History Author Citation Literature Cutoff Date Type Full Evaluation J. C. Batchelder and A. M. Hurst, M. S. Basunia NDS 183, 1 (2022) 1-Mar-2022

 $Q(\beta^{-})=-1308\ 27;\ S(n)=6.91\times10^{3}\ 3;\ S(p)=3655\ 17;\ Q(\alpha)=3.85\times10^{3}\ 10$ 2021Wa16 For hfs and isotope shift measurements, see 2006Ve10, 2000Ve10, 2001LeZX (g.s. and isomer).

¹⁸⁶Ir Levels

For discussion of possible configurations for levels, see 1991Be25, 1992Kr02, 1997Ca01.

Cross Reference (XREF) Flags

- ¹⁸⁶Ir IT decay
- В

Α

¹⁸⁶Pt ε decay ¹⁸⁰Hf(¹¹B,5n γ),¹⁸¹Ta(⁹Be,4n γ) С

E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments
0.0#	5+	16.64 h <i>3</i>	A C	%ε+%β ⁺ =100 μ=+3.80 +12-2; Q=-2.55 3 μ: From (2019stZV, 1980Ha49 – NMR). Other values: 3.88 5 (1982A111 – static nuclear orientation); +3.8 2 (2006Ve10 – laser spectroscopy); +3.69 15 (2000Ve10 – resonance ionization LASER spectroscopy); and 3.78 5 (1981Sp06 – NMR). Q: From 2021StZZ, 1996Se15 (NMR on oriented nuclei). Other values: -2.6 9 (2006Ve10 – laser spectroscopy); -2.89 10 (1980Ha49 – nuclear orientation); -2.5 2 (1980Mu07); -2.3 2 (1979Er06 and 1970Wa18 – nuclear orientation); -2.65 18 (preliminary result using NMR on oriented nuclei (1996Ha09)); -2.6 9 (2000Ve10, resonance ionization LASER spectroscopy). δ <r<sup>2>(¹⁹¹Ir,¹⁸⁶Ir) = -0.073 fm² 4 (2006Ve10). J^π: J=5 from atomic beam magnetic resonance (1975Ru06,1978Ru04). π from decay to (3)⁻ 1481 with log f^{4u}t=10.1 and decay to 6⁺ 868 keV level with log ft = 7.8. T_{1/2}: from 1982A134. Others: 14 h 2 (1955Sm42), 16 h 3 (1958Di44), 15 h 2 (1959Sc23), 14.5 h 10 (1960Ma28), 14 h 1 (1961Kr02), 15 h 1 (1962Bo22), 15.8 h 3 (1963Em02) 17 h J (1963Ma47) and 16 3 h 9 (1972Ei12)</r<sup>
x+0.0	2-	1.90 h 5	AB	 %ε+%β⁺≈75; %IT≈25 μ=0.638 8; Q=+1.456 17 Additional information 1. μ: g-factor=0.319 4 (1990Ed01, NMR on oriented nuclei); Sign from 2000Ve10. Others: -0.66 3 (2014StZZ, 2006Ve10 - laser spectroscopy); -0.63 3 (2000Ve10, resonance ionization LASER spectroscopy). Q: From 1996Se15 - NMR on oriented nuclei. Others:+1.5 2 (2006Ve10), +1.5 1 (2000Ve10); +1.53 10 from 1996Ha09, NMR on oriented nuclei (preliminary result). δ<r<sup>2>(¹⁹¹Ir,¹⁸⁶Ir)=-0.221 fm² 2 (2006Ve10).</r<sup> J^π: E1 689γ from 1⁺ x+689; ε decay to 3⁺ 910 with log <i>ft</i>=7.3 and to 4⁺ 434 with log <i>f</i>^{4u}<i>t</i>=9.2; J=2 from NMR and temperature dependence of 767γ anisotropy following ε decay from Ir in Fe host (1990Ed01). Probable configuration=((π 3/2[402])-(ν 7/2[503])) (1975Ya10,1991Be25); based on systematics and on hindrance of unobserved E≤1.5 keV IT. T_{1/2}: from 1991Be25. Other values: 1.75 h 15 (1972Fi12), 1.7 h 2 (1963Ma47), 2.0 h 5 (1963Gr22), 1.7 h 2 (1962Bo22). %IT: 20-30% estimated from 1991Be25, based on their ¹⁸⁶Pt ε decay scheme and observation of intensities of 434γ(¹⁸⁶Os) and 987γ(¹⁸⁶Os) produced

¹⁸⁶Ir Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
			exclusively in ¹⁸⁶ Ir ε decay (16.64 h) and ¹⁸⁶ Ir ε decay (1.90 h), respectively.
			E(level): $0 < x \le 1.5$ (1991Be25), based on absence in ¹⁸⁶ Pt ε decay of any conversion
			electron line from an E>2.6 transition having adequate intensity to be the expected $(x+1.1)$
v 1 10 11	$(2)^{+}$	D	to g.s.) transition. M_{\star} 1001Po25 expect low lying 2 ⁺ and 5 ⁺ states arising from configuration-((μ 1/2)5101)(π
X+1.10 11	(3)	Б	J [*] : 1991Be25 expect low-tying 5 ⁺ and 5 ⁺ states ansing from configuration= $((V/I/2[510])(\pi/1)^{-1})$
			lower energy; here, the 5^+ may be the g.s.). M1-M1 $612\gamma-77\gamma$ cascade from 1^+ x+689
			establishes π =+ and eliminates the J=5 option.
x+54.15 8	1-,2-	В	J^{π} : M1+E2 54 γ to 2 ⁻ x+0.0; E1 635 γ from 1 ⁺ x+689 level.
x+71.84 25	$(2,3,4)^+$	В	J^{π} : M1 71 γ to (3) ⁺ x+1.1.
x+77.93 10	$(2)^+$	В	J^{n} : M1 612 γ from 1 ⁺ x+689; M1 7/ γ to (3) ⁺ x+1.1.
x + 102.89 I3 x + 110.09 I0	$(2,3,4)^{-}$	B	J^{*} : M1 102 γ to (3)* X+1.1; absence of γ to 2 X+0.0. I^{π} : F1 579 γ from 1 ⁺ x+689: F1 109 γ to (3) ⁺ x+1 1
$117.4^{\#}$ 0	(2) 7 ⁺	C C	J : EI J/J = 1000, EI 1000, EI 1000 (000) X = 1.1.1.
x+120.48.11	$(1 3)^+$	B	I^{π} : M1 43 γ to (2) ⁺ x+78 level: E2 119 γ to (3) ⁺ x+1 1 level
$137.3^{b}.10$	(1,3)	Č	$3 \cdot 101 \cdot 107 \cdot 10 \cdot 107 \cdot 1$
167.3^{b} 0	(6^{+})	C	
x+182.1?4	$(1^+, 2^+, 3^+)$	В	I^{π} : (M1) 104 γ to (2) ⁺ x+78 level.
x+194.46 23	$(1,2,3)^+$	B	J^{π} : M1+E2 117 γ to (2) ⁺ x+78 level.
x+204.75 14	$(0,1,2)^+$	В	J^{π} : M1+E2 84 γ to (1,2) ⁺ x+120 level; M1 33 γ from (0,1) ⁺ x+237 level.
206.4 14		С	
x+213.34 <i>19</i>	$(1,2,3)^{-}$	В	J^{α} : E2(+M1) 121 γ from (1) ⁻ x+335 level. Possible (M1+E2) 111 γ to (2,3,4) ⁺ x+103 level (1991Be25).
x+225.49 14	$(2)^{+}$	В	J^{π} : E2+M1 225 γ to (3) ⁺ x+1.1; 219 γ from J=(1) ⁺ x+445 level.
x+237.31 14	$(0,1)^+$	В	J^{π} : log ft=7.3 from 0 ⁺ ; M1 33 γ to π =+ x+205 level.
246.4 ⁰ 10	(7^+)	C	
x+252.57 19	(1,2,3,4)	В	J [*] : Doubly placed γ 's to (2,3,4) ⁺ x+72 level (181 γ) and from 1 ⁺ ,2 ⁺ x+447 level (194 γ). Possible configuration=(ν 7/2[503]) (π h _{9/2}) (1991Be25) allows J ^{π} =3 ⁺ and 4 ⁺ , but the γ to 5 ⁺ g.s. expected for that state has not been reported.
x+259.64 11	$0^{-}, 1^{-}, 2^{-}$	В	J^{π} : M1 311 γ from 0 ⁻ ,1 ⁻ x+571 level.
x+264.51 10	$(1)^{-}$	В	J^{π} : E1 186 γ to (2) ⁺ x+78 level.
312.7 ^{x} 10	(7 ⁻)	С	J^{π} : E1 66 γ to (7 ⁺) 246 level, (8 ⁻) not excluded.
x+324.32 20	$(2)^+$	В	J^{n} : M1 365 γ from 1 ⁺ x+689; M1 323 γ to (3) ⁺ x+1.1 level.
X+331.20 14	(0,1)	D	J : 947 to (0,1) = x+257 to vel, 2557 to (2) = x+78 keV to vel, no observed 7 to (5) = x+1.1 keV level.
x+334.59 16	$(1)^{-}$	В	J^{π} : E1 355 γ from 1 ⁺ x+689; possible E0 component in 70 keV γ to (1) ⁻ x+265 level.
359.1 [#] 11	9+	С	
363.2 ^b 10	(8^{+})	С	
396.6 <mark>&</mark> 13	(8-)	С	
$402.8^{\textcircled{0}}$ 11	(8)	С	J^{π} : D 285 γ to 7 ⁺ 117 level.
x+419.74 14	0+,1+,2+	В	J^{π} : M1(+E2) 270 γ from 1 ⁺ x+689.
x+433.30 9	$(1,2)^+$	В	J^{π} : M1 281 γ from 1 ⁺ x+714; M1,E2 432 γ to (3) ⁺ x+1.1.
x+444.76 12	$(1)^+$	В	J^{π} : M1 367 γ to (2) ⁺ x+78; log <i>ft</i> =6.6 from 0 ⁺ .
x+446.65 17	1+,2+	В	J^{n} : M1 243 γ from 1 ⁺ x+689; 445 γ to (3) ⁺ x+1.1.
519.80 11	(9+)	C	
520.1 ^{a} 13	(9 ⁻)	C	
x+5/0.6/19	0,1,2	В	J^{n} : M1 306 γ to (1) x+265 level.
686.0° 14	(10^{-})	C	\mathbb{I}_{+} log \mathcal{L}_{-} 4.0 from 0 ⁺
x + 009.44 /	(10^{+})	Б	J . $\log \mu = 4.9 \text{ from 0}^{\circ}$.
$704.6^{\circ} I0$ x $\pm 714.20.8$	(10^{-}) 1 ⁺	R	I^{π} : E1 714a to 2 ⁻ x +0.0: log ft-6.3 from 0 ⁺
$7101^{0}11$	(10^{+})	C C	$J = L I + I + J = 0.2$ AT 0.0, $\log f I = 0.3$ HOIII 0.
717.1 - 11	(10)		
121.1" 15	11	C	

Continued on next page (footnotes at end of table)

¹⁸⁶Ir Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
756.1 ^{<i>a</i>} 15	(10 ⁻)	С	J ^{π} : D 236 γ to 520 keV level. band configuration (π h _{11/2})(ν i _{13/2}), similar to (π h _{11/2}) band in ¹⁸⁵ Ir (1997Ca01)
x+772.2 4	$(0,1,2,3)^+$	В	J^{π} : M1+E2 339 γ to (1,2) ⁺ x+433 level.
869.8 <mark>&</mark> 14	(11 ⁻)	С	
928.0 ^b 11	(11+)	С	
1036.4 ^{<i>a</i>} 17	(11 ⁻)	C	
1117.3 ^{&} 15	(12 ⁻)	С	
1131.6 [@] 12	(12^{+})	С	
1177.4 ^b 12	(12^{+})	С	
1195.8 [#] 14	13+	С	
1299.9 ^a 17	(12 ⁻)	С	
1338.1 <mark>&</mark> 16	(13 ⁻)	С	
1449.5 ^b 13	(13^{+})	С	
1482.4 19		С	
1603.1 ^{<i>a</i>} 17	(13 ⁻)	С	
1647.9 [@] 14	(14^{+})	С	
1674.0 ^{&} 16	(14 ⁻)	С	
1748.8 <mark>6</mark> 14	(14^{+})	С	
1770.0 [#] 16	15+	С	
1869.7 ^a 18	(14 ⁻)	С	
1910.4 ^{&} 17	(15 ⁻)	С	
1953.0 19		C	
2022.0.18	(15+)	C	
2067.3° 14	(15^{-})	C	
2220.9 18	(13)	c	
2232.0 = 10	(10^{-})	C	
2559.4^{-10}	(10)	C	
2408.4 13	(10°)	c	
2422.010 2432 9 [#] 18	(17^{+})	C	
2511.9 18	(17)	c	
2555.8 ^a 18	(16 ⁻)	C	
2576.7 <mark>&</mark> 20	(17 ⁻)	С	
2636.7 18		С	
2766.2 ^b 16	(17^{+})	С	
2862.5 19		C	
2882.1 20	(10+)	C	
$2930.6 \circ 18$	(18')	C	
2955.9 19	(17)	C	
$3144 4^{b} 18$	(18^{+})	C	
$3170.7^{\#}20$	(10^{+})	C	
$3327.0^{\&}22$	(19^{-})	c	
3527.0 22	(10^+)	C C	
$3657.5^{(0)}20$	(1)	C	
3734.7 23	(20)	c	
3916.6? ^b	(20^{+})	c	
3963.2 [#] 23	(21^+)	c	
	. = - /	-	

¹⁸⁶Ir Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF
4144.0 ^{&} 24	(21 ⁻)	С
4205.5 25		С
4398.5 [@] 23	(22^{+})	С
4566 <i>3</i>		С
4785.5 [#] 25	(23^{+})	С

[†] From least-squares adjustment of $E\gamma$.

[‡] If J>5, J^{π} is based on deduced band structure and transition multipolarity in (¹¹B,5n γ); definite values follow from the observation of a stretched E2 cascade to the 5⁺ g.s.

[#] Band(A): π =+, α =1 ((π 1/2[541])(ν pseudospin doublet)). Favored portion of doubly-decoupled band in which the valence neutron occupies a pseudospin doublet involving the 3/2[512] and 1/2[510] orbitals (1997Ca01). Energy spacing in this band closely resembles that of the core nucleus, ¹⁸⁴Os (1985Kr01). The bandhead (i.e., g.s.) had been described earlier (1991Be25) as having dominant configuration=((ν 1/2[510])(π h_{9/2})) with significant admixture of configuration=((ν 1/2[521])(π h_{9/2})).

^(a) Band(B): π =+, α =0 ((π 1/2[541])(ν pseudospin doublet)). Unfavored portion of doubly-decoupled band in which the valence neutron occupies a pseudospin doublet involving the 3/2[512] and 1/2[510] orbitals (1997Ca01).

[&] Band(C): $((\pi h_{9/2})(\nu i_{13/2}))$. Prolate semidecoupled band (1997Ca01).

^{*a*} Band(D): $((\pi h_{11/2})(\nu i_{13/2}))$. Structure very similar to $(\pi h_{11/2})$ band in ¹⁸⁵Ir (1997Ca01).

^b Band(E): ((π h_{9/2})(ν 7/2[503])). Compressed band, similar to one observed in ¹⁸²Ir (1997Ca01). Portion of band shows similarity to (ν 7/2[503]) band in ¹⁸⁵Os, consistent with expectations for a semidecoupled band (1997Ca01).

					Adop	oted Levels,	Gammas (con	tinued)	
						γ	(¹⁸⁶ Ir)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	$\delta^{\dagger b}$	α^{a}	Comments
x+0.0 x+54.15	2 ⁻ 1 ⁻ ,2 ⁻	(≤1.5) 54.2 <i>l</i>	100	x+0.0	2-	[E3] M1+E2	0.093 12	6.99 11	This transition has not been observed. $\alpha(L)=5.45\ 15;\ \alpha(M)=1.27\ 4$ $\alpha(N)=0.312\ 9;\ \alpha(Q)=0.0543\ 15;\ \alpha(P)=0.00370\ 6$
x+71.84	(2,3,4)+	70.7 3	100	x+1.10	(3)+	M1		2.95 6	$\alpha(L)=2.275; \alpha(M)=0.52410$ $\alpha(L)=2.275; \alpha(M)=0.52410$ $\alpha(N)=0.128925; \alpha(Q)=0.02285; \alpha(P)=0.001724$
x+77.93	$(2)^{+}$	76.8 1	100	x+1.10	$(3)^{+}$	M1		2.32 4	
x+102.89	$(2,3,4)^+$	101.8 1	100	x+1.10	$(3)^+$	M1		5.82 9	α (K)=4.79 7; α (L)=0.789 12; α (M)=0.182 3 α (N)=0.0447 7; α (O)=0.00791 12; α (P)=0.000596 9
x+110.09	(2)-	55.9 <i>3</i>	6.8 15	x+54.15	1-,2-	M1+E2	0.57	19.6 6	$\alpha(L) \approx 15.7; \ \alpha(M) \approx 3.94$ $\alpha(N) \approx 0.95; \ \alpha(O) \approx 0.149; \ \alpha(P) \approx 0.00264$
		108.9 3	100 16	x+1.10	(3)+	E1		0.321 5	α (K)=0.260 4; α (L)=0.0470 8; α (M)=0.01086 18 α (N)=0.00262 5; α (O)=0.000435 7; α (P)=2.26×10 ⁻⁵ 4
		110.0 3	22 5	x+0.0	2-	M1		4.66 8	$\alpha(K)=3.84$ 7; $\alpha(L)=0.631$ 11; $\alpha(M)=0.1454$ 24 $\alpha(N)=0.0358$ 6; $\alpha(O)=0.00633$ 11; $\alpha(P)=0.000477$ 8
117.4	7+	117.6 [‡]	100	0.0	5+	E2 [@]		2.41 4	$\alpha(K)=0.584 \ 9; \ \alpha(L)=1.372 \ 20; \ \alpha(M)=0.352 \ 5 \ \alpha(N)=0.0853 \ 12; \ \alpha(Q)=0.01305 \ 19; \ \alpha(P)=6.16\times10^{-5} \ 9$
x+120.48	(1,3)+	42.5 1	100 14	x+77.93	$(2)^{+}$	M1		13.14 <i>21</i>	$\alpha(L)=10.13 \ 16; \ \alpha(M)=2.33 \ 4$ $\alpha(L)=0.0754 \ 9; \ \alpha(Q)=0.1015 \ 16; \ \alpha(P)=0.00764 \ 12$
		119.3 <i>3</i>	95 20	x+1.10	(3)+	E2		2.28 4	$\alpha(N)=0.569 \ 9; \ \alpha(L)=1.285 \ 24; \ \alpha(M)=0.330 \ 6$ $\alpha(N)=0.0798 \ 15; \ \alpha(O)=0.01222 \ 23; \ \alpha(P)=5.95\times10^{-5} \ 9$
137.3		137.3 [‡]	100	0.0	5+	[M1]		2.48 4	α (K)=2.04 3; α (L)=0.334 5; α (M)=0.0770 11 α (N)=0.0189 3; α (O)=0.00335 5; α (P)=0.000252 4
167.3	(6^{+})	167.1 [‡]	100	0.0	5+				
x+182.1?	$(1^+, 2^+, 3^+)$	104.2 ^{<i>d</i>} 3	100	x+77.93	$(2)^{+}$	(M1)		5.44 9	$\alpha(K)=4.49 \ 8; \ \alpha(L)=0.738 \ 12; \ \alpha(M)=0.170 \ 3 \ \alpha(N)=0.0418 \ 7; \ \alpha(O)=0.00740 \ 12; \ \alpha(P)=0.000557 \ 9$
x+194.46	(1,2,3)+	116.7 3	100	x+77.93	$(2)^{+}$	M1+E2	0.52 7	3.63 9	$\alpha(K) = 2.68 \ 13; \ \alpha(L) = 0.72 \ 5; \ \alpha(M) = 0.174 \ 12 \ \alpha(N) = 0.043 \ 3; \ \alpha(Q) = 0.0071 \ 4; \ \alpha(P) = 0.000330 \ 17$
x+204.75	(0,1,2)+	84.4 3	≈11	x+120.48	(1,3)+	M1+E2	≈0.36	≈9.89	$\alpha(K) \approx 7.34; \ \alpha(L) \approx 1.94; \ \alpha(M) \approx 0.467$ $\alpha(K) \approx 0.1141; \ \alpha(O) \approx 0.0190; \ \alpha(P) \approx 0.000923$
		127.0 3	≤100	x+77.93	(2)+	E2(+M1)	≥6	1.80 4	$\alpha(K)=0.53 \ 3; \ \alpha(L)=0.959 \ 19; \ \alpha(M)=0.246 \ 5$ $\alpha(N)=0.0595 \ 12; \ \alpha(O)=0.00913 \ 18; \ \alpha(P)=5.5\times10^{-5} \ 4$
x+213.34	(1,2,3)-	103.5 ^d 3 159.4 3 213.3 3	≈16 ≈100 ≈20	x+110.09 x+54.15 x+0.0	(2) ⁻ 1 ⁻ ,2 ⁻ 2 ⁻				
x+225.49	$(2)^{+}$	105.0 <i>1</i>	79 17	x+120.48	(1,3)+	M1		5.32 8	$\alpha(K)=4.39$ 7; $\alpha(L)=0.722$ 11; $\alpha(M)=0.1663$ 24 $\alpha(N)=0.0409$ 6; $\alpha(Q)=0.00724$ 11: $\alpha(P)=0.000545$ 8
		224.5 3	100 15	x+1.10	(3)+	E2+M1	≈2.8	0.279 4	$\alpha(K) \approx 0.1701; \ \alpha(L) \approx 0.0822; \ \alpha(M) \approx 0.0205$ $\alpha(N) \approx 0.00499; \ \alpha(O) \approx 0.000794; \ \alpha(P) \approx 1.86 \times 10^{-5}$
x+237.31	$(0,1)^+$	32.6 1	≈48	x+204.75	$(0,1,2)^+$	M1		28.8 5	$\alpha(L)=22.2 4; \alpha(M)=5.11 9$ $\alpha(N)=1.256 21; \alpha(Q)=0.222 4; \alpha(P)=0.0167 3$
		159.4 <i>3</i>	≈100	x+77.93	(2)+				$\alpha(K) = 0.82 \ 52; \ \alpha(L) = 0.28 \ 7; \ \alpha(M) = 0.070 \ 20$ $\alpha(N) = 0.0170 \ 47; \ \alpha(O) = 0.0028 \ 6; \ \alpha(P) = 9.7 \times 10^{-5} \ 68$

 $^{186}_{77}\mathrm{Ir}_{109}\text{-}5$

I

From ENSDF

					Ado	opted Levels,	Gamma	as (continued))
						$\gamma(^{186}\text{Ir})$) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	$\delta^{\dagger b}$	α^{a}	Comments
246.4	(7 ⁺)	40‡		206.4					
		79.2 [‡]		167.3	(6 ⁺)	(M1) [#]		11.89 16	$\alpha(K)=9.77$ 14; $\alpha(L)=1.634$ 23; $\alpha(M)=0.376$ 6
x+252.57	(1,2,3,4)	149.8 [°] 3	≈59 ^c	x+102.89	(2,3,4)+	[M1,E2]		1.45 49	$\begin{aligned} &\alpha(N) = 0.0926 \ 13; \ \alpha(O) = 0.01638 \ 23; \ \alpha(P) = 0.001233 \ 18 \\ &\alpha(K) = 0.97 \ 63; \ \alpha(L) = 0.36 \ 10; \ \alpha(M) = 0.089 \ 29 \\ &\alpha(N) = 0.0217 \ 69; \ \alpha(O) = 0.00351 \ 90; \ \alpha(P) = 1.16 \times 10^{-4} \ 82 \end{aligned}$
		180.7 ^c 1	100 ^c	x+71.84	(2,3,4)+	[M1]		1.140 17	α (K)exp for doubly-placed γ corresponds to mult=M1+E2. α (K)=0.941 <i>14</i> ; α (L)=0.1534 <i>22</i> ; α (M)=0.0353 <i>5</i> α (N)=0.00868 <i>13</i> ; α (O)=0.001538 <i>22</i> ; α (P)=0.0001160 <i>17</i> α (K)exp for doubly-placed γ corresponds to mult=M1.
x+259.64	0-,1-,2-	139 ^d	≈22	x+120.48	$(1,3)^+$	[E1]		0.172 2	$\alpha(K)=0.1405\ 20;\ \alpha(L)=0.0243\ 4;\ \alpha(M)=0.00561\ 8$ $\alpha(N)=0.001359\ 19;\ \alpha(O)=0.000228\ 4;\ \alpha(P)=1.262\times10^{-5}\ 18$
		149.8 ^{cd} 3	С	x+110.09	(2) ⁻	[M1,E2]		1.45 49	$\alpha(K)=0.97\ 63;\ \alpha(L)=0.36\ 10;\ \alpha(M)=0.089\ 29$ $\alpha(N)=0.0217\ 69;\ \alpha(O)=0.00351\ 90;\ \alpha(P)=1.16\times10^{-4}\ 82$ $\alpha(K)=0.0217\ 69;\ \alpha(Q)=0.00351\ 90;\ \alpha(P)=1.16\times10^{-4}\ 82$
		205.5 1	≈100	x+54.15	1-,2-	M1		0.796 12	$\alpha(\mathbf{K}) = 0.057 \ 10; \ \alpha(\mathbf{L}) = 0.1069 \ 15; \ \alpha(\mathbf{M}) = 0.0246 \ 4$ $\alpha(\mathbf{K}) = 0.0656 \ 9; \ \alpha(\mathbf{C}) = 0.001072 \ 15; \ \alpha(\mathbf{M}) = 8.00 \times 10^{-5} \ 12$
x+264.51	(1) ⁻	154.4 3	5.2 8	x+110.09	(2)-	E2+M1	≈1.9	1.057 17	$\alpha(K) = 0.0005 \text{s}, \alpha(G) = 0.0017/2 \text{f}, \alpha(G) = 0.05711 \text{o} 12$ $\alpha(K) \approx 0.571; \alpha(L) \approx 0.368; \alpha(M) \approx 0.0926$ $\alpha(K) \approx 0.02254; \alpha(D) \approx 0.02254; \alpha(D) \approx 6.22110^{-5}$
		186.6 <i>3</i>	17 3	x+77.93	$(2)^{+}$	E1		0.0813 12	$\alpha(K) = 0.06253, \alpha(G) = 0.00114 \ 17; \alpha(M) = 0.00256 \ 4 \ \alpha(K) = 0.0068 \ 10; \alpha(L) = 0.01114 \ 17; \alpha(M) = 0.00256 \ 4 \ \alpha(L) = 0.0001057, \ 16; \alpha(L) = 0.001057, \ 16; \alpha(L) = 0.00105$
		210.4 1	100	x+54.15	1-,2-	M1		0.745 11	$\alpha(K) = 0.00522$ <i>I</i> , $\alpha(C) = 0.000103$ <i>I</i> , $\alpha(M) = 0.234$ $\alpha(K) = 0.015$ <i>9</i> ; $\alpha(L) = 0.1001$ <i>I</i> ; $\alpha(M) = 0.0230$ <i>4</i> $\alpha(K) = 0.0566$ <i>8</i> : $\alpha(O) = 0.001003$ <i>I</i> , $\alpha(P) = 7.57 \times 10^{-5}$ <i>I</i>
312.7	(7-)	66.2 [‡]		246.4	(7+)	E1		0.237 4	$\alpha(L)=0.183 \ 3; \ \alpha(M)=0.0425 \ 6$ $\alpha(N)=0.01019 \ 15; \ \alpha(O)=0.001645 \ 23; \ \alpha(P)=7.27\times10^{-5} \ 11$ Mult.: based on I $\gamma(66)$ and intensity of ¹⁸⁶ Os produced in (⁹ Be,4n γ).
		145.4 [‡]		167.3	(6 ⁺)				
	$(2)^+$	195.3	-5 0	117.4	7^+				
X+324.32	(2)	87.1 3 323.2 <i>3</i>	<5.8 100 <i>14</i>	x+237.31 x+1.10	$(0,1)^+$ $(3)^+$	M1		0.230 4	α (K)=0.190 3; α (L)=0.0306 5; α (M)=0.00704 10 α (N)=0.001730 25; α (O)=0.000307 5; α (P)=2.32×10 ⁻⁵ 4
x+331.20	(0,1)	93.9 ^d 3 221.3 3 253.2 3 276 9 3	≈15 ≈23 ≈77 ~100	x+237.31 x+110.09 x+77.93 x+54.15	$(0,1)^+$ $(2)^-$ $(2)^+$ $1^- 2^-$				
x+334.59	(1) ⁻	70.1 3	23 4	x+264.51	$(1)^{-1}$	M1		3.03 6	α (L)=2.33 5; α (M)=0.537 11 α (N)=0.1321 25; α (O)=0.0234 5; α (P)=0.00176 4 Mult: α (L)=xp significantly accord α (L)(M1)
		74.7 3	≈100	x+259.64	0-,1-,2-	M1+E2	≈0.5	5.07 11	$\alpha(L) \approx 3.85; \ \alpha(M) \approx 0.950$ $\alpha(N) \approx 0.231; \ \alpha(O) \approx 0.0373; \ \alpha(P) \approx 0.001208$
		121.4 3	≈50	x+213.34	(1,2,3)-	E2(+M1)	≥5	2.15 5	$\alpha(K) = 0.595; \ \alpha(L) = 1.173; \ \alpha(M) = 0.3017$ $\alpha(N) = 0.0728 \ 16; \ \alpha(O) = 0.01116 \ 24; \ \alpha(P) = 6.3 \times 10^{-5} \ 6$

6

 $^{186}_{77}\mathrm{Ir}_{109}\text{-}6$

					ontinued)				
						γ (¹⁸⁶ Ir) (continued)		
E _i (level)	J^{π}_{i}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	$\delta^{\dagger b}$	α^{a}	Comments
x+334.59	$(1)^{-}$	333.7 [°] 3	С	x+1.10	(3)+				
359.1	9+	241.7 [‡]	100	117.4	7+	E2 [@]		0.185 3	α (K)=0.1043 <i>15</i> ; α (L)=0.0609 <i>9</i> ; α (M)=0.01532 <i>22</i> α (N)=0.00372 <i>6</i> ; α (O)=0.000586 <i>9</i> ; α (P)=1.084×10 ⁻⁵ <i>16</i>
363.2	(8+)	116.9		246.4	(7 ⁺)	(M1) [#]		3.92 5	α (K)=3.23 5; α (L)=0.530 8; α (M)=0.1221 17 α (N)=0.0300 5; α (O)=0.00531 8; α (P)=0.000400 6
		195.6 [‡]		167.3	(6 ⁺)				
396.6	(8 ⁻)	83.7 [‡]	100	312.7	(7 ⁻)	(M1)		10.19 14	α (K)=8.38 <i>12</i> ; α (L)=1.391 <i>20</i> ; α (M)=0.321 <i>5</i> α (N)=0.0788 <i>11</i> ; α (O)=0.01395 <i>20</i> ; α (P)=0.001050 <i>15</i> Mult.: from $\gamma(\theta)$ and intensity balance in (⁹ Be,4n γ).
402.8	(8)	285.6 [‡]	100	117.4	7+	(M1) [#]		0.321	α(K)=0.266 4; α(L)=0.0429 6; α(M)=0.00987 14
									α (N)=0.00243 4; α (O)=0.000430 6; α (P)=3.25×10 ⁻⁵ 5
x+419.74	0+,1+,2+	182.7 3	≈10	x+237.31	$(0,1)^+$	[M1,E2]		0.79 32	α (K)=0.56 35; α (L)=0.171 23; α (M)=0.042 8 α (N)=0.0102 18; α (O)=0.00168 19; α (P)=6.7×10 ⁻⁵ 46
		194.2 ^{cd} 3	С	x+225.49	(2)+	[M1]		0.932	α (K)=0.769 <i>12</i> ; α (L)=0.1253 <i>19</i> ; α (M)=0.0288 <i>5</i> α (N)=0.00709 <i>11</i> ; α (O)=0.001256 <i>19</i> ; α (P)=9.47×10 ⁻⁵ <i>14</i>
		215.1 3	13.5 20	x+204.75	(0,1,2)+	M1		0.701 11	α (K)exp for doubly-placed γ corresponds to mult=M1. α (K)=0.579 9; α (L)=0.0941 14; α (M)=0.0217 4 α (K)=0.00522 8; α (C)=0.000042 14; α (D)=7.12×10=5 11
		299.2 1	≈100	x+120.48	(1,3)+	[M1,E2]		0.189 94	$\alpha(N)=0.00352$ 8; $\alpha(O)=0.000943$ 14; $\alpha(P)=7.12\times10^{-5}$ 11 $\alpha(K)=0.147$ 87; $\alpha(L)=0.032$ 6; $\alpha(M)=0.0077$ 11 $\alpha(N)=0.0019$ 3: $\alpha(O)=0.00032$ 6: $\alpha(P)=1.8\times10^{-5}$ 11
x+433.30	(1,2)+	180.7 ^c 1	100 ^c 15	x+252.57	(1,2,3,4)	[M1]		1.140 17	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0019 \ 5, \ \alpha(\mathrm{C}) = 0.00032 \ 6, \ \alpha(\mathrm{K}) = 1.0 \times 10^{-11} \ \mathrm{M}^{-1} \ \mathrm{M}^{-$
		239.0 3	52 7	x+194.46	(1,2,3)+	M1+E2	0.9 3	0.38 6	α (K)exp for doubly-placed γ corresponds to mult=M1. α (K)=0.29 6; α (L)=0.0673 16; α (M)=0.01610 24 α (N)=0.00394 6; α (O)=0.000663 20; α (P)=3.4×10 ⁻⁵ 8
		251.3 ^d 3 355.7 3	≈7.4 ≈9.3	x+182.1? x+77.93	$(1^+, 2^+, 3^+)$ $(2)^+$				
		432.3 3	59 8	x+1.10	(3)+	M1,E2		0.070 <i>36</i>	α (K)=0.056 32; α (L)=0.0106 34; α (M)=0.00249 72 α (N)=6.1×10 ⁻⁴ 18; α (O)=1.06×10 ⁻⁴ 35; α (P)=6.7×10 ⁻⁶ 40
x+444.76	$(1)^{+}$	185	≤4.1	x+259.64	0-,1-,2-				
		207.7 3	≤2.7	x+237.31	$(0,1)^+$				
		219.3 3	18 4	x+225.49	$(2)^{+}$	M1+E2	0.9 3	0.48 8	$\alpha(K)=0.36 \ 8; \ \alpha(L)=0.0897 \ 14; \ \alpha(M)=0.0215 \ 6$
		324.3 3	15 3	x+120.48	(1,3)+	M1+E2	≈0.6	0.187 3	$\alpha(N)=0.00526\ 12;\ \alpha(O)=0.000882\ 14;\ \alpha(P)=4.3\times10^{-5}\ 10$ $\alpha(K)\approx0.1515;\ \alpha(L)\approx0.0275;\ \alpha(M)\approx0.00642$ $\alpha(N)\approx0.001576;\ \alpha(O)\approx0.000274;\ \alpha(D)=1.82\times10^{-5}$
		333.7 ^{cd} 3	С	x+110.09	(2)-				<i>α</i> (1)≈0.001570; <i>α</i> (0)≈0.000274; <i>α</i> (P)≈1.85×10 ⁻⁵

7

L

					Ado	pted Levels,	Gammas (c	ontinued)	
						$\gamma(^{186}\mathrm{Ir})$) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger b}$	α^{a}	Comments
x+444.76	$(1)^{+}$	366.8 1	100 15	x+77.93	$(2)^{+}$	M1		0.163 2	α (K)=0.1352 <i>19</i> ; α (L)=0.0217 <i>3</i> ; α (M)=0.00499 <i>7</i> α (N)=0.001227 <i>18</i> ; α (O)=0.000218 <i>3</i> ; α (P)=1.648×10 ⁻⁵ <i>24</i>
x+446.65	1+,2+	443.7 ^{<i>d</i>} 3 194.2 ^{<i>c</i>} 3	≈2.7 <35 ^c	x+1.10 x+252.57	$(3)^+$ (1,2,3,4)	[M1]		0.932	$\alpha(K)=0.769 \ 12; \ \alpha(L)=0.1253 \ 19; \ \alpha(M)=0.0288 \ 5 \ \alpha(N)=0.00709 \ 11; \ \alpha(O)=0.001256 \ 19; \ \alpha(P)=9.47\times10^{-5} \ 14 \ \alpha(K)$ exp for doubly-placed γ corresponds to mult=M1.
		445.4 <i>3</i>	100 15	x+1.10	$(3)^{+}$				
519.8	(9+)	156.4 [‡]		363.2	(8 ⁺)	(M1) [#]		1.71 2	α (K)=1.412 20; α (L)=0.231 4; α (M)=0.0531 8 α (N)=0.01307 19; α (O)=0.00231 4; α (P)=0.0001744 25
		274 ^{‡d}		246.4	(7^{+})				
520.1	(9 ⁻)	123.2 [‡]		396.6	(8 ⁻)	(M1)		3.37 5	$\alpha(K)=2.78$ 4; $\alpha(L)=0.456$ 7; $\alpha(M)=0.1050$ 15 $\alpha(N)=0.0258$ 4; $\alpha(O)=0.00457$ 7; $\alpha(P)=0.000344$ 5 Mult.: from $\gamma(\theta)$ and intensity balance in (⁹ Be,4n γ).
		207.6 [‡]		312.7	(7 ⁻)				
x+570.67	0-,1-,2-	306.2 3	100 14	x+264.51	(1) ⁻	M1		0.266 4	α (K)=0.220 4; α (L)=0.0355 5; α (M)=0.00816 12
		311.0 <i>3</i>	≈39	x+259.64	0-,1-,2-	M1		0.255 4	$\alpha(N)=0.00201 \ 3; \ \alpha(O)=0.000355 \ 5; \ \alpha(P)=2.69\times10^{-5} \ 4 \ \alpha(K)=0.211 \ 3; \ \alpha(L)=0.0340 \ 5; \ \alpha(M)=0.00782 \ 12 \ \alpha(N)=0.00192 \ 3; \ \alpha(O)=0.000341 \ 5; \ \alpha(P)=2.58\times10^{-5} \ 4$
		516.5 3	46 9	x+54.15	1-,2-				
686.0	(10 ⁻)	165.7 [‡]		520.1	(9 ⁻)	[M1]		1.45 2	α (K)=1.200 <i>17</i> ; α (L)=0.196 <i>3</i> ; α (M)=0.0451 <i>7</i> α (N)=0.01109 <i>16</i> ; α (O)=0.00196 <i>3</i> ; α (P)=0.0001481 <i>21</i>
		289.4 [‡]		396.6	(8 ⁻)				
x+689.44	1+	242.8 3	0.35 5	x+446.65	$1^+, 2^+$	M1		0.501 8	$\alpha(K)=0.414$ 6; $\alpha(L)=0.0672$ 10; $\alpha(M)=0.01546$ 23
		244.7 3	0.30 4	x+444.76	$(1)^{+}$	M1+E2	0.9 <i>3</i>	0.35 6	$\alpha(\text{K})=0.00380\ 6;\ \alpha(\text{C})=0.000075\ 10;\ \alpha(\text{F})=3.09\times10^{-8}8$ $\alpha(\text{K})=0.27\ 6;\ \alpha(\text{L})=0.0623\ 17;\ \alpha(\text{M})=0.01488\ 24$
									α (N)=0.00364 7; α (O)=0.000614 21; α (P)=3.2×10 ⁻⁵ 8
		256.2 1	1.67 24	x+433.30	$(1,2)^+$	M1+E2	0.64 24	0.35 5	α (K)=0.28 5; α (L)=0.0551 17; α (M)=0.0130 3
		269.5 3	0.52 8	x+419.74	0+,1+,2+	M1(+E2)	<0.7	0.34 4	$\alpha(N)=0.00318$ /; $\alpha(O)=0.000547$ /9; $\alpha(P)=3.4\times10^{-5}$ 6 $\alpha(K)=0.27$ 4; $\alpha(L)=0.0486$ 19; $\alpha(M)=0.0113$ 4 $\alpha(N)=0.00278$ 9; $\alpha(O)=0.000485$ 22; $\alpha(P)=3.3\times10^{-5}$ 5
		355.0 <i>3</i>	0.68 12	x+334.59	(1) ⁻	E1		0.017 3	$\alpha(\mathbf{K}) = 0.00276^{\circ} \mathbf{j}, \alpha(\mathbf{C}) = 0.000465^{\circ} 22, \alpha(\mathbf{I}) = 3.5 \times 10^{\circ} \mathbf{j}$ $\alpha(\mathbf{K}) = 0.01415^{\circ} 20; \alpha(\mathbf{L}) = 0.00222^{\circ} 4; \alpha(\mathbf{M}) = 0.000508^{\circ} 8$ $\alpha(\mathbf{N}) = 0.0001240^{\circ} 18; \alpha(\mathbf{O}) = 2.15 \times 10^{-5}^{\circ} 3; \alpha(\mathbf{P}) = 1.424 \times 10^{-6}^{\circ}$ 21
		358.2 <i>3</i>	0.37 6	x+331.20	(0,1)				
		365.2 <i>3</i>	0.68 12	x+324.32	$(2)^{+}$	M1		0.165 2	$\alpha(K)=0.1368\ 20;\ \alpha(L)=0.0220\ 4;\ \alpha(M)=0.00505\ 8$ $\alpha(N)=0\ 001241\ 18;\ \alpha(O)=0\ 000220\ 4;\ \alpha(P)=1\ 668\times10^{-5}\ 24$
		425.1 <i>3</i>	0.22 3	x+264.51	(1) ⁻	E1		0.0113 2	$\begin{array}{l} \alpha(\mathbf{x}) = 0.009414; \ \alpha(\mathbf{L}) = 0.00146021; \ \alpha(\mathbf{M}) = 0.0003345\\ \alpha(\mathbf{N}) = 8.15 \times 10^{-5}12; \ \alpha(\mathbf{O}) = 1.415 \times 10^{-5}20;\\ \alpha(\mathbf{P}) = 9.64 \times 10^{-7}14 \end{array}$
		430.1 <i>3</i>	≈0.28	x+259.64	0-,1-,2-				u(1)-2.07A10 17

From ENSDF

 $^{186}_{77}\mathrm{Ir}_{109}\text{-}8$

$\gamma(^{186}$ Ir) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	$\delta^{\dagger b}$	α ^a	Comments
x+689.44	1+	451.8 3	0.151 24	x+237.31	$(0,1)^+$				
		463.9 3	0.159 24	x+225.49	$(2)^+$	M1 E2		0.052.27	$\alpha(W) = 0.042, 22; \alpha(I_{1}) = 0.0077, 26; \alpha(M) = 0.00180, 57$
		484.0 3	0.00 9	X+204.73	(0,1,2)	MII,EZ		0.032 27	$\alpha(\mathbf{K})=0.042\ 25;\ \alpha(\mathbf{L})=0.0077\ 20;\ \alpha(\mathbf{M})=0.00180\ 57$ $\alpha(\mathbf{N})=4\ 4\times10^{-4}\ 14:\ \alpha(\mathbf{O})=7\ 6\times10^{-5}\ 27:\ \alpha(\mathbf{P})=5\ 0\times10^{-6}\ 29$
		569.0 <i>3</i>	0.36 6	x+120.48	$(1,3)^+$				u(i)=1.1X10 11, u(0)=1.0X10 27, u(1)=5.0X10 25
		579.3 1	2.1 3	x+110.09	$(2)^{-}$	E1		0.00585 9	α (K)=0.00489 7; α (L)=0.000738 11; α (M)=0.0001683 24
		61151	° 2 12	w + 77 02	$(2)^{+}$	M1		0.0426.6	$\alpha(N)=4.11\times10^{-5}$ 6; $\alpha(O)=7.19\times10^{-6}$ 10; $\alpha(P)=5.09\times10^{-7}$ 8
		011.5 1	0.2 12	X+77.95	(2)	1011		0.0420 0	$\alpha(\mathbf{N}) = 0.003355, \alpha(\mathbf{L}) = 0.003386, \alpha(\mathbf{M}) = 0.00128178$ $\alpha(\mathbf{N}) = 0.0003155; \alpha(\mathbf{O}) = 559 \times 10^{-5} 8; \alpha(\mathbf{P}) = 4.26 \times 10^{-6} 6$
		635.3 1	3.7 6	x+54.15	1-,2-	E1		0.00484 7	$\alpha(K)=0.00406\ 6;\ \alpha(L)=0.000608\ 9;\ \alpha(M)=0.0001385\ 20$
									α (N)=3.39×10 ⁻⁵ 5; α (O)=5.93×10 ⁻⁶ 9; α (P)=4.24×10 ⁻⁷ 6
		689.4 <i>1</i>	100 2	x+0.0	2-	E1		0.00411 6	$\alpha(K)=0.00345 5; \alpha(L)=0.000514 8; \alpha(M)=0.0001170 17$
704.6	(10^{+})	104 0		510.9	(0^{\pm})				$\alpha(N)=2.80\times10^{\circ}$ 4; $\alpha(O)=5.02\times10^{\circ}$ 7; $\alpha(P)=5.02\times10^{\circ}$ 5
/04.0	(10^{+})	184.8 ¹ 301.8 [‡]		519.8 402.8	(9)				
		341.4		363.2	(8^+)				
		345.4		359.1	(8) 9+				
x+714.20	1+	267.5 3	16.9 <i>36</i>	x+446.65	1 ⁺ ,2 ⁺	M1		0.364 6	$\alpha(K)=0.318\ 5;\ \alpha(L)=0.0514\ 8;\ \alpha(M)=0.01182\ 17$
									α (N)=0.00291 5; α (O)=0.000515 8; α (P)=3.89×10 ⁻⁵ 6
		280.9 1	100 15	x+433.30	$(1,2)^+$	M1		0.336 5	$\alpha(K)=0.278 4; \alpha(L)=0.0449 7; \alpha(M)=0.01033 15$
		110 8 3	15 3 33	x±264.51	$(1)^{-}$				$\alpha(N)=0.00254 4; \alpha(O)=0.000450 7; \alpha(P)=3.40\times10^{-5} 5$
		714.2 <i>I</i>	42.9	x+0.0	2^{-}	E1		0.00384 6	$\alpha(K)=0.00322$ 5; $\alpha(L)=0.000479$ 7; $\alpha(M)=0.0001089$ 16
									$\alpha(N)=2.66\times10^{-5}$ 4; $\alpha(O)=4.67\times10^{-6}$ 7; $\alpha(P)=3.38\times10^{-7}$ 5
719.1	(10 ⁺)	199.3 [‡]		519.8	(9 ⁺)				
		316.5		402.8	(8)				
		360.1		359.1	9+	0			
721.7	11+	362.6 [‡]	100	359.1	9+	E2 [@]		0.0550 8	$\alpha(K)=0.0375 6; \alpha(L)=0.01325 19; \alpha(M)=0.00326 5$ $\alpha(N)=0.000704 12; \alpha(O)=0.0001287 18; \alpha(P)=4.13\times10^{-6} 6$
756 1	(10^{-})	70‡		686.0	(10^{-})				<i>u</i> (1)=0.000794 12, <i>u</i> (0)=0.0001207 10, <i>u</i> (1)=4.15×10 0
750.1	(10)	236.2 [‡]		520.1	(10^{-})	D			Mult.: D from $\gamma(\theta)$ in (⁹ Be.4n γ).
x+772.2	$(0,1,2,3)^+$	338.9 <i>3</i>	100	x+433.30	$(1,2)^+$	M1+E2	≈0.8	0.149 2	$\alpha(K) \approx 0.1192; \ \alpha(L) \approx 0.0230; \ \alpha(M) \approx 0.00540$
									$\alpha(N) \approx 0.001322; \ \alpha(O) \approx 0.000228; \ \alpha(P) \approx 1.433 \times 10^{-5}$
869.8	(11 ⁻)	183.9 [‡]		686.0	(10 ⁻)	(M1) [#]		1.085 14	α (K)=0.896 <i>13</i> ; α (L)=0.1460 <i>21</i> ; α (M)=0.0336 5 α (N)=0.00826 <i>12</i> : α (O)=0.001464 <i>21</i> : α (P)=0.0001104 <i>16</i>
		349.8 [‡]		520.1	(9 ⁻)	E2 [@]		0.0608 9	$\alpha(K)=0.0410\ 6;\ \alpha(L)=0.01504\ 21;\ \alpha(M)=0.00371\ 6$
									α (N)=0.000903 <i>13</i> ; α (O)=0.0001460 <i>21</i> ; α (P)=4.49×10 ⁻⁶ 7
928.0	(11^{+})	208.8		719.1	(10 ⁺)				
		223.5 [‡]		704.6	(10^{+})				

$\gamma(^{186}$ Ir) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α ^a	Comments
928.0	(11^{+})	408.1‡		519.8 (9+)			
1036.4	(11 ⁻)	280.3 [‡]	100	756.1 (10 ⁻)	(M1) [#]	0.338 5	α (K)=0.280 4; α (L)=0.0452 7; α (M)=0.01040 15
		a 1 = 181	10087 00		a#		α (N)=0.00256 4; α (O)=0.000453 7; α (P)=3.42×10 ⁻⁵ 5
1117.3	(12^{-})	247.6	100 20	869.8 (11 ⁻)	(M1) [#]	0.4757	$\alpha(K)=0.393\ 6;\ \alpha(L)=0.0636\ 9;\ \alpha(M)=0.01464\ 21$
		131 2 <mark>&</mark>	81 <mark>&</mark> 17	$686.0 (10^{-})$	E2@	0.0345.5	$a(N)=0.00500$ 5; $a(O)=0.000058$ 9; $a(P)=4.62\times10^{-7}$
		431.2	01 17	000.0 (10)	62	0.0545 5	$\alpha(R)=0.024847$, $\alpha(L)=0.0073811$, $\alpha(R)=0.001805$ $\alpha(R)=0.0004387$; $\alpha(O)=7.19\times10^{-5}10$; $\alpha(P)=2.78\times10^{-6}4$
1131.6	(12^{+})	409.9 [‡]		721.7 11+			
		412.6 [‡]		719.1 (10 ⁺)			
		426.9 [‡]		704.6 (10 ⁺)			
1177.4	(12^{+})	249.4 [‡]		928.0 (11+)			
		458.4 [‡]		719.1 (10 ⁺)			
		472.7 [‡]		704.6 (10 ⁺)	-		
1195.8	13+	474.1 [‡]	100	721.7 11+	E2 [@]	0.0271 4	$\alpha(K)=0.0199 3; \alpha(L)=0.00545 8; \alpha(M)=0.001320 19$
10000	(1.2.)	a	100 87		a#	0.400.6	$\alpha(N) = 0.000322 \ 5; \ \alpha(O) = 5.33 \times 10^{-5} \ 8; \ \alpha(P) = 2.25 \times 10^{-6} \ 4$
1299.9	(12^{-})	263.6 ^{cc}	100 ^{cc} 20	1036.4 (11 ⁻)	(M1)"	0.400 6	$\alpha(K)=0.3315; \alpha(L)=0.05358; \alpha(M)=0.0123178$ $\alpha(N)=0.003035; \alpha(Q)=0.0005368; \alpha(P)=4.05\times10^{-5}6$
		543 8 <mark>&</mark>	54 ^{&} 11	756 1 (10^{-})	E2	0.0194.3	$\alpha(K) = 0.01468 21; \alpha(L) = 0.00359 5; \alpha(M) = 0.000863 12$
		5 15.0	51 11	(10)	22	0.0171.5	$\alpha(N) = 0.000211 \ 3; \ \alpha(O) = 3.52 \times 10^{-5} \ 5; \ \alpha(P) = 1.665 \times 10^{-6} \ 24$
		0	0				Mult.: stretched Q from $\gamma(\theta)$; $\Delta \pi$ from band structure.
1338.1	(13-)	220.6 ^{&}	59 ^{&} 13	1117.3 (12 ⁻)	(M1)#	0.654 9	$\alpha(K)=0.540 \ 8; \ \alpha(L)=0.0877 \ 13; \ \alpha(M)=0.0202 \ 3$
		160.08	1008 01		D2	0.0070 ($\alpha(N) = 0.00496\ 7;\ \alpha(O) = 0.000879\ 13;\ \alpha(P) = 6.64 \times 10^{-5}\ 10$
		468.3 ~	100 21	869.8 (11)	E2	0.0279 4	$\alpha(\mathbf{K})=0.0205 \ 3; \ \alpha(\mathbf{L})=0.00566 \ 8; \ \alpha(\mathbf{M})=0.001375 \ 20$ $\alpha(\mathbf{N})=0.000335 \ 5; \ \alpha(\mathbf{O})=5.53\times10^{-5} \ 8; \ \alpha(\mathbf{P})=2.31\times10^{-6} \ 4$
1449 5	(13^{+})	272.3		$11774(12^+)$			
111710	(10)	521.4 [‡]		928.0 (11 ⁺)			
1482.4		446.0 [‡]	100	1036.4 (11 ⁻)			
1603.1	(13 ⁻)	303.1 [‡]		1299.9 (12-)	[M1]	0.273 4	α(K)=0.226 4; α(L)=0.0365 6; α(M)=0.00839 12
							α (N)=0.00206 3; α (O)=0.000365 6; α (P)=2.76×10 ⁻⁵ 4
		566.7 [‡]		1036.4 (11 ⁻)			Mult.: (Q) from $\gamma(\theta)$ for presumed doublet in (⁹ Be,4n γ).
1647.9	(14^{+})	452.0 [‡]		1195.8 13+			
		516.2		1131.6 (12 ⁺)			
1674.0	(14-)	336.0		1338.1 (13-)			
1540.0	(1.4.1)	556.9+		1117.3 (12 ⁻)			
1748.8	(14^{+})	299.5+		1449.5 (13 ⁺)			
		J/1.4*		$11//.4 (12^{+})$			

10

$^{186}_{77}\mathrm{Ir}_{109}\text{--}10$

From ENSDF

 $^{186}_{77}\mathrm{Ir}_{109}$ -10

L

						Adopted	Levels, Gammas (continued)
						í	y(¹⁸⁶ Ir) (continued)
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	α^{a}	Comments
1770.0	15+	574.4 [‡]	100	1195.8 13+	E2 [@]	0.0170 4	$\alpha(K)=0.01303 \ 19; \ \alpha(L)=0.00307 \ 5; \ \alpha(M)=0.000734 \ 11 \ \alpha(N)=0.000179 \ 3; \ \alpha(O)=3.01\times10^{-5} \ 5; \ \alpha(P)=1.480\times10^{-6} \ 21$
1869.7	(14 ⁻)	266.6 [‡]		1603.1 (13 ⁻)	(M1) [#]	0.388 5	α (K)=0.321 5; α (L)=0.0519 8; α (M)=0.01193 17 α (N)=0.00293 5; α (O)=0.000520 8; α (P)=3.93×10 ⁻⁵ 6
		569.9 [‡]		1299.9 (12 ⁻)			Mult.: (Q) from $\gamma(\theta)$ for presumed doublet.
1910.4	(15 ⁻)	236.5 [‡]		1674.0 (14 ⁻)			
		572.1 [‡]		1338.1 (13 ⁻)			
1953.0		470.5 [‡]	100	1482.4	(E2)	0.0276 4	α (K)=0.0203 3; α (L)=0.00558 8; α (M)=0.001352 19 α (N)=0.000330 5; α (O)=5.45×10 ⁻⁵ 8; α (P)=2.29×10 ⁻⁶ 4 Mult.: from $\gamma(\theta)$ in (⁹ Be,4n γ).
2022.0		152.3 ^d		1869.7 (14-)			E_{γ} : from level energy difference.
		419.0 [‡]		1603.1 (13-)	Q		Mult.: from $\gamma(\theta)$ in (⁹ Be,4n γ).
		722.0		1299.9 (12-)			
2067.3	(15 ⁺)	318.4		1748.8 (14+)			
		617.7 [‡]		1449.5 (13+)			
2220.9	(15 ⁻)	351.3 [‡]		1869.7 (14-)			
		617.8‡		1603.1 (13-)			
2252.0	(16 ⁺)	482.0 [‡]		1770.0 15+			
		604.0 [‡]		1647.9 (14+)			
2339.4	(16 ⁻)	429.0 [‡]		1910.4 (15-)			
		665.3 [‡]		1674.0 (14 ⁻)			
2408.4	(16 ⁺)	341.0 [‡]		2067.3 (15 ⁺)			
		659.8 [‡]		1748.8 (14 ⁺)			
2422.8		201.8 ^{‡d}		2220.9 (15 ⁻)			
		400.7 [‡]		2022.0			
		553.2 [‡]		1869.7 (14-)			
		819.8 [‡]		1603.1 (13 ⁻)			
2432.9	(17^{+})	662.9 [‡]	100	1770.0 15+			
2511.9		489.8 [‡]		2022.0			
		558.9 [‡]		1953.0			
2555.8	(16 ⁻)	335.0 [‡]		2220.9 (15 ⁻)			
		686.0 [‡]		1869.7 (14-)			
2576.7	(17 ⁻)	237 ^{‡d}		2339.4 (16 ⁻)			
		666.3 [‡]		1910.4 (15 ⁻)			
2636.7		80.7 [‡]		2555.8 (16 ⁻)			

11

From ENSDF

 $^{186}_{77}\mathrm{Ir}_{109}\text{--}11$

 $^{186}_{77}\mathrm{Ir}_{109}\text{--}11$

L

$\gamma(^{186}\text{Ir})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
2636.7		124.7‡		2511.9		3144.4	(18+)	736 [‡]	100	2408.4	(16+)
		214.1 [‡]		2422.8		3170.7	(19 ⁺)	737.8 [‡]	100	2432.9	(17^{+})
		415.9 [‡]		2220.9	(15 ⁻)	3327.0	(19 ⁻)	750.3 [‡]	100	2576.7	(17 ⁻)
2766.2	(17^{+})	358 [‡]		2408.4	(16 ⁺)	3527.2	(19 ⁺)	761 [‡]	100	2766.2	(17^{+})
		698.7 [‡]		2067.3	(15 ⁺)	3657.5	(20^{+})	726.9 [‡]	100	2930.6	(18^{+})
2862.5		225.8 [‡]		2636.7		3734.7		699.2 [‡]	100	3035.5	
		306.7 [‡]		2555.8	(16 ⁻)	3916.6?	(20^{+})	772 ^{‡d}	100	3144.4	(18^{+})
2882.1		245.4 [‡]	100	2636.7		3963.2	(21^{+})	792.5 [‡]	100	3170.7	(19^{+})
2930.6	(18^{+})	497.8 [‡]		2432.9	(17^{+})	4144.0	(21 ⁻)	817 [‡]	100	3327.0	(19 ⁻)
		678.5 [‡]		2252.0	(16 ⁺)	4205.5		470.8 [‡]	100	3734.7	
2935.9	(17-)	380.2 [‡]		2555.8	(16 ⁻)	4398.5	(22^{+})	741‡	100	3657.5	(20^{+})
		714.8		2220.9	(15 ⁻)	4566		360.5 [‡]	100	4205.5	
3035.5		153.4 [‡]		2882.1		4785.5	(23 ⁺)	822.3 [‡]	100	3963.2	(21 ⁺)
		173.0 [‡]		2862.5							

12

[†] From ¹⁸⁶Pt ε decay, unless noted to the contrary. Note that, in assigning mult and δ in that decay, uncertainties in conversion coefficients and δ reflected only the stated 15% uncertainty in I γ , not the (unstated) uncertainty in I(ce); thus, actual uncertainties in δ and α may be larger than indicated here.

^{\ddagger} From (¹¹B,5n γ); uncertainties not stated by authors.

[#] D from $\gamma(\theta)$ in (⁹Be,4n γ); $\Delta \pi$ from band structure.

[@] Q from $\gamma(\theta)$ in (⁹Be,4n γ); not M2 from RUL and 15 ns coin resolving time.

[&] E γ , I γ from ¹⁸⁰Hf(¹¹B,5n γ).

^{*a*} Additional information 2.

^b If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain.

¹⁸⁶₇₇Ir₁₀₉

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁶₇₇Ir₁₀₉

Legend

Adopted Levels, Gammas

Level Scheme (continued)

 $^{186}_{77}\mathrm{Ir}_{109}$

¹⁸⁶₇₇Ir₁₀₉

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹⁸⁶₇₇Ir₁₀₉

¹⁸⁶₇₇Ir₁₀₉