¹⁸⁶Ir IT decay

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. C. Batchelder and A. M. Hurst, M. S. Basunia	NDS 183, 1 (2022)	1-Mar-2022	

Parent: ¹⁸⁶Ir: E=x+0.0; $J^{\pi}=2^{-}$; $T_{1/2}=1.90$ h 5; %IT decay \approx 25.0

No change compared to previous evaluation (2003Ba44). The IT decay of the 2^- isomer of ¹⁸⁶Ir has not been observed but is inferred from the beta decay scheme of ¹⁸⁶Pt (1991Be25).

All data are taken from Adopted Levels, gammas.

¹⁸⁶Ir Levels

E(level)	J^{π}	T _{1/2}	Comments		
0.0	5+	16.64 h 3			
x+0.0	2^{-}	1.90 h 5	$\%\epsilon + \%\beta^+ \approx 75$; $\%$ IT ≈ 25 %IT: 20-30% estimated from 1991Be25, however this transition has not been observed.		

 $\gamma(^{186}{\rm Ir})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	Mult.	$I_{(\gamma+ce)}^{\dagger}$
(≤1.5)	x+0.0	2^{-}	[E3]	100

 † For absolute intensity per 100 decays, multiply by ${\approx}0.25.$