J	J ^{π} : Δ J=2 γ to (19 ⁻) assumed in (α ,4n γ).				
$(21^+)^{\#}$		Е						
$(21^{-})^{\#}$		Е						
$(22^+)^{\#}$		Е	J					
(21^+)		E		J^{π} : 422 γ to (20 ⁺).				
(21^{+})		Е		J^{π} : 427 γ to (20 ⁺).				
(22^{+})		Е	J	J^{π} : 653 Q γ to (20 ⁺).				
(22^{+})		Е		J^{π} : 656.6 Q γ to (20 ⁺).				
(22^{+})		Е		J^{π} : 362.4 γ to (21 ⁺).				
(24^{+})		Е		J^{π} : 120.9 γ (Q) to (22 ⁺).				
$(22^{-})^{\#}$		Е						
(22^{+})		Е		J^{π} : 525 γ to (20 ⁺).				
(25^{+})		Е		J^{π} : 322 D γ to (24 ⁺).				
(24^{+})		Е		J^{π} : 457 Q γ to (22 ⁺).				
$(24^+)^{\#}$		Е						
(26^{+})		Е		J^{π} : 474.2 γ to (25 ⁺).				
(26^{+})		Е		J^{π} : 501 Q γ to (24 ⁺).				
(25^{+})		Е		J^{π} : 505 D γ to (24 ⁺).				
$(28^+)^{\&}$	<2 ns	Е						
(26+)		Е		J^{π} : 484.4 γ to (25 ⁺).				
$(26^+)^{\#}$		Е						
(30^{+})		Е		J^{π} : 567 γ to (28 ⁺).				
(30^+)		Е		J^{π} : 607 Q γ to (28 ⁺).				
(30^{+})		Е		J^{π} : 636 γ to (28 ⁺).				
1-	3.13 MeV 24		K	Component of GDR; $J^{\pi}=1^{-}$.				
1-	3.38 MeV 21		K	Component of GDR; $J^{\pi}=1^{-}$.				
	$\begin{array}{c} \mathbf{J}^{\pi} \\ \hline (20^+)^{\#} \\ (21^-) \\ (21^-)^{\#} \\ (21^-)^{\#} \\ (21^-)^{\#} \\ (22^+)^{\#} \\ (21^+) \\ (22^+) \\$	$\begin{array}{cccc} \underline{J}^{\pi} & \underline{T}_{1/2}^{\ddagger} \\ \hline (20^+)^{\#} \\ (21^+) \\ (20^+)^{\#} \\ (21^-) \\ (21^-)^{\#} \\ (21^-)^{\#} \\ (21^+) \\ (22^+)^{\#} \\ (22^+)$	$\begin{array}{cccc} \underline{J}^{\pi} & \underline{T_{1/2}}^{\ddagger} & \underline{XRE} \\ \hline (20^+)^{\#} & E \\ (21^+) & E \\ (20^+)^{\#} & E \\ (21^-) & E \\ (21^-)^{\#} & E \\ (21^-)^{\#} & E \\ (21^+)^{\#} & E \\ (21^+) & E \\ (22^+)^{\#} & E \\ (22^+) & E$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

[†] From least-squares adjustment of E γ allowing ΔE_{γ} =1 keV for missing uncertainty.

[‡] From measured E2 matrix elements in Coulomb excitation and adopted γ -ray properties, unless noted otherwise.

[#] From band member.

^(@) Probably a four-quasineutron intrinsic triaxial ($\gamma = 23^{\circ}$) state; blocked BCS calculations predict a low-lying 18⁺ state with configuration=((11/2[615])+(9/2[624])+(9/2[505])+(7/2[503])). The short T_{1/2}, despite predominantly $\Delta K=8$ deexcitation, for this yrast state is consistent with the onset of triaxiality.

[&] Probably a six-quasiparticle intrinsic triaxial (γ =26°) state; blocked BCS calculations predict a low-lying 28⁺ state with configuration=((18⁺ 4495 level) \otimes ((π 11/2[505])+(π 9/2[514]))). The short T_{1/2} for this yrast state may result from the onset of triaxiality.

^{*a*} Band(A): $K^{\pi}=0^+$ g.s. band. Rotational parameters: A=20.8, B=-0.019 (based on J=0 to 14 members). Yrast for J≤12.

^b Band(B): $K^{\pi}=10^+$, $\alpha=0$ tilted-axis band. Likely configuration=(($\nu 11/2[615]$)+($\nu 9/2[624]$)), consistent with the relatively large alignment and the intraband E2-to-M1 branching ratios observed. Crosses g.s. band; yrast for J=14-16.

^c Band(b): $K^{\pi}=10^+$, $\alpha=1$ tilted-axis band. Signature partner of $K^{\pi}=10^+$, $\alpha=0$ band, exhibiting pronounced signature splitting.

^d Band(C): $K^{\pi}=2^+ \gamma$ band. Rotational parameters: A=20.4, B=-0.024 (based on all even J members).

^{*e*} Band(D): $K^{\pi}=0^{+}\beta$ band.

^{*f*} Band(E): Possible $K^{\pi}=4^+$ hexadecapole band. Rotational parameter: A=20.8. Could alternatively be interpreted as a two γ phonon excitation.

^g Band(F): $K^{\pi}=5^{-}$ band. Similarity of alignment curve to that for the $11/2^{+}$ band in ¹⁸⁵Os favors configuration=((ν

¹⁸⁶Os Levels (continued)

11/2[615])-($\nu 1/2[510]$)), analogous to the 8.3 μ s, 5⁻ isomer with this configuration in ¹⁸⁴W.

- ^{*h*} Band(G): $K^{\pi}=7^{-}$ band. Likely configuration=(($\nu \ 11/2[615]$)+($\nu \ 3/2[512]$)); alignment is consistent with that for other ($\nu \ i_{13/2}$) bands. Analogous to band with same configuration built on 7⁻, 2.4 ns isomer in ¹⁸⁴W isotone.
- ^{*i*} Band(H): $K^{\pi}=9^{-}$ band. Likely configuration=(($\nu 11/2[615]$)+($\nu 7/2[503]$)), supported by similarity of alignment curve to that for other ($\nu 11/2[615]$) bands.
- ^{*j*} Band(I): $K^{\pi} = (12^+)$ four-quasineutron band. Possible configuration=((11/2[615])+(9/2[624])+(3/2[512])+(1/2[510])) supported by BCS calculations.
- ^k Band(J): $K^{\pi} = (15^+)$ four-quasineutron band. Possible configuration=((11/2[615])+(9/2[624])+(7/2[503])+(3/2[512])).
- ^{*l*} Band(K): π =+, α =0 band. Possible rotational aligned low-K s-band; alignment much larger than that of g.s. band.
- ^{*m*} Band(L): $K^{\pi} = (18^{-})$ four-quasiparticle band. Possible configuration= $((\nu \ 11/2[615]) + (\nu \ 9/2[624]) + (\pi \ 5/2[402]) + (\pi \ 11/2[505]))$ supported by blocked BCS calculations.
- ^{*n*} Band(M): $K^{\pi} = (19^{-})$ four-quasiparticle band. Possible configuration= $((\nu \ 11/2[615]) + (\nu \ 7/2[503]) + (\pi \ 9/2[514]) + (\pi \ 11/2[505]))$ based on comparisons with blocked BCS calculations.

						Adopted Levels, Ga	mmas (contin	ued)
						$\gamma(^{186})$	Os)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	J_f^{π} Mul	$\delta^{\dagger}f$	α^{e}	Comments
137.15	2+	137.15 5	100	0.0 (0 ⁺ E2		1.271	$\alpha(K)=0.434\ 6;\ \alpha(L)=0.632\ 9;\ \alpha(M)=0.1610\ 23$ $\alpha(N)=0.0386\ 6;\ \alpha(O)=0.00575\ 8;\ \alpha(P)=3.96\times10^{-5}\ 6$ B(E2)(W.u.)=93.6 21
434.088	4+	296.90 <i>3</i>	100	137.15 2	2 ⁺ E2		0.0942	E _γ ,I _γ : from ¹⁸⁰ Re β ⁻ decay. α (K)=0.0606 9; α (L)=0.0255 4; α (M)=0.00632 9 α (N)=0.001523 22; α (O)=0.000236 4; α (P)=6.08×10 ⁻⁶ 9 B(E2)(Wu)=135 7
767.477	2+	333.4 4	0.19 5	434.088 4	4 ⁺ [E2]		0.0671	B(E2)(W.u.)=1.2 4 B(E2)(W.u.)=1.2 4 α (K)=0.0452 7; α (L)=0.01666 25; α (M)=0.00410 6 α (N)=0.000989 15; α (O)=0.0001548 23; α (P)=4.61×10 ⁻⁶ 7 E _y ,I _y : from ¹⁸⁶ Re β ⁻ decay.
		630.34 [#] 4	88.8 [#] 15	137.15 2	2 ⁺ M1+	E2 -13.7 + <i>17</i> -23	0.01330	$\alpha(K)=0.01040 \ 15; \ \alpha(L)=0.00223 \ 4; \ \alpha(M)=0.000528 \ 8 \\ \alpha(N)=0.0001280 \ 18; \ \alpha(O)=2.11\times10^{-5} \ 3; \ \alpha(P)=1.115\times10^{-6} \ 16 \\ B(M1)(W.u.)=0.00012 \ 3; \ B(E2)(W.u.)=22.1 \ 17 \\ \delta: \ Others: \ +14 \ +7-3 \ from \ \gamma\gamma(\theta) \ in \ ^{186}\text{Re} \ \beta^{-} \ \text{decay}, \ -16 \ +3-5 \\ from \ Coulomb \ excitation.$
		767.50 [#] 3	100.0 [#] 15	0.0 (0 ⁺ E2		0.00856	$\alpha(K)=0.00683 \ 10; \ \alpha(L)=0.001323 \ 19; \ \alpha(M)=0.000310 \ 5 \\ \alpha(N)=7.53\times10^{-5} \ 11; \ \alpha(O)=1.254\times10^{-5} \ 18; \ \alpha(P)=7.34\times10^{-7} \ 11 \\ B(F2)(Wu)=9.4 \ 8$
868.94	6+	434.84 <i>3</i>	100	434.088 4	4 ⁺ E2		0.0324	$\alpha(K)=0.0237 \ 4; \ \alpha(L)=0.00671 \ 10; \ \alpha(M)=0.001625 \ 23$ $\alpha(N)=0.000393 \ 6; \ \alpha(O)=6.28\times10^{-5} \ 9; \ \alpha(P)=2.49\times10^{-6} \ 4$ B(E2)(W,u)=185 +8-5
910.473	3+	143.17 5	3.49 [#] <i>31</i>	767.477 2	2 ⁺ M1+	E2 0.7	≈1.82	
		476.40 [#] 5	7.5 [#] 3	434.088 4	4+ E2+1	41 -22 10	0.0258 5	$\alpha(K)=0.0192 4$; $\alpha(L)=0.00503 8$; $\alpha(M)=0.001211 18$ $\alpha(N)=0.000293 5$; $\alpha(O)=4.72\times10^{-5} 7$; $\alpha(P)=2.03\times10^{-6} 4$ I _γ : Weighted average of data from (¹⁴ C,4nγ), (α ,4nγ) and ¹⁸⁶ Ir (16h) decays Other I _γ : 11 3 in (α ,2nγ), 19.8 15 in (p,2nγ).
		773.28 3	100 [‡] 3	137.15 2	2 ⁺ M1+	E2 -60 +12-20	0.00842	$\alpha(K)=0.00673 \ I0; \ \alpha(L)=0.001298 \ I9; \ \alpha(M)=0.000304 \ 5 \ \alpha(N)=7.39\times10^{-5} \ I1; \ \alpha(O)=1.231\times10^{-5} \ I8; \ \alpha(P)=7.23\times10^{-7} \ I1$
1061.0	0+	923.8	100	137.15 2	2 ⁺ [E2]		0.00582	$\alpha(K) = 0.00473 7; \ \alpha(L) = 0.000845 12; \ \alpha(M) = 0.000196 3$ $\alpha(N) = 4.77 \times 10^{-5} 7; \ \alpha(O) = 8.03 \times 10^{-6} 12; \ \alpha(P) = 5.07 \times 10^{-7} 7$ B(E2)(W.u.)=0.066 E _v : From Coulomb excitation.
1070.48	4+	160.11 <i>10</i>	0.98 9	910.473 3	3 ⁺ [M1,	32]	1.10 <i>3</i> 8	$\alpha'(K)=0.76\ 46;\ \alpha(L)=0.26\ 6;\ \alpha(M)=0.063\ 18$ $\alpha(N)=0.0152\ 42;\ \alpha(O)=0.0024\ 5;\ \alpha(P)=8.4\times10^{-5}\ 58$ I_{γ} : Others: 4.77\ 23\ (^{14}C,4n\gamma), <9.5\ (\alpha,4n\gamma).

 \neg

From ENSDF

¹⁸⁶₇₆Os₁₁₀-7

					Add	opted Levels, Gamma	s (continued)	
						γ ⁽¹⁸⁶ Os) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$, Mult. [†]	$\delta^{\dagger f}$	α^{e}	Comments
1070.48	4+	302.89 8	6.2 [#] 3	767.477 2+	+ E2		0.0888	B(E2)(W.u.)=69 + 11 - 13 $\alpha(K)=0.0576 - 8 \cdot \alpha(L)=0.0237 - 4 \cdot \alpha(M)=0.00586 - 9$
		636.38 4	100 3	434.088 4+	+ M1+E2	+24 +26-8	0.01294	$\begin{aligned} \alpha(\mathbf{N}) = 0.001412 \ 20; \ \alpha(\mathbf{O}) = 0.00219 \ 3; \ \alpha(\mathbf{P}) = 5.79 \times 10^{-6} \ 9 \\ \mathbf{I}_{\gamma}: \ \text{Others:} \ 6.3 \ 13 \ (\alpha, 2n\gamma), \ 6.4 \ 6 \ (\text{Coulomb excitation}). \\ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 4.E - 5 \ +9 - 4; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 24 \ +4 - 5 \\ \alpha(\mathbf{K}) = 0.01012 \ 15; \ \alpha(\mathbf{L}) = 0.00216 \ 3; \ \alpha(\mathbf{M}) = 0.000512 \ 8 \\ \alpha(\mathbf{N}) = 0.0001242 \ 18; \ \alpha(\mathbf{O}) = 2.04 \times 10^{-5} \ 3; \ \alpha(\mathbf{P}) = 1.084 \times 10^{-6} \\ 16 \end{aligned}$
		933.34 4	67 [#] 2	137.15 2+	+ E2		0.00570	δ: Other: +15 +30-8 (Coulomb excitation). B(E2)(W.u.)=3.0 +5-6 $ α(K)=0.00463 7; α(L)=0.000825 12; α(M)=0.000192 3$
1208.29	2+	1071.0 <i>4</i>	100 <i>23</i>	137.15 2+	+ M1		0.00947	$\begin{aligned} \alpha(\mathrm{N}) = 4.66 \times 10^{-5} \ 7; \ \alpha(\mathrm{O}) = 7.84 \times 10^{-6} \ 11; \ \alpha(\mathrm{P}) = 4.97 \times 10^{-7} \ 7 \\ \text{Others: } 100 \ 13 \ (1.90 \ \text{h} \ \varepsilon \ \text{decay}), \ 77 \ 15 \ (\alpha, 2n\gamma), \ 74 \ 6 \\ (p, 2n\gamma), \ 44 \ 9 \ (\alpha, 4n\gamma), \ 80 \ + 14 - 9 \ (\text{Coulomb excitation}). \\ \alpha(\mathrm{K}) = 0.00790 \ 11; \ \alpha(\mathrm{L}) = 0.001212 \ 17; \ \alpha(\mathrm{M}) = 0.000276 \ 4 \\ \alpha(\mathrm{N}) = 6.75 \times 10^{-5} \ 10; \ \alpha(\mathrm{O}) = 1.169 \times 10^{-5} \ 17; \ \alpha(\mathrm{P}) = 8.89 \times 10^{-7} \\ 13 \end{aligned}$
		1200		0.0 0+	F			E_{γ} : From (α ,2n γ).
1275 61	5+	365 16 3	15.3 [#] .6	$0.0 0^{+}$ 910.473 3 ⁺	+ F2		0.0519	$\alpha(\mathbf{K}) = 0.0360.5; \alpha(\mathbf{I}) = 0.01207.17; \alpha(\mathbf{M}) = 0.00295.5$
1275.01	5	406.62.7	16.2	969.04 6	± (E2)		0.0297	$\alpha(N) = 0.000713 \ 10; \ \alpha(O) = 0.0001124 \ 16; \ \alpha(P) = 3.72 \times 10^{-6} \ 6 \ \alpha(N) = 0.00713 \ 4 \ \alpha(O) = 0.0001124 \ 16; \ \alpha(P) = 3.72 \times 10^{-6} \ 6 \ \alpha(N) = 0.00713 \ 4 \ \alpha(N) = 0.00713 \ 10^{-6} \ 125 \ \alpha(N) = 0.00713 \ 10^{-6} \ $
		400.03 /	4.0 3	808.94 0	(E2)		0.0387	$\alpha(\mathbf{K})=0.02774; \alpha(\mathbf{L})=0.0083772; \alpha(\mathbf{M})=0.002035$ $\alpha(\mathbf{N})=0.0004927; \alpha(\mathbf{O})=7.82\times10^{-5}11; \alpha(\mathbf{P})=2.90\times10^{-6}4$ Other I γ : 9.2 23 from (α ,2n γ).
		841.50 <i>3</i>	100 5	434.088 4+	+ E2(+M1) <-16	0.0122 52	$\alpha(K)=0.0101 \ 44; \ \alpha(L)=0.00165 \ 59; \ \alpha(M)=3.8\times10^{-4} \ 14 \ \alpha(L)=9.2\times10^{-5} \ 33; \ \alpha(Q)=1.58\times10^{-5} \ 58; \ \alpha(P)=1.12\times10^{-6} \ 52$
1351.94	4+	281.3	1.6 6	1070.48 4+	+ (E2)		0.1109	$\begin{aligned} \alpha(\mathbf{K}) = 0.0697 \ 10; \ \alpha(\mathbf{L}) = 0.0313 \ 5; \ \alpha(\mathbf{M}) = 0.00777 \ 11 \\ \alpha(\mathbf{N}) = 0.00187 \ 3; \ \alpha(\mathbf{O}) = 0.000289 \ 4; \ \alpha(\mathbf{P}) = 6.92 \times 10^{-6} \ 10 \\ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 17 \ +8-9 \end{aligned}$
		441.48 11	40.8 [#] 17	910.473 3+	+ M1+E2	+13.3 +22-17	0.0315	I_{γ} : weighted average from ε decays. Others: 6.1 23 (Coulomb excitation) and 7.7 3 ((^{14}C ,4nγ). α (K)=0.0231 4; α (L)=0.00642 9; α (M)=0.001552 22 α (N)=0.000376 6; α (O)=6.02×10 ⁻⁵ 9; α (P)=2.44×10 ⁻⁶ 4
			#					B(M1)(W.u.)=0.00012 +5-6; B(E2)(W.u.)=45 +10-15 E_{γ} : from ¹⁸⁶ Ir ε decay (1.90 h).
		584.42 19	100# 3	767.477 24	⁺ E2		0.01568	$\alpha(K)=0.01211 \ 17; \ \alpha(L)=0.00274 \ 4; \ \alpha(M)=0.000650 \ 10$ $\alpha(N)=0.0001577 \ 22; \ \alpha(O)=2.58\times10^{-5} \ 4; \ \alpha(P)=1.294\times10^{-6}$ 19 B(E2)(Wu)=0.11
		919 [‡]	2.60 [‡] 12	434.088 4+	F			<i>D</i> (<i>D</i> 2)(<i>m</i> ,u,)=0.11
		1215.1‡	3.41 [‡] <i>14</i>	137.15 2+	F			

 ∞

	Adopted Levels, Gammas (continued)											
						$\gamma(1)$	¹⁸⁶ Os) (co	ontinued)				
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f J	\mathbf{J}_{f}^{π}	Mult. [†]	$\delta^{\dagger f}$	α^{e}	Comments			
1420.94	8+	552.00 5	100	868.94 6	6+	E2		0.0179	B(E2)(W.u.)=132 7 α (K)=0.01372 20; α (L)=0.00322 5; α (M)=0.000769 11 α (N)=0.000186 3; α (O)=3.04×10 ⁻⁵ 5; α (P)=1.464×10 ⁻⁶ 21 Mult.: Q from $\gamma(\theta)$ in (α ,4n γ); not M2 from α (K)exp in 16.64 h ¹⁸⁶ Ir ε decay.			
1452.3	(3 ⁺)	542.2^{i} 4 684.8 4	100 49	910.473 3 767.477 2	3 ⁺ 2 ⁺	M1		0.0294	$\alpha(K)=0.0244$ 4; $\alpha(L)=0.00381$ 6; $\alpha(M)=0.000869$ 13			
1460.74	4+	252.45 15	23 7	1208.29 2	2+	(E2)		0.1551				
		592.4 9	26 8	868.94 6	6+	E2		0.01520	$\alpha(K) = 0.01176 \ 17; \ \alpha(L) = 0.00263 \ 4; \ \alpha(M) = 0.000626 \ 10$ $\alpha(K) = 0.001517 \ 23; \ \alpha(D) = 2.48 \times 10^{-5} \ 4; \ \alpha(D) = 1.257 \times 10^{-6} \ 18$			
		1026.5 3	100 4	434.088 4	4+	M1(+E2)	≤+0.8	0.0094 12	$\alpha(N)=0.000131723, \alpha(O)=2.46\times10^{-4}, \alpha(P)=1.237\times10^{-1}18$ $\alpha(K)=0.0078\ 10; \alpha(L)=0.00122\ 14; \alpha(M)=0.00028\ 3$ $\alpha(N)=6.8\times10^{-5}\ 8; \alpha(O)=1.17\times10^{-5}\ 14; \alpha(P)=8.8\times10^{-7}\ 12$			
		1323.7 3	97 9	137.15 2	2+	E2		0.00290	$\alpha(K) = 0.00238 \ 4; \ \alpha(L) = 0.000384 \ 6; \ \alpha(M) = 8.80 \times 10^{-5} \ 13$ $\alpha(N) = 2.14 \times 10^{-5} \ 3; \ \alpha(O) = 3.66 \times 10^{-6} \ 6; \ \alpha(P) = 2.55 \times 10^{-7} \ 4;$ $\alpha(IPF) = 2.12 \times 10^{-5} \ 3$ L: from ¹⁸⁶ Ir \$\varepsilon\$ decay (16 64 h); Iy = 77 29 in (\$\alpha\$ 2ny)			
1480.09	(3)-	409.60 ^{&} 22	22.4 ^{&} 21	1070.48 4	4+	[E1]		0.01187	$\alpha(K)=0.00991 \ 14; \ \alpha(L)=0.001521 \ 22; \ \alpha(M)=0.000346 \ 5 \ \alpha(N)=8.40\times10^{-5} \ 12: \ \alpha(O)=1.421\times10^{-5} \ 20: \ \alpha(P)=9.56\times10^{-7} \ 14$			
		569.70 ^a 13	45 20	910.473 3	3+	E1		0.00582	$\alpha(K) = 0.00488 \ 7; \ \alpha(L) = 0.000730 \ 11; \ \alpha(M) = 0.0001658 \ 24 \ \alpha(N) = 4.02 \times 10^{-5} \ 6; \ \alpha(Q) = 6.86 \times 10^{-6} \ 10; \ \alpha(P) = 4.81 \times 10^{-7} \ 7$			
		712.57 ^{&} 10	100 20	767.477 2	2+	[E1]		0.00370	$\alpha(K)=0.00311\ 5;\ \alpha(L)=0.000458\ 7;\ \alpha(M)=0.0001039\ 15$ $\alpha(N)=2.52\times10^{-5}\ 4;\ \alpha(O)=4.32\times10^{-6}\ 6;\ \alpha(P)=3.10\times10^{-7}\ 5$ $I_{\gamma}:\ From\ (\alpha,2n\gamma).$			
		1046.26 ^{&ci} 16	$32^{\&} 3$	434.088 4	4 ⁺ 2 ⁺							
1491.28	6+	215.51 20	3.7 [#] 3	1275.61 5	2 5 ⁺	[M1,E2]		0.45 20	α (K)=0.33 20; α (L)=0.088 3; α (M)=0.0211 16 α (N)=0.0051 4; α (O)=0.000826 12; α (P)=3.7×10 ⁻⁵ 25 I _{γ} : Other: 20 7 in (α ,2n γ).			
		420.81 3	82 [#] 4	1070.48 4	4+	E2		0.0354	B(E2)(W.u.)= $1.2 \times 10^2 + 3-5$ α (K)= $0.0256 4$; α (L)= $0.00747 11$; α (M)= $0.00181 3$ α (N)= $0.000438 7$; α (O)= $6.99 \times 10^{-5} 10$; α (P)= $2.68 \times 10^{-6} 4$ I _{γ} : Other: 70 13 in (α ,2n γ), 59 + $8-5$ in Coulomb excitation.			

	Adopted Levels, Gammas (continued)													
							$\gamma(^{186}\text{Os})$ (continue	ed)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [†]	$\delta^{\dagger f}$	α^{e}	Comments					
1491.28	6+	622.33 4	100 5	868.94	6+	M1+E2	+10.0 +20-12	0.01381 21	$\alpha(K)=0.01078 \ 17; \ \alpha(L)=0.00232 \ 4; \ \alpha(M)=0.000549 \ 8$ $\alpha(N)=0.0001333 \ 20; \ \alpha(O)=2.19\times10^{-5} \ 4; $ $\alpha(P)=1.156\times10^{-6} \ 18$ $B(M1)(W.u.)=0.011; \ B(E2)(W.u.)=7.2$					
		1057.25 8	94 [#] 4	434.088	4+	E2		0.00445	B(E2)(W.u.)=1.2 +4-5 α (K)=0.00364 5; α (L)=0.000622 9; α (M)=0.0001437 21 α (N)=3.49×10 ⁻⁵ 5; α (O)=5.92×10 ⁻⁶ 9; α (P)=3.90×10 ⁻⁷ 6					
									Other I γ : 65 13 in (α ,2n γ), 80 +10-12 in Coulomb excitation.					
1559.8	(5)+	208.0 6	37.3 27	1351.94	4+	E2		0.291 5	$\alpha(K)=0.1532\ 25;\ \alpha(L)=0.1043\ 20;\ \alpha(M)=0.0262\ 5$ $\alpha(N)=0.00631\ 12;\ \alpha(O)=0.000957\ 18;\ \alpha(P)=1.445\times10^{-5}$ 23 I_{γ} : Wt. ave. of data from ¹⁸⁶ Ir ε decay (16.64 h),					
									$(\alpha, 2n\gamma)$, and $({}^{14}C, 4n\gamma)$.					
		284.26 ¹ 15	53	1275.61	5+	E2		0.1074	$\alpha(K)=0.0678 \ 10; \ \alpha(L)=0.0301 \ 5; \ \alpha(M)=0.00746 \ 11$					
		489.5 <i>4</i>	86 6	1070.48	4+	E2(+M1)	>+42	0.0240	$\begin{array}{l} \alpha(N)=0.00180 \ 3; \ \alpha(O)=0.000278 \ 4; \ \alpha(P)=6.75\times10^{-6} \ 70 \\ \alpha(K)=0.0180 \ 3; \ \alpha(L)=0.00462 \ 7; \ \alpha(M)=0.001110 \ 16 \\ \alpha(N)=0.000269 \ 4; \ \alpha(O)=4.34\times10^{-5} \ 7; \ \alpha(P)=1.91\times10^{-6} \ 3 \\ E_{\gamma}: \ \text{Weighted ave. of data from } (\alpha,2n\gamma), \ (p,2n\gamma), \ \text{and} \\ {}^{186}\text{Ir} \ \varepsilon \ \text{decay} \ (16.64 \ \text{h}). \\ I_{\gamma}: \ \text{Other: } 100 \ 21 \ (\alpha,2n\gamma); \ 70 \ 5 \ (p,2n\gamma); \ 90 \ 18 \ (\alpha,4n\gamma); \\ 85 \ 5 \ ({}^{14}\text{C},4n\gamma). \end{array}$					
		649.1 5	100 5	910.473	3+	E2		0.01234	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00967 \ 14; \ \alpha(\mathbf{L}) = 0.00205 \ 3; \ \alpha(\mathbf{M}) = 0.000484 \ 7 \\ &\alpha(\mathbf{N}) = 0.0001173 \ 17; \ \alpha(\mathbf{O}) = 1.93 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{P}) = 1.036 \times 10^{-6} \ 15 \\ \mathbf{E}_{\gamma}: \text{ Weighted ave. of data from } (\alpha, 2n\gamma), \ (p, 2n\gamma), \text{ and} \\ & \ ^{186}\text{Ir } \varepsilon \text{ decay } (16.64 \text{ h}). \\ &\mathbf{I}_{\gamma}: \text{ From } (^{14}\text{C}, 4n\gamma). \end{aligned}$					
1623.2?		712.7 ⁱ 4	100 31	910.473	3+				$E\gamma$ is for doubly placed γ ; intensity suitably divided.					
		1187.9 ⁸¹ 4	<357 <mark>8</mark>	434.088	4+				<i>,</i>					
1628.53	5-	276.54 14	100 3	1351.94	4+	E1		0.0297	B(E1)(W.u.)>5.3×10 ⁻⁶ α (K)=0.0247 4; α (L)=0.00391 6; α (M)=0.000894 13 α (N)=0.000216 3; α (O)=3.62×10 ⁻⁵ 5; α (P)=2.30×10 ⁻⁶ 4 I _{γ} : from (¹⁴ C,4n γ).					
		353.1 ^{&} 5	19.4 6	1275.61	5+	[E1]		0.01666	B(E1)(W.u.)>4.9×10 ⁻⁷ α (K)=0.01387 20; α (L)=0.00215 4; α (M)=0.000491 7 α (N)=0.0001190 18; α (O)=2.01×10 ⁻⁵ 3; α (P)=1.323×10 ⁻⁶ 19					

 $^{186}_{76}\mathrm{Os}_{110}\text{--}10$

1					A	Adopted Lev	els, Gam	mas (continu	ed)
						$\gamma(^{18}$	⁶ Os) (cor	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger f}$	α^{e}	Comments
							_		E _γ : Wt. ave. of data from (α ,2n γ), (α ,4n γ), and (p,2n γ). I _γ : from (¹⁴ C,4n γ). Others: 12.5 38 (16.64 h ε decay), 26.7 53 (α ,4n γ), 26.4 24 (p,2n γ), and 16.1 50 (α ,2n γ). Unweighted average: 20 3.
1628.53	5-	557.8 ^b 4	29.8 9	1070.48	4+	E1		0.00608	α (K)=0.00510 8; α (L)=0.000764 11; α (M)=0.0001735 25 α (N)=4.21×10 ⁻⁵ 6; α (O)=7.17×10 ⁻⁶ 11; α (P)=5.01×10 ⁻⁷ 7 I _{γ} : From (¹⁴ C,4n γ).
		759.9 ^b 4	33.4 9	868.94	6+	(E1)		0.00326	B(E1)(W.u.)>8.5×10 ⁻⁸ α (K)=0.00274 4; α (L)=0.000403 6; α (M)=9.12×10 ⁻⁵ 13 α (N)=2.22×10 ⁻⁵ 4; α (O)=3.80×10 ⁻⁶ 6; α (P)=2.74×10 ⁻⁷ 4 I _γ : from (¹⁴ C,4nγ).
1640.81		730.35 17	82 ^{&} 11	910.473	3+				
1652.50	2+ 2 4+	873.32°C 14	100 7	1251.04	2+ 4+				
1653.58	2',3,4'	$301.87^{\circ} 20$	100° 19	010 472	4' 2+				
		$742.99^{-1}14$	98^{-20}	910.475	3 2+				
1704.6	(4^{+})	880.1 3 1271	100 37	/0/.4// 434.088	$\frac{2}{4^+}$				
1701.0	(1)	1567	75 25	137.15	2+				
1750.93	7+	475 [@] 1	83 <i>3</i>	1275.61	5+	Q			I _{γ} : from (¹⁴ C,4n γ). Other I γ : \approx 164 in (α ,4n γ). Mult.: from (¹⁴ C,4n γ).
		882 [@] 1	100 4	868.94	6^{+}				I_{γ} : from (¹⁴ C,4n γ).
1754.50	$2^{(+)}$	844.08 ^{&} 11	21.6 ^{&} 12	910.473	3+				
		987.03 ^{&} 10	100 ^{&}	767.477	2^{+}				
		1617.21 ^{&} 15	38 ^{&} 4	137.15	2^{+}				
		1754.4 ^{&} 3	42 ^{&} 4	0.0	0^+				
1771.9	(6 ⁻)	143.3 [‡]	100 [‡] 3	1628.53	5^{-}	D^{\ddagger}		2.01	
		903.2 [‡]	17.5 [‡] 9	868.94	6^{+}				
1774.69	(7 ⁻)	146.1 [@] 2	100 3	1628.53	5-	(E2) ^d		1.006	B(E2)(W.u.)=7.9 5 α (K)=0.374 6; α (L)=0.477 8; α (M)=0.1213 19 α (N)=0.0291 5; α (O)=0.00434 7; α (P)=3.41×10 ⁻⁵ 5 L ₂ : from (¹⁴ C.4n ₂).
		906.4 [‡]	2.30 [‡] <i>12</i>	868.94	6+	[E1]		0.00233	B(E1)(W.u.)= $3.8 \times 10^{-10} 3$ α (K)= $0.00197 3; \alpha$ (L)= $0.000285 4; \alpha$ (M)= $6.45 \times 10^{-5} 9$ (C)= $1.550 \pm 10^{-5} 22$
1775.8	4+,5+	423.6 705.1 <i>4</i>	100 22	1351.94 1070.48	4+ 4+	E2(+M1)	<-3	0.0196 77	$\alpha(N)=1.569\times10^{-5} 22; \ \alpha(O)=2.70\times10^{-6} 4; \ \alpha(P)=1.97\times10^{-7} 3$ E _y : from Coulomb excitation; γ unreported in other studies. $\alpha(K)=0.0161 \ 66; \ \alpha(L)=0.00268 \ 85; \ \alpha(M)=6.2\times10^{-4} \ 19$ $\alpha(N)=1.50\times10^{-4} \ 47; \ \alpha(O)=2.57\times10^{-5} \ 84; \ \alpha(P)=1.81\times10^{-6} \ 77$
		705.1 4	100 22	1070.48	4+	E2(+M1)	<-3	0.0196 77	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0161 \ 66; \ \alpha(\mathbf{L}) = 0.00268 \ 85; \ \alpha(\mathbf{M}) = 6.2 \times 10^{-4} \ \alpha(\mathbf{N}) = 1.50 \times 10^{-4} \ 47; \ \alpha(\mathbf{O}) = 2.57 \times 10^{-5} \ 84; \ \alpha(\mathbf{P}) = 1.812 \\ &\mathbf{E}_{\gamma}: \ \text{weighted average from} \ ^{186} \text{Ir} \ \varepsilon \ \text{decay} \ (16.64 \ \text{h}) \ \text{an} \\ &(\alpha, 2n\gamma). \end{aligned}$

 $^{186}_{76}\mathrm{Os}_{110}\text{--}11$

From ENSDF

¹⁸⁶₇₆Os₁₁₀-11

					A	dopted Level	s, Gamma	s (continued)
						$\gamma(^{186}$	Ds) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger f}$	α^{e}	Comments
1775.8	4+,5+	907 1343.1 ^g 11	65 22 26 ⁸ 3	868.94 434.088	$\frac{6^{+}}{4^{+}}$				
1812.47	(6)+	351.73 <i>13</i>	100 [‡] 8	1460.74	4+	(E2)		0.0576	α(K)=0.0395 6; α(L)=0.01376 20; α(M)=0.00337 5 α(N)=0.000815 12; α(O)=0.0001281 18; α(P)=4.06×10-6 6 E_{γ} : for triplet in which this transition is the major component.
		943.6 4	79 [‡] 11	868.94	6+	M1(+E2)	+0.4 5	0.0120 23	α (K)=0.0100 20; α (L)=0.0016 3; α (M)=0.00035 6 α (N)=8.6×10 ⁻⁵ 15; α (O)=1.5×10 ⁻⁵ 3; α (P)=1.12×10 ⁻⁶ 23
		1378.1 6	53 13	434.088	4+	E2		0.00270	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00221 \ 4; \ \alpha(\mathrm{L}) = 0.000353 \ 5; \ \alpha(\mathrm{M}) = 8.09 \times 10^{-5} \ 12 \\ &\alpha(\mathrm{N}) = 1.97 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 3.37 \times 10^{-6} \ 5; \ \alpha(\mathrm{P}) = 2.36 \times 10^{-7} \ 4; \\ &\alpha(\mathrm{IPF}) = 3.30 \times 10^{-5} \ 5 \end{aligned}$
1848.42	2+,3	777.85 ^{&} 22 938.00 ^{&} 12 1081.26 ^{&} 24 1414.06 ^{&} 22	$37^{\&} 4$ $100^{\&} 6$ $44^{\&} 4$ $30^{\&} 4$	1070.48 910.473 767.477 434.088	4 ⁺ 3 ⁺ 2 ⁺ 4 ⁺				
1916.1	4+,5,6+	1711.13 ^{&} 18 847 1046.6 ^c 6	90 [∞] 11 100 31 63 8	137.15 1070.48 868.94	2+ 4+ 6+				
1939.0	(7 ⁻)	167.3 [‡] 310.4 [‡]	$82^{\ddagger} 3$ $100^{\ddagger} 3$	1771.9 1628.53	(6 ⁻) 5 ⁻	D [‡] O [‡]			
1968.4	(8-)	193.7 [‡] 2	100 [‡]	1774.69	(7 ⁻)	(M1+E2) ^d		0.62 25	α (K)=0.45 27; α (L)=0.128 13; α (M)=0.031 5 α (N)=0.0075 11; α (O)=0.00120 9; α (P)=5.0×10 ⁻⁵ 33
1976.0?		700.37 ¹	100	1275.61	5+				
2015.5	8+	524.0‡	100 [‡] 4	1491.28	6+	(E2)		0.0203	$\alpha(K)=0.01541\ 22;\ \alpha(L)=0.00376\ 6;\ \alpha(M)=0.000899\ 13$ $\alpha(N)=0.000218\ 3;\ \alpha(O)=3.54\times10^{-5}\ 5;\ \alpha(P)=1.639\times10^{-6}\ 23$ B(E2)(W.u.)=99\ 18 I _y : from (¹⁴ C,4ny). Mult.: O from (¹⁴ C,4ny).
		1146.8 [‡]	25.4 [‡] 13	868.94	6+	[E2]			B(E2)(W.u.)=62
2031.3	4+	679.5 ⁱ 5	21 10	1351.94	4+	M1		0.0300	$\alpha(K)=0.0249 \ 4; \ \alpha(L)=0.00388 \ 6; \ \alpha(M)=0.000887 \ 13 \ \alpha(N)=0.000217 \ 3; \ \alpha(O)=3.75\times10^{-5} \ 6: \ \alpha(P)=2.83\times10^{-6} \ 4$
		1121.1 6	57 10	910.473	3+				<pre></pre>
		1264.7 8	91 9	767.477	2+	E2		0.00315	α (K)=0.00260 4; α (L)=0.000422 6; α (M)=9.70×10 ⁻⁵ 14 α (N)=2.36×10 ⁻⁵ 4; α (O)=4.02×10 ⁻⁶ 6; α (P)=2.77×10 ⁻⁷ 4; α (PE)=1.183×10 ⁻⁵ 20
		1597.1 8	100 9	434.088	4+	M1		0.00366	$\alpha(\text{M}^{-1})^{-1.163\times10}$ 20 $\alpha(\text{K})=0.002945; \alpha(\text{L})=0.0004457; \alpha(\text{M})=0.0001014$ 15 $\alpha(\text{N})=2.48\times10^{-5}4; \alpha(\text{O})=4.29\times10^{-6}6; \alpha(\text{P})=3.29\times10^{-7}5;$
		1893.7 5	27 7	137.15	2+				$\alpha(1\Gamma\Gamma)=0.0001400\ 21$

From ENSDF

						$\gamma(1)$	⁸⁶ Os) (contin	ued)	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger f}$	α^{e}	Comments
2056.65	5+,6+	352 565.4 <i>4</i>	39 <i>13</i> 43 <i>13</i>	1704.6 1491.28	(4^+) 6^+	M1+E2		0.033 16	$\alpha(K)=0.027 \ 14; \ \alpha(L)=0.0046 \ 17; \ \alpha(M)=0.00108 \ 36 \ \alpha(N)=2.62 \times 10^{-4} \ 89; \ \alpha(O)=4.4 \times 10^{-5} \ 17; \ \alpha(P)=3.0 \times 10^{-6} \ 16$
		780.8 <i>4</i> 1187.9 ^g 4	57 <i>17</i> 222 <mark>8</mark> 26	1275.61 868.94	5+ 6+				$E\gamma$ is for doublet; divided $I\gamma$ given.
		1621.7 20	100 9	434.088	4+	(E2)		0.00208	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.001642\ 24;\ \alpha(\mathrm{L}) = 0.000254\ 4;\ \alpha(\mathrm{M}) = 5.80 \times 10^{-5}\ 9 \\ &\alpha(\mathrm{N}) = 1.413 \times 10^{-5}\ 20;\ \alpha(\mathrm{O}) = 2.43 \times 10^{-6}\ 4; \\ &\alpha(\mathrm{P}) = 1.748 \times 10^{-7}\ 25;\ \alpha(\mathrm{IPF}) = 0.0001099\ 18 \end{aligned} $
2068.4	10+	647.7 7	100	1420.94	8+	E2 ^d		0.01240	Mult.: E1,E2 from α (K)exp; $\Delta \pi$ =no from level scheme. B(E2)(W.u.)=1.9×10 ² 6
									$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00971 \ 14; \ \alpha(\mathrm{L}) = 0.00206 \ 3; \ \alpha(\mathrm{M}) = 0.000486 \ 7 \\ \alpha(\mathrm{N}) = 0.0001180 \ 17; \ \alpha(\mathrm{O}) = 1.95 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) = 1.041 \times 10^{-6} \\ 15 \end{array} $
2081.57	4+	729.5 4	12.4 25	1351.94	4+	M1+E2		0.0173 78	E _γ : Wt. ave. of data from (α ,2nγ) and (α ,4nγ). α (K)=0.0142 67; α (L)=0.00237 87; α (M)=5.5×10 ⁻⁴ 20 α (N)=1.33×10 ⁻⁴ 48; α (O)=2.27×10 ⁻⁵ 85; α (P)=1.59×10 ⁻⁶
		805.5 5	24.8 17	1275.61	5+	M1+E2		0.0136 59	$\alpha(K)=0.0112 \ 50; \ \alpha(L)=0.00184 \ 67; \ \alpha(M)=4.2\times10^{-4} \ 15 \ \alpha(N)=1.03\times10^{-4} \ 37; \ \alpha(O)=1.76\times10^{-5} \ 66; \ \alpha(P)=1.25\times10^{-6} \ 59$
		1011.1 5	15.7 <i>17</i>	1070.48	4+	M1		0.01094	$\alpha(K)=0.00912 \ 13; \ \alpha(L)=0.001402 \ 20; \ \alpha(M)=0.000320 \ 5 \ \alpha(N)=7.81\times10^{-5} \ 11; \ \alpha(O)=1.352\times10^{-5} \ 19; \ \alpha(P)=1 \ 0.027\times10^{-6} \ 15$
		1171.5 5	31 5	910.473	3+	M1+E2	+2.0 4	0.0044 4	$\alpha(K) = 0.0037 \ 3; \ \alpha(L) = 0.00059 \ 4; \ \alpha(M) = 0.000136 \ 9$ $\alpha(N) = 3.30 \times 10^{-5} \ 22; \ \alpha(O) = 5.7 \times 10^{-6} \ 4; \ \alpha(P) = 4.0 \times 10^{-7} \ 4;$ $\alpha(IPF) = 2.46 \times 10^{-6} \ 11$
		1213	8.3 25	868.94	6+				
		1314.4 ^h 6	35 ^h 11	767.477	2+	(E2)		0.00294	$\begin{aligned} &\alpha(\text{K}) = 0.00242 \ 4; \ \alpha(\text{L}) = 0.000389 \ 6; \ \alpha(\text{M}) = 8.94 \times 10^{-5} \ 13 \\ &\alpha(\text{N}) = 2.18 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 3.71 \times 10^{-6} \ 6; \ \alpha(\text{P}) = 2.58 \times 10^{-7} \\ &4; \ \alpha(\text{IPF}) = 1.95 \times 10^{-5} \ 3 \end{aligned}$
		1647.4 6	100 5	434.088	4+	E2+M1	+0.073 10	0.00342	α (K)=0.00272 4; α (L)=0.000411 6; α (M)=9.37×10 ⁻⁵ 14 α (N)=2.29×10 ⁻⁵ 4; α (O)=3.97×10 ⁻⁶ 6; α (P)=3.04×10 ⁻⁷ 5; α (IPF)=0.0001732 25
2119.9?		1251 ⁱ	100	868.94	6+				
2133.8	(8 ⁻)	195.0 [‡]	34.1 [‡] <i>14</i>	1939.0	(7 ⁻)			0.846	
		361.9 [‡]	100 [‡] 3	1771.9	(6 ⁻)	Q [‡]			
2135.1?	3+,4+,5+	1701.0 ⁱ 7	100	434.088	4+	M1(+E2)		0.0026 7	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00201 \ 51; \ \alpha(\mathbf{L}) = 0.00031 \ 8; \ \alpha(\mathbf{M}) = 7.0 \times 10^{-5} \ 17 \\ &\alpha(\mathbf{N}) = 1.7 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 2.9 \times 10^{-6} \ 8; \ \alpha(\mathbf{P}) = 2.21 \times 10^{-7} \ 61; \\ &\alpha(\mathbf{IPF}) = 0.00017 \ 4 \\ &\delta(\mathbf{D},\mathbf{Q}) = -0.044 \ 15, \ -0.67, \ +0.45, \ \text{respectively, for J}(2135 \ \text{level}) = 4, \ 3, \ 5 \ (\text{from } \gamma(\theta,\mathbf{H},\mathbf{T}), \ 1982\text{All11}). \end{aligned}$

Adopted Levels, Gammas (continued)											
						γ(¹⁸⁶ C	(continue) (continue	<u>d)</u>			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{e}	Comments			
2165.6	(9 ⁻)	197.2 [‡] 2	100 [‡] 3	1968.4	(8-)	M1	0.820	B(M1)(W.u.)=0.000273 23 α (K)=0.679 10; α (L)=0.1093 16; α (M)=0.0251 4 α (N)=0.00612 9; α (O)=0.001057 16; α (P)=7.88×10 ⁻⁵ 12 I _y ,Mult.: from (¹⁴ C,4n γ).			
		226.7 [‡]	1.93 [‡] 9	1939.0	(7 ⁻)	[E2]	0.219	B(E2)(W.u.)=0.028 3 α (K)=0.1223 18; α (L)=0.0733 11; α (M)=0.0184 3 α (N)=0.00442 7; α (O)=0.000674 10; α (P)=1.170×10 ⁻⁵ 17			
2188.1	(9 ⁻)	220.0 [@] 5	100 3	1968.4	(8 ⁻)	(M1)	0.605 10	$\alpha(K)=0.501 \ 8; \ \alpha(L)=0.0805 \ 13; \ \alpha(M)=0.0185 \ 3 \\ \alpha(N)=0.00451 \ 7; \ \alpha(O)=0.000779 \ 12; \ \alpha(P)=5.81\times10^{-5} \ 9 \\ I_{\gamma}: \ from \ (^{14}C,4n\gamma). Mult=D \ from \ \gamma(\theta) \ for \ contaminated \ line.$			
		413.3 [@] 3	87 <i>3</i>	1774.69	(7 ⁻)	Q		I_{γ} ,Mult.: from (¹⁴ C,4n γ).			
2222.8?	4+	447.0^{l} 6	100 50	1775.8	4+,5+						
222.42		$1789.0^{l} 20$	56 6	434.088	4 ⁺	E0+M1+E2					
2234?	(0+)	1800.1 25	100	434.088	4 ⁺						
2257.8	(81)	445.3^{\ddagger}	100*	1812.47	(6) ⁺						
2302.97	0+	1434 566 6 [‡]	100	000.94 1750.03	0 7+	O^{\ddagger}					
2319.1	9 (9 ⁻)	216.5^{\ddagger}	24.8 10	2133.8	(8^{-})	Q' D [‡]					
2550.0	())	410.7^{\ddagger}	100^{\ddagger} 3	1939.0	(0^{-})	0 [‡]					
2377.1	5+,6+	1508.1 7	100 8	868.94	6+	M1	0.00415	$\begin{aligned} &\alpha(\text{K}) = 0.00338 \ 5; \ \alpha(\text{L}) = 0.000514 \ 8; \ \alpha(\text{M}) = 0.0001169 \ 17 \\ &\alpha(\text{N}) = 2.85 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 4.95 \times 10^{-6} \ 7; \ \alpha(\text{P}) = 3.79 \times 10^{-7} \ 6; \\ &\alpha(\text{IPF}) = 0.0001017 \ 15 \\ &\delta(\text{D},\text{Q}) = -0.07 \ 3 \ \text{if J}(2377 \ \text{level}) = 6; \ \text{from } \gamma(\theta,\text{H},\text{T}) \ \text{in } ^{186}\text{Ir } \varepsilon \ \text{decay} \\ &(16.40 \ \text{h}). \end{aligned}$			
		1943	67 21	434.088	4+						
2431.2	(10 ⁻)	243.3 [‡]	16.6 [‡] 7	2188.1	(9 ⁻)	D [‡]					
		265.7 ^{^w} 2	100+ 3	2165.6	(9-)	D+Q+					
0.425.0	(10-)	462.8 ^{°°} 2	$64.6\ 22$	1968.4	(8 ⁻)	D [†]		I_{γ} : from (¹⁴ C,4n γ).			
2435.2	(10)	247.2*	43.5+ 15	2188.1	(9)	D^{+}					
		269.5 ⁺	100 + 3	2165.6	(9)	D^{+}					
2550 72		400.8 ¹ 1600.8 ¹ 10	39.31 <i>19</i>	1908.4 868.94	(8) 6 ⁺	Q,					
2562.9	(10^{+})	132.3 [‡]	2.05^{\ddagger} 13	2431.2	(10^{-})						
2502.7	(10)	397.2 [‡] 2	$100^{\ddagger} 3$	2165.6	(9 ⁻)	D^{\ddagger}					
		1142.1 [‡]	2.45 [‡] 13	1420.94	8+	-					
2587.6	(10 ⁻)	237.6 [‡]	21.3 [‡] 8	2350.0	(9 ⁻)	D‡					
		453.9 [‡]	100 [‡] 3	2133.8	(8 ⁻)	Q [‡]					

From ENSDF

 $^{186}_{76}\mathrm{Os}_{110}\text{--}14$

 $^{186}_{76}\mathrm{Os}_{110}$ -14

$\gamma(^{186}\text{Os})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{e}	Comments
2599.2	$4^{(+)}, 5, 6^{(+)}$	1730		868.94	6+			
		2165.2 5		434.088	4+			5
2606.3?	(5+,6+)	1737.8 20	100 9	868.94	6+	(M1+E2)	0.0025 6	$\alpha(K)=0.0019 5; \ \alpha(L)=0.00029 7; \ \alpha(M)=6.6\times10^{-5} 16 \\ \alpha(N)=1.6\times10^{-5} 4; \ \alpha(O)=2.8\times10^{-6} 7; \ \alpha(P)=2.10\times10^{-7} 57; \\ \alpha(IPF)=0.00019 4$
		2172.2 5	29 6	434.088	4+			· · ·
2620.0	5+,6+	1751.4 9	100 5	868.94	6+	M1	0.00303	$\alpha(K)=0.00234 \ 4; \ \alpha(L)=0.000354 \ 5; \ \alpha(M)=8.06\times10^{-5} \ 12 \\ \alpha(N)=1.97\times10^{-5} \ 3; \ \alpha(O)=3.41\times10^{-6} \ 5; \ \alpha(P)=2.62\times10^{-7} \ 4; \\ \alpha(IPF)=0.000233 \ 4$
		2185.8 5	75 9	434.088	4+			
2624.9	(10 ⁺)	609.4 [‡]	100 [‡]	2015.5	8+	(E2) [‡]	0.01424	α (K)=0.01106 <i>16</i> ; α (L)=0.00243 <i>4</i> ; α (M)=0.000577 <i>8</i> α (N)=0.0001399 <i>20</i> ; α (O)=2.30×10 ⁻⁵ <i>4</i> ; α (P)=1.184×10 ⁻⁶ <i>17</i> B(E2)(W.u.)=9.E+1 +4-3
2666.5	(6)+	1107.1 <i>15</i>	97 12	1559.8	(5)+	(E2)	0.00406	$\alpha(K)=0.00333 5; \alpha(L)=0.000562 8; \alpha(M)=0.0001296 19 \alpha(N)=3.15\times10^{-5} 5; \alpha(O)=5.35\times10^{-6} 8; \alpha(P)=3.57\times10^{-7} 5; \alpha(IPF)=2.50\times10^{-7} 17$
		1314.4 <mark>h</mark>	100 ^h 30	1351.94	4+			
2698.6	(11^{-})	263.6 [‡]	7.8 [‡] 4	2435.2	(10^{-})			
	. ,	267.3 [‡]	17.1 [‡] 7	2431.2	(10 ⁻)	D [‡]		
		510.6 [‡]	100 [‡] 3	2188.1	(9 ⁻)	Q [‡]		
2714.3	(11 ⁻)	279.1 [‡]	100 [‡] 3	2435.2	(10 ⁻)	D^{\ddagger}		
		283.0 [‡]	48.0 [‡] 16	2431.2	(10 ⁻)	D^{\ddagger}		
		549.2 [‡]	20.2 [‡] 7	2165.6	(9 ⁻)			
2771.8?	(4^{+})	2339.7 ⁱ 5	100	434.088	4+	E0+M1+E2		α (K)exp=0.0019
2781.7	12+	713.3 [@] 5	100	2068.4	10+	E2 ^d	0.01002	B(E2)(W.u.)=166 +23-132 α (K)=0.00794 12; α (L)=0.001594 23; α (M)=0.000375 6 α (N)=9.10×10 ⁻⁵ 13; α (O)=1.510×10 ⁻⁵ 22; α (P)=8.52×10 ⁻⁷ 12
2787.9	(10 ⁺)	530.1 [‡]	100 [‡]	2257.8	(8+)			
2805.9	(11 ⁺)	243.0 [@] 2	100	2562.9	(10 ⁺)	(M1+E2) ^d	0.32 15	α (K)=0.24 <i>14</i> ; α (L)=0.058 <i>3</i> ; α (M)=0.01393 <i>22</i> α (N)=0.00338 <i>7</i> ; α (O)=0.00055 <i>4</i> ; α (P)=2.7×10 ⁻⁵ <i>18</i>
2852.2	(11 ⁻)	264.5 [‡]	19.4 [‡] 8	2587.6	(10 ⁻)			
		502.2 [‡]	100 [‡] 3	2350.0	(9 ⁻)	Q [‡]		
2919.89	$1,2^{+}$	1071.40 ^{&} <i>17</i>	100 <mark>&</mark> 9	1848.42	2+,3			
		1165.4 ^{&} 3	43 ^{&} 11	1754.50	$2^{(+)}$			
		2920.2 ^{&} 4	27 <mark>&</mark> 5	0.0	0^{+}			
2958.1	(11^{+})	639.0 [‡]	100 [‡]	2319.1	9+	Q [‡]		
2958.4?	+	1467.1 ^{<i>i</i>} 18	100	1491.28	6+	E2	0.00243	$\begin{aligned} &\alpha(\text{K}) = 0.00197 \ 3; \ \alpha(\text{L}) = 0.000311 \ 5; \ \alpha(\text{M}) = 7.11 \times 10^{-5} \ 11 \\ &\alpha(\text{N}) = 1.731 \times 10^{-5} \ 25; \ \alpha(\text{O}) = 2.96 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 2.10 \times 10^{-7} \ 3; \\ &\alpha(\text{IPF}) = 5.73 \times 10^{-5} \ 10 \end{aligned}$

15

$\gamma(^{186}\text{Os})$	(continued)
---------------------------	-------------

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [†]
2977.2	(12^{-})	278.5 [‡]	48.4 [‡] 20	2698.6	(11^{-})	
		542.0 [‡]	75.3 [‡] 25	2435.2	(10 ⁻)	0 [‡]
		545.9 [‡]	$100^{\ddagger} 4$	2431.2	(10 ⁻)	0 [‡]
2978.4?		2544.3 ⁱ 5	100	434.088	4+	
3007.0	(12^{-})	292.4 [‡]	100 [‡] 3	2714.3	(11^{-})	D‡
		571.6 [‡]	37.2 [‡] 14	2435.2	(10^{-})	O [‡]
		575.8 [‡]	29.9 [‡] 11	2431.2	(10 ⁻)	-
3039.0	(12^{+})	233.1 [@] 2	100 [‡] 3	2805.9	(11^{+})	D‡
	. ,	476.1 [‡]	46.3 [‡] 17	2562.9	(10^{+})	
		971.1 [‡]	65.9 [‡] 20	2068.4	10+	Q [‡]
3110.1?		2676 ⁱ	100	434.088	4+	-
3123.2	(12^{-})	535.6 [‡]	100 [‡]	2587.6	(10 ⁻)	Q‡
3185.1?		2751 ⁱ	100	434.088	4+	-
3186.4	(12^{+})	380.2 [‡]	28.2 [‡] 12	2805.9	(11^{+})	
		623.6 [‡]	100 [‡] 3	2562.9	(10^{+})	Q‡
		1118.3 [‡]	82 [‡] 3	2068.4	10+	Q [‡]
3214.5?		2780.4 5	100	434.088	4+	
3221.4	(12^{+})	1153.3 [‡]	100 [‡]	2068.4	10^{+}	Q [‡]
3226.3?		2357.3 5	100	868.94	6+	
3252.7?	(6^{+})	2383.7 ¹ 5	100	868.94	6+	E0+M1+E2
3268.9?		2399.1 ¹ 5	52 7	868.94	6+	E0+M1+E2
		2835.2 ¹ 5	100 10	434.088	4+	
		3132.2 ¹ 5	6.0 10	137.15	2^{+}	
3288.8	(13 ⁻)	311.5	8.9 [‡] 5	2977.2	(12 ⁻)	
		590.5 [‡]	$100^{\ddagger} 3$	2698.6	(11 ⁻)	Q [‡]
3293.7	(13^{+})	254.6 [‡]	93 [‡] 3	3039.0	(12^{+})	D [‡]
		488.0 [‡]	100 [‡] 3	2805.9	(11^{+})	Q [‡]
3296.2	(12^{+})	671.3 [‡]	100‡	2624.9	(10^{+})	Q [‡]
3309.1	(13 ⁻)	302.1 [‡]	75.9 [‡] 24	3007.0	(12 ⁻)	D‡
		595.3 [‡]	100 [‡] 3	2714.3	(11 ⁻)	Q [‡]
3414.3?	(4 ⁺)	1334.0 ⁱ 15	100 23	2081.57	4+	E0+M1+E2
		2138.6 ⁱ 5	54 10	1275.61	5+	
		2980.1 ⁱ 5	49 10	434.088	4+	
3425.5	(13 ⁻)	573.3 [‡]	100 [‡]	2852.2	(11 ⁻)	Q [‡]
3431.9	(13 ⁺)	210.7 [‡]	7.0 [‡] 3	3221.4	(12^{+})	
		245.5 [‡]	100 [‡] 3	3186.4	(12^{+})	D^{\ddagger}

Adopted Levels, Gammas (continued)												
	γ ⁽¹⁸⁶ Os) (continued)											
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α^{e}	Comments					
3431.9	(13^{+})	392.3 [‡]	40.5 [‡] 12	3039.0 (12 ⁺)	D‡							
		626.2 [‡]	66.8 [‡] 21	2805.9 (11 ⁺)	Q [‡]							
3440.4	(14 ⁺)	148.5 ^{‡i}	0.83 [‡] 3	3293.7 (13 ⁺)	-							
		401.1 [‡]	3.1 [‡] 2	3039.0 (12 ⁺)	(E2) [‡]	0.0402	B(E2)(W.u.)<28 α (K)=0.0287 4; α (L)=0.00876 13; α (M)=0.00213 3 α (N)=0.000515 8; α (O)=8.18×10 ⁻⁵ 12; α (P)=2.99×10 ⁻⁶ 5					
		658.5 [@] 5	100 [‡] 3	2781.7 12+	(E2) [‡] <i>d</i>	0.01195	α (K)=0.00938 <i>14</i> ; α (L)=0.00197 <i>3</i> ; α (M)=0.000465 7 α (N)=0.0001128 <i>16</i> ; α (O)=1.86×10 ⁻⁵ <i>3</i> ; α (P)=1.006×10 ⁻⁶ <i>15</i> B(E2)(W.u.)<75					
3506.2	(13)	319.8 [‡]	100 [‡]	3186.4 (12 ⁺)								
3557.4	(14-)	268.2 ^{‡i}	6.1 6	3288.8 (13-)								
		580.2 [‡]	100 3	2977.2 (12-)	Q [‡]							
3558.4	14+	777‡	100 [‡]	2781.7 12+	Q [‡]							
3623.8	(14 ⁻)	314.7	42.1 [‡] 13	3309.1 (13 ⁻)	D [‡]							
		616.6+	100+ 3	3007.0 (12 ⁻)	(Q) †							
3630.2	(13+)	672.1 ^w	100	2958.1 (11+)	- +							
3731.0	(15 ⁺)	299.1+	100+	3431.9 (13+)	Q+							
3760.8?	(14^{-})	637.6 *	100+	$3123.2 (12^{-})$	D [†]							
3816.5	(15')	258.4 *	14.8 ⁺ 5	3558.4 14	D∓							
		$\frac{3}{0.5^{+}}$	13.2* 8	$3440.4 (14^{+})$ $3202.7 (12^{+})$	o^{\ddagger}							
2025.2	(16^{+})	525.1^{+}	1 22 5	$3293.7 (13^{\circ})$	Q,							
3933.2	(10)	276.9	$1.52^{\circ} 5$ $1.45^{\ddagger} 7$	3610.3 (13) $3558 4 14^+$	o‡							
		10.8°	100 3	3338.4 14 $3440.4 (14^+)$								
3940.6	(15^{-})	652 1 [‡]	100 \$	$3288 \ 8 \ (13^{-})$	Q^{\dagger}							
3946.2	(15^{-})	322.2^{\ddagger}	22.2 \$ 9	$3623.8 (14^{-})$	х Д							
071012	(10)	637.4 [‡]	$100^{\ddagger} 4$	$3309.1 (13^{-})$	O^{\ddagger}							
4062.4	(15^{-})	636.9 [‡]	100	$3425.5 (13^{-})$	×							
4100.0	(16^+)	368.9 [‡]	100	3731.0 (15 ⁺)	D‡							
4169.8	(16 ⁻)	612.4 [‡]	100 [‡]	3557.4 (14 ⁻)	0 [‡]							
4242.2	(16 ⁺)	683.8 [‡]	100	3558.4 14+	Q [‡]							
4283.1	(16 ⁻)	336.9 [‡]	9.8 [‡] 6	3946.2 (15 ⁻)	-							
	. ,	659.3 [‡]	100 [‡] 3	3623.8 (14-)								
4351.3	(16 ⁺)	793.0 [‡]	78 [‡] 6	3558.4 14+								
		910.9 [‡]	100 [‡] 6	3440.4 (14 ⁺)								

 $^{186}_{76}\mathrm{Os}_{110}\text{--}17$

н

 $^{186}_{76}\mathrm{Os}_{110}$ -17

From ENSDF

Adopted Levels, Gammas (continued)											
γ ⁽¹⁸⁶ Os) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{e}	Comments			
4414.2	(17 ⁺)	478.5 [‡]	23.9 [‡] 9	3935.2	(16 ⁺)	D^{\ddagger}					
		598.2 [‡]	100 [‡] 3	3816.5	(15^{+})	Q [‡]					
4483.4	(17^{+})	383.2 [‡]	100 [‡] 3	4100.0	(16^{+})	D‡					
		752.4 [‡]	39.7 [‡] 14	3731.0	(15^{+})						
4487.0	(16 ⁻)	726.2 [‡]	100 [‡]	3760.8?	(14 ⁻)						
4494.7	(18^{+})	394.64	1.90‡ 6	4100.0	(16 ⁺)	[E2]		B(E2)(W.u.)>2.7			
		559.4 [®] 5	100 3	3935.2	(16 ⁺)	(E2)	0.01738	$\alpha(K)=0.01333 \ I9; \ \alpha(L)=0.00310 \ 5; \ \alpha(M)=0.000739 \ I1$ $\alpha(N)=0.000179 \ 3; \ \alpha(O)=2.92\times10^{-5} \ 5; \ \alpha(P)=1.422\times10^{-6} \ 20$ B(E2)(W.u.)>0.31 $I_{\gamma}: From ({}^{14}C,4n\gamma).$ What is Ω from DCO ratio for accords with (α 4nd)			
4505 1	(18^{+})	569 9 [@] 1	100	3935 2	(16^{+})	O^{\ddagger}		Mult Q from Deo ratio for cascade γ in $(a, 4ir\gamma)$.			
4624 4	(10^{-})	678.4^{\ddagger}	100^{\ddagger}	3946.2	(10^{-})	Q [†]					
1021.1	(17)	684.0 [‡]	45.6 [‡] 16	3940.6	(15^{-})	×					
4637.1?	(17^{-})	691.3 [‡] <i>i</i>	56.8 [‡] 18	3946.2	(15 ⁻)						
		696.8 [‡] i	100 [‡] 3	3940.6	(15 ⁻)	Q‡					
4760.2	(17 ⁻)	697.8 [‡]	100 [‡]	4062.4	(15 ⁻)	Q [‡]					
4818.7	(18 ⁻)	648.9 [‡]	100‡	4169.8	(16 ⁻)	Q‡					
4869.6	(18^{+})	386.0 [‡]	100 [‡] 4	4483.4	(17^{+})						
		769.8 [‡]	86 [‡] 4	4100.0	(16^{+})						
4957.4	(19 ⁺)	462.8 [@] 1	100	4494.7	(18 ⁺)	D+Q		Mult., δ : From DCO ratio in (α ,4n γ); mult=D+Q and δ =-1.5 +5-13 or -0.62 +18-38.			
4963.5	(18^{+})	721.3 [‡]	100‡	4242.2	(16 ⁺)	Q [‡]					
5025.7	(18 ⁻)	531.0 [@] 1	100	4494.7	(18 ⁺)	Q+D		Mult.: from DCO ratio in $(\alpha, 4n\gamma)$ E=50,55 MeV. Likely M2(+E1) The lifetime of the state limits the M2 component to < 9%.			
5107.1	(19 ⁺)	692.9 [‡]	100 [‡]	4414.2	(17^{+})	Q [‡]					
5167.8	(20^{+})	662.7 [@] 1	100	4505.1	(18+)	Q					
5243.9	(19 ⁻)	218.2 [‡]	100 [‡]	5025.7	(18 ⁻)	D [‡]					
5331.9	(19 ⁻)	306.2 ^(a) 1	99 [‡] 3	5025.7	(18-)						
		707.9 [‡]	100 [‡] 3	4624.4	(17-)	(E2) [‡]		B(E2)(W.u.)>0.1 Mult.: Q from (14 C,4n γ), M2 is excluded by RUL.			
5374.3	(20^{+})	416.9 [@] 1	25.3 [‡] 8	4957.4	(19^{+})	D‡					
		879.6 [@] 1	100 [‡] 3	4494.7	(18^{+})	Q [‡]					
5489.9	(20 ⁻)	671.2 [‡]	100 [‡]	4818.7	(18 ⁻)						
5496.4	(20^{+})	539.5 [‡]	100 [‡] 3	4957.4	(19^{+})	D [‡]					
		1002.1 [‡]	35.3 [‡] 12	4494.7	(18 ⁺)	Q [‡]					

From ENSDF

$^{186}_{76}\mathrm{Os}_{110}\text{--}18$

 $^{186}_{76}\mathrm{Os}_{110}$ -18

Adopted Levels, Gammas (continued)												
	γ ⁽¹⁸⁶ Os) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	α ^e	Comments					
5501.0	(20^{+})	543.5 [@] 1	$100^{\ddagger} 3$	4957.4 (19 ⁺)	D‡							
	()	1006.8 [‡]	36.7 [‡] 12	4494.7 (18 ⁺)	0 [‡]							
5560.4	(20^{-})	228.6 [‡]	100 [‡]	5331.9 (19 ⁻)	‡							
5564.8	(20 ⁻)	539.1 [@] 1	100	5025.7 (18 ⁻)	(Q)		Mult.: from DCO ratio in $(\alpha, 4n\gamma)$.					
5670.5	(20^{+})	800.9 [‡]	100 [‡]	4869.6 (18 ⁺)								
5701.9	(21^{+})	200.9 [@] 1	42.8 [‡] 14	5501.0 (20 ⁺)	D‡							
		206.0 [‡]	17.3 [‡] 7	5496.4 (20 ⁺)								
		327.5 [@] 1	100 [‡] 3	5374.3 (20 ⁺)	D^{\ddagger}							
5781.7	(20^{+})	818.2 [‡]	100 [‡]	4963.5 (18+)	(Q) [‡]							
5832.9	(21-)	501.0 [@] 1	100	5331.9 (19-)			E_{γ} : for doublet.					
5888.8	(21^{+})	781.7 [‡]	100 [‡]	5107.1 (19 ⁺)	(Q) [‡]							
5902.1	(21 ⁻)	341.7 [‡]	100 [‡] 3	5560.4 (20 ⁻)								
		570.2 [‡]	$80^{\ddagger} 4$	5331.9 (19 ⁻)								
5915.3	(22^{+})	747.5 [@] 1	100	5167.8 (20 ⁺)	Q [‡]							
5922.8	(21^{+})	421.8 [‡]	100^{\ddagger}	5501.0 (20+)								
5923.1	(21^{+})	426.7 [‡]	100 [‡]	5496.4 (20+)								
6026.9	(22^{+})	530.7 [‡]	46.6 [‡] 17	5496.4 (20 ⁺)	Q [‡]							
		652.4 [‡]	100 [‡] 3	5374.3 (20 ⁺)	Q [‡]							
6031.0	(22^{+})	530.1 [‡]	100 [‡] 3	5501.0 (20 ⁺)								
		534.6 [‡]	41.6 [‡] <i>13</i>	5496.4 (20 ⁺)								
		656.6 [‡]	84.3 [‡] 26	5374.3 (20 ⁺)	Q [‡]							
6064.3	(22^{+})	362.4 [‡]	100 [‡]	5701.9 (21+)								
6151.9	(24 ⁺)	120.9 [‡]	100 [‡]	6031.0 (22 ⁺)	(Q) [‡]							
6185.4?	(22 ⁻)	695.7 ^{‡1}	100 [‡]	5489.9 (20 ⁻)	(Q) [‡]							
6446.4?	(22^{+})	524.6 ^{‡1}	100	5922.8 (21+)								
6473.4	(25^{+})	321.5 [‡]	100 [‡]	6151.9 (24 ⁺)	D [‡]							
6487.9	(24^{+})	456.9 [‡]	100 [‡] 3	6031.0 (22 ⁺)	Q [‡]							
		460.9 [‡]	41.5 [#] <i>13</i>	6026.9 (22 ⁺)								
6727.9	(24 ⁺)	812.6 [‡]	100 [‡]	5915.3 (22+)	Q [‡]							
6946.6?	(26^{+})	474.2 [‡]	100	6473.4 (25 ⁺)								
6989.1	(26^{+})	501.2	100	6487.9 (24+)	Q [‡]							
6993.0	(25^{+})	505.1	100	6487.9 (24+)	D [‡]							
7142.9	(28+)	153.8 [‡]	100‡	6989.1 (26 ⁺)	(E2) [‡]	0.834	B(E2)(W.u.)>75.2 Mult.: Q from (^{14}C ,4n γ), M2 is excluded by RUL.					
7477.4	(26 ⁺)	484.4 [‡]	100 [‡]	6993.0 (25 ⁺)								

 $^{186}_{76}\mathrm{Os}_{110}$ -19

γ (¹⁸⁶Os) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.
7583.2	(26 ⁺)	855.3 [‡]	100‡	6727.9	(24+)	(Q) [‡]
7710.3	(30^{+})	567.4 [‡]	100‡	7142.9	(28 ⁺)	
7749.7	(30 ⁺)	606.8 [‡]	100‡	7142.9	(28 ⁺)	Q [‡]
7778.4	(30^{+})	635.5 [‡]	100 [‡]	7142.9	(28^{+})	

[†] From ¹⁸⁶Ir ε decay (16.64 h), unless noted otherwise.

[‡] From (${}^{14}C,4n\gamma$).

[#] Weighted average of γ data from source datasets. Exceptions are noted.

[@] From $(\alpha, 4n\gamma)$.

20

[&] From ¹⁸⁶Ir ε decay (1.90 h).

^{*a*} Wt. ave. of data from ¹⁸⁶Ir ε decay (1.90 h), (α ,2n γ), and ¹⁸⁶Ir ε decay (16.64 h).

^b Wt. ave. of data from (α ,2n γ), (p,2n γ), and ¹⁸⁶Ir ε decay (16.64 h).

^c Different placements are required for the 1047 gammas reported in ¹⁸⁶Ir ε decay (16.64 h) and in ¹⁸⁶Ir ε decay (1.90 h). In the former decay, $\gamma\gamma$ coin establishes a 1915 level deexcited by a 1047 γ and a 847 γ of comparable strength, whereas in the latter decay the 847 γ is absent, as is the level which the 1047 γ would feed. Placement of the 1047 γ in ¹⁸⁶Ir ε decay (1.90 h) from the 1480 level is questioned by the evaluator, however, due to lack of expected corroborative evidence from (α ,2n γ) or ¹⁸⁶Ir ε decay (16.64 h).

^d From $\gamma(\theta)$ in $(\alpha, 4n\gamma)$, assuming that Q transitions are E2 and that D intraband transitions are M1.

^e Additional information 1.

^f If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^g Multiply placed with undivided intensity.

^{*h*} Multiply placed with intensity suitably divided.

^{*i*} Placement of transition in the level scheme is uncertain.

¹⁸⁶₇₆Os₁₁₀

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{186}_{76}\mathrm{Os}_{110}$

 $^{186}_{76}\mathrm{Os}_{110}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁶₇₆Os₁₁₀

8+

4+

 4^{+}

 0^+

Adopted Levels, Gammas

¹⁸⁶₇₆Os₁₁₀

 $^{186}_{76}\mathrm{Os}_{110}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

¹⁸⁶₇₆Os₁₁₀

 $^{186}_{76}\mathrm{Os}_{110}$

 $^{186}_{76}\mathrm{Os}_{110}$

¹⁸⁶₇₆Os₁₁₀