Adopted Levels, Gammas

				History								
	Туре			Author	Citation	Literature Cutoff Date						
	Full Evalu	ation J. C. Ba	atchelder a	and A. M. Hurst, M. S. Basunia	NDS 183, 1 (2022)	1-Mar-2022						
$Q(\beta^-)=-3176\ 24$; $S(n)=7928\ 21$; $S(p)=2.32\times10^3\ 4$; $Q(\alpha)=4912\ 14\ 2021Wa16$ An isomer in ¹⁸⁶ Au with $T_{1/2}<2$ min was reported by 1972Fi12; however, existence of that isomer could not be confirmed by 1983Po10.												
				¹⁸⁶ Au Levels								
				Cross Reference (XREF) F	lags							
				A 186 Hg ε decay (1.38 n B 171 Yb(19 F,4n γ) C 172 Yb(19 F,5n γ)	nin)							
E(level) [†]	Jπ‡	T _{1/2} #	XREF		Comments							
0.0	3-	10.7 min 5	A	$ {} % \varepsilon + \% \beta^{+} = 100; \ \% \alpha = 8 \times 10^{-4} \ 2 (\mu = -1.26 \ 3 \\ Q = +3.10 \ 6 \\ \mu: weighted average of -1.263 \ 2 \\ spectroscopy (2019StZV, from 1.07 \ 13 \ from nuclear orientati NMR on oriented nuclei (prel: Q: From laser spectroscopy (201 applied. Sign from 1991Hi14. of +3.12 \ 20 \ (1991Hi14); NMI (1993Hi10,1996Ha09). \Delta < r^{2} > (^{197}Au - ^{186}Au) = -0.014 \ from (1990Sa21). \\ T_{1/2}: From 1970Jo02. \ Other val 12 \ min (1960A120). \\ J^{\pi}: J = 3 \ from atomic beam (1976) \\ J^{\pi} = 1000 \ 2000$	1990Ak04) 29 and -1.284 <i>33</i> from a 1989Wa11 and 1990 on (1989Ra17, from 1 iminary result, 1988So 6St14,1992Ki30); no Others: +3.14 <i>16</i> (19 R on oriented nuclei). m ² 8 (1987Wa06, 198 ues: 11.0 min <i>10</i> (197 5Ek01); E1-M1 cascad	n resonance ionization 0Sa21, respectively). Others: 1985Va07), 1.278 <i>19</i> from c19). Sternheimer correction 093Hi10 and 1996Ha09, revision $Q/Q(^{197}Au)=5.73 24$ 19Wa11), 0.021 fm ² <i>15</i> 72Fi12), 10 min <i>2</i> (1995Bi01), de from $\pi=+$ 364 level.						
36.14 8	2-	80 ps 15	A	Possible configuration= $((\pi 3/2)^{\alpha} \alpha)^{\pi}$: cascade of M1+E2 γ 's configuration	$(532])-(\nu 9/2[624])).$ a and γ -ray ratio (19) ecting the 189.7, 113.	P90Ak04). 9, 36.1 levels with the 3^- g.s.						
113.94 13	1-	1.6 ns 2	A	establish $J^{n}(36)=2^{-}$, $J^{n}(114)=$ J^{π} : see comment on 36 level	$=1^{-}, J^{n}(190)=1^{-}.$							
189.74 17	1-		Α	J^{π} : see comment on 36 level.								
227.77 7	$3^+,(2^+)$	110 ns 10	Α	J^{π} : see comment on 351 level.								
251.50 9	2-	70 ps 20	Α	J^{π} : see comment on 364 level.								
288.00 8	2^{+}	870 ps <i>50</i>	Α	J^{π} : E1 288 γ to 3 ⁻ g.s.; M1+E2	50γ from 1 ⁺ 338 leve	el.						
337.64 10	<u>-</u>		A	π								
349.10 9	2-		A	J^{n} : see comment on 464 level.	4 1 229 1 1 4	2= (11:1 #(228) 2+						
350.87 13	1'		A	J^{π} : M1(123 γ)-E1(228 γ) cascade and $J^{\pi}(351)=1^+$.	through 228 level to	3 g.s. establish $J^{\alpha}(228)=2^{+1}$						
363.61 11	1+	210 ps <i>30</i>	A	J^{π} : E1(112 γ)-M1(252 γ) cascade $J^{\pi}(364)=1^+$, $J^{\pi}(252)=2^-$ and	through 252 level to $\pi(g.s.) = -$.	J=3 g.s. establish						
393.02 22	(1-)		A	$I_{\rm T}$, M1 + E2 5(to 2= 240								
405.21 10	(1) (1^+)		A	J ^T : $1V11 + E2$ 307 [0 2 349. I^{π} : M1 151a to 2^+ 282 lavel								
438.80 13 441 709 14	(1)		A A	$J = 1011 1517 to 2^{\circ} 288$ level.								
464.20 14	(1 ⁻)		A	J ^{π} : M1+E2 gammas connecting establish J ^{π} (349.1)=2 ⁻ and J ^{j}	the 464.2, and 349.1 $(464.2)=1^{-1}$.	keV levels and the 3 ⁻ g.s.,						
487.30 13	$(1)^{+}$		Α	J^{π} : M1 199 γ to 2 ⁺ 288 level.								
496.60 14	(1^{+})		Α	J^{π} : M1+E2 133 γ to 1 ⁺ 364 leve	1.							

Continued on next page (footnotes at end of table)

¹⁸⁶Au Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
556.80 13	$(1,2)^{-}$		A	J^{π} : M1+E2 305 γ to 2 ⁻ 252 level.
595.92 24			Α	
598.21 11	(1^{-})		Α	J^{π} : M1+E2 193 γ to 1 ⁻ 405 level.
611.9 4			Α	
664.30 14	(1^{-})		Α	J^{π} : M1 to 2 ⁻ 349 level.
689.43 12	(1^{-})		A	J^{π} : M1+E2 284 γ to 1 ⁻ 405 level.
/15.49 1/	$(0^+, 1^+)$		A	J^{*} : M1 352 γ to 1 * 364 level.
152.1 5 800 3 <i>1</i>			A A	
804 7 4			A	
942.6 4			A	
1032.3 4			Α	
1044.3 4			Α	
1144.1 4			Α	
1145.1 5			Α	
1283.0 5			A	
1300.6 4			A	
1505.8 4			A A	
1686 96 25			A	
1691.36 25			A	
0.0+x ^{<i>a</i>}	(7^{-})		BC	Additional information 1.
106.6+x ^b 4	(8 ⁻)		В	
228.6+x ^{<i>a</i>} 4	(9-)		В	
398.1+x ^b 5	(10^{-})		В	
455.3+x ^c	(11 ⁻)	39 ns 4	BC	Additional information 2.
				J^{π} : by analogy with structure in higher mass odd-odd Au nuclei.
				$T_{1/2}$: From (¹⁹ F,4n γ).
559.3+x?	(9^+)		В	Decay from this level is unknown.
501.4+X ^a 5	(11)		В	
658.6+x	(11^{+})		BC	Additional information 3. π (11+): (1955) = 1(10+): (1954) > (1955) = (11, 14, 14, 14)
				$J^{(11)}$ in $({}^{2}F,5n\gamma)$ and (10^{2}) in $({}^{2}F,4n\gamma)$. $({}^{2}F,5n\gamma)$ reported better statistics.
				unobserved low-energy transition(s) deexciting it
770.9+ x^{d} 4	(12^{-})		BC	unobserved fow energy nunsition(s) deexening n.
$775.5 + x^{@} 4$	(12^+)		BC	
791.1+x ^b 6	(12^{-})		В	
924.8+x ^{&} 4	(13^{+})		BC	
927.3+x ^c 4	(13 ⁻)		BC	
994.7+x ^a 6	(13 ⁻)		В	
$1093.0 + x^{@} 5$	(14^{+})		BC	
1276.3+x ^b 7	(14-)		В	
1292.3+x × 5	(15^{+})		BC	
$1293.2 + x^{d} 5$	(14 ⁻)		BC	
1496.9+x [@] 6	(16 ⁺)		BC	
$1518.0 + x^{u}$ 7	(15^{-})		B	
1032.9+x° 6	(15)		BC	
$1/38.0 + x^{\alpha} 6$	(17^{+})		BC	
1844.7+x ⁰ 7	(16 ⁻)		В	
1964.9+x ^w 7	(18^{+})		BC	
1991.3+x ^a 6	(16 ⁻)		BC	

				18	⁶ Au Leve	els (continued)		
E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
2124.0+x ^a 8	(17 ⁻)	В	2788.8+x ^e 11	(19 ⁺)	С	3806.3+x 13	(22^{+})	С
2159.3+x 7	(14^{+})	С	$2808.5 + x^a 8$	(19 ⁻)	В	3868.8+x ^e 13	(22^{+})	В
2212.6+x ^e 7	(15^{+})	BC	2919.6+x ^f 11	(20^{+})	С	3881.6+x ^{&} 9	(25 ⁺)	С
2226.1+x ^{&} 7	(19 ⁺)	BC	2986.4+x [@] 8	(22^{+})	BC	3935.2+x <i>13</i>	(23 ⁺)	С
2343.6+x ^c 6	(17 ⁻)	BC	3114.4+x ^e 11	(20^{+})	В	3954+x? ^b	(22 ⁻)	В
2400.5+x ^e 9	(17^{+})	BC	3196.9+x ^b 9	(20^{-})	В	4185.6+x ^{<i>f</i>} 13	(24+)	С
$2462.0 + x^{\textcircled{0}}$ 7	(20^{+})	BC	3265.9+x ^{&} 8	(23 ⁺)	BC	4237.5+x [@] 9	(26^{+})	С
2488.5+x ^b 8	(18 ⁻)	В	3374.3+x 12	(21^{+})	С	4583.2+x ^{&} 10	(27 ⁺)	С
2584.6+x ^e 10	(18^{+})	С	3430.9+x ^f 12	(22^{+})	С	4682.0+x 13	(25 ⁺)	С
2604.9+x ^e 10	(18^{+})	В	3549.5+x? ^a	(21 ⁻)	В	4981.5+x [@] 11	(28^+)	С
2665.9+x ^d 7	(18 ⁻)	BC	3572.4+x [@] 9	(24 ⁺)	BC	5007.8+x ^f 14	(26 ⁺)	С
2725.4+x ^{&} 8	(21^{+})	BC	3619.0+x ^e 13	(21^{+})	В			

[†] From least-squares adjustment of E_γ, assuming $\Delta E=0.5$ keV for all E_γ values from (¹⁹F,4n_γ) (1992Ja01) and (¹⁹F,5n_γ) (2006Zh38, 2012Li08). Energies observed in ε decay are from (1983Po10). Energies of band structures relative to the 3⁻ g.s. have not been determined; if the g.s. and the 7⁻ x+0.0 level were members of same band, x \approx 300 would be expected, so E<100 for the intervening $\Delta J=1$ intraband transitions (rendering them difficult to detect).

[‡] From (¹⁹F,4n γ) and (¹⁹F,5n γ), based on mult of deexciting gammas and/or on similarities of band structures in heavier odd-odd Au isotopes, except when indicated otherwise. All levels observed by ε decay except for the 36.1, 227.7 and 349.1-keV levels have apparent direct feeding, suggesting an allowed or first forbidden transition. However the large amount of unplaced and unobserved γ s make these assignments uncertain.

From 1985Ab03 (¹⁸⁶Hg ε decay), unless noted to the contrary.

[@] Band(A): $\pi = (+)$, $\alpha = 0$ prolate band. Possible configuration = ($\nu 9/2[624])(\pi 1/2[541])$. Yrast for J>14. Energies may not be reliably established; see comment on x+612.9 level. 2006Zh38 (19 F,5n γ) propose spin increase by one unit for this band members compared to 1992Ja01 ($^{19}F,4n\gamma$) – on the basis of the level spacing systematics, quasi-particle alignments, and signature splitting.

& Band(B): $\pi = (+)$, $\alpha = 1$ prolate band. Possible configuration= $(\nu 9/2[624])(\pi 1/2[541])$. Yrast for J>13. Energies may not be reliably established; see comment on x+612.9 level. 2006Zh38 (19 F,5n γ) propose spin increase by one unit for this band members compared to 1992Ja01 ($^{19}F,4n\gamma$) – on the basis of the level spacing systematics, quasi-particle alignments, and signature splitting.

- ^a Band(C): $\pi = -, \alpha = 1$ prolate band. Possible configuration=($\nu 9/2[624]$)($\pi 1/2[660]$). Yrast for J ≤ 9 .
- ^b Band(D): $\pi = -, \alpha = 0$ prolate band. Possible configuration= $(\nu 9/2[624])(\pi 1/2[660])$. Yrast for J ≤ 10 .
- ^c Band(E): $K^{\pi} = (11^{-})$, $\alpha = 1$ oblate band. See comment on signature partner of this band.
- ^d Band(F): $K^{\pi}=(11^{-}), \alpha=0$ oblate band. Probable configuration= $(\nu i_{13/2}^{-1})(\pi h_{11/2}^{-1})$. Same characteristic energy spacing as 11⁻ isomer bands in mass 188-194 odd-odd Au isotopes. ^{*e*} Seq. Probable configuration= $(\pi h_{11/2}^{-1}) (\nu i_{13/2}^{-2})j$. j=p_{3/2},f_{5/2}.
- ^{*f*} Band(G): Oblate band. Probable configuration= $(\nu i_{13/2}^{-2}h_{9/2}^{-1})$ ($\pi h_{11/2}$ ⁻¹).

Adopted Levels, Gammas (continued)										
							$\gamma(^{186}\mathrm{Au})$			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α ^{&}	Comments		
36.14	2-	36.1 1	100	0.0 3-	M1+E2	0.10	31.6 6	B(M1)(W.u.)=0.18 4; B(E2)(W.u.)= 6.8×10^2 13 α (L)=25.1 5; α (M)=5.97 11 α (D)=0.2(4.5 - α (D)=0.0140(-23)		
113.94	1-	77.8 1	100	36.14 2-	M1+E2	0.24	3.36	a(N)=1.48 5; $a(O)=0.204$ 5; $a(P)=0.01400$ 25 B(M1)(W.u.)=0.0060 8; B(E2)(W.u.)=26 4 a(L)=2.63 4; $a(M)=0.629$ 10		
189.74	1-	75.8 1	100	113.94 1-	M1+E2	0.18	3.35	$\alpha(N)=0.1562\ 23;\ \alpha(O)=0.0277\ 4;\ \alpha(P)=0.001410\ 21$ $\alpha(L)=2.60\ 4;\ \alpha(M)=0.616\ 9$ $\alpha(N)=0\ 1531\ 23;\ \alpha(O)=0\ 0275\ 4;\ \alpha(P)=0\ 001558\ 23$		
227.77	3+,(2+)	191.6 <i>1</i>	100 10	36.14 2-	E1		0.0802	B(E1)(W.u.)=1.39×10 ⁻⁷ 22 α (K)=0.0657 <i>10</i> ; α (L)=0.01121 <i>16</i> ; α (M)=0.00260 <i>4</i> (A) = 0.002610 α (C) = 0.0001120 I(c) (D) 5.02×10 ⁻⁶ α		
		227.7 1	81 8	0.0 3-	E1		0.0523	$\alpha(N)=0.000640$ 9; $\alpha(O)=0.0001129$ 16; $\alpha(P)=3.92\times10^{-9}$ 9 B(E1)(W.u.)=6.7×10 ⁻⁸ 11 $\alpha(K)=0.0429$ 6; $\alpha(L)=0.00720$ 11; $\alpha(M)=0.001666$ 24		
251.50	2-	251.5 <i>I</i>	100	0.0 3-	M1		0.538	$\alpha(N)=0.000411\ 6;\ \alpha(O)=7.28\times10^{-5}\ 11;\ \alpha(P)=3.96\times10^{-6}\ 6$ B(M1)(W.u.)=0.013 4 $\alpha(K)=0.443\ 7;\ \alpha(L)=0.0733\ 11;\ \alpha(M)=0.01700\ 24$		
288.00	2+	60.2 1	100 10	227.77 3+,(2+)	M1+E2	0.49	14.47 23	α (N)=0.00423 6; α (O)=0.000779 11; α (P)=5.27×10 ⁻⁵ 8 B(M1)(W.u.)=0.0055 9; B(E2)(W.u.)=154 24 α (L)=11.15 18; α (M)=2.80 5		
		288.1 <i>I</i>	96 10	0.0 3-	E1		0.0296	$\alpha(N)=0.690 \ 11; \ \alpha(O)=0.1148 \ 18; \ \alpha(P)=0.00261 \ 4$ B(E1)(W.u.)=5.6×10 ⁻⁷ 9 $\alpha(K)=0.0244 \ 4; \ \alpha(L)=0.00400 \ 6; \ \alpha(M)=0.000924 \ 13$		
337.64		49.7 1	83 8	288.00 2+	M1+E2	0.06	10.46 16	α (N)=0.000228 4; α (O)=4.07×10 ⁻⁵ 6; α (P)=2.31×10 ⁻⁶ 4 α (L)=8.03 13; α (M)=1.87 3 α (N)=0.466 8; α (O)=0.0852 13; α (P)=0.00551 9		
		109.8 <i>1</i>	100 10	227.77 3+,(2+)	E2		3.54	$\alpha(K)=0.600 \ 9; \ \alpha(L)=2.20 \ 4; \ \alpha(M)=0.573 \ 9$		
349.10	2-	349.1 <i>1</i>	100	0.0 3-	M1+E2	0.43	0.196	$\alpha(N)=0.1409\ 21;\ \alpha(O)=0.0226\ 4;\ \alpha(P)=7.45\times10^{-5}\ 11$ $\alpha(K)=0.1546\ 22;\ \alpha(L)=0.0274\ 4;\ \alpha(M)=0.00641\ 9$ $\alpha(N)=0.001595\ 23;\ \alpha(O)=0.000290\ 4;\ \alpha(P)=1.82\times10^{-5}\ 3$		
350.87	1+	123.1 <i>I</i>	100	227.77 3+,(2+)	M1		4.00	$\alpha(K)=3.295; \alpha(L)=0.5518; \alpha(M)=0.127919$ $\alpha(K)=0.02105; \alpha(L)=0.005860; \alpha(M)=0.0002056$		
363.61	1+	112.1 <i>1</i>	100	251.50 2-	E1		0.311	$\begin{array}{l} a(N)=0.0519 \ 5, \ a(O)=0.00538 \ 9, \ a(P)=0.000393 \ 0 \\ B(E1)(W.u.)=0.00053 \ 8 \\ \alpha(K)=0.250 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0206 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01083 \ 16 \\ \alpha(K)=0.0465 \ 4; \ \alpha(L)=0.0465 \ 4; \ \alpha($		
393.02		356.8 <i>3</i> 393.1 <i>3</i>	31 <i>3</i> 100 <i>10</i>	36.14 2 ⁻ 0.0 3 ⁻				$\alpha(N)=0.00265 4; \alpha(O)=0.000458 7; \alpha(P)=2.10\times10^{-3} 3$		
405.21	(1 ⁻)	56.1 <i>1</i>	48 5	349.10 2-	M1+E2	0.13	8.10 13	α (L)=6.20 <i>10</i> ; α (M)=1.464 <i>23</i> α (N)=0.364 6: α (O)=0.0655 <i>10</i> : α (P)=0.00382 6		
		153.7 <i>1</i>	100 10	251.50 2-	M1+E2	0.5 4	1.9 3	$\alpha(K)=0.5016$; $\alpha(C)=0.005516$; $\alpha(R)=0.005526$ $\alpha(K)=1.54$; $\alpha(L)=0.335$; $\alpha(M)=0.07914$ $\alpha(N)=0.0204$; $\alpha(O)=0.00355$; $\alpha(P)=0.000175$		
438.80	(1 ⁺)	150.8 <i>1</i>	100	288.00 2+	M1+E2	0.55 3	1.96 4	α (K)=1.4 3; α (L)=0.37 4; α (M)=0.088 12 α (N)=0.022 3; α (O)=0.0038 4; α (P)=0.00017 4		

4

From ENSDF

 $^{186}_{79}\mathrm{Au}_{107}$ -4

γ (¹⁸⁶Au) (continued)

E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α &	Comments
441.70?		190.2 ^a 1	100	251.50 2-				
464.20	(1^{-})	115.1 <i>1</i>	100	349.10 2-	M1+E2	0.61	4.33 7	$\alpha(K)=3.01$ 5; $\alpha(L)=0.982$ 15; $\alpha(M)=0.242$ 4
								α (N)=0.0599 9; α (O)=0.01026 15; α (P)=0.000362 6
487.30	$(1)^{+}$	199.3 <i>1</i>	100	$288.00 \ 2^+$	M1		1.026	$\alpha(K)=0.844$ 12; $\alpha(L)=0.1403$ 20; $\alpha(M)=0.0325$ 5
10 5 50	24.15		100					α (N)=0.00811 <i>12</i> ; α (O)=0.001491 <i>21</i> ; α (P)=0.0001008 <i>15</i>
496.60	(1^{+})	133.0 1	100	363.61 1+	M1+E2	1.4	2.18 4	$\alpha(\mathbf{K})=1.177/17; \ \alpha(\mathbf{L})=0.756/11; \ \alpha(\mathbf{M})=0.192/3$
55(00	(1, 0) =	205.2.1	100	251.50 2-	M1 . E2	0.4	0.000	$\alpha(N)=0.04/4$ /; $\alpha(O)=0.00/83$ 12; $\alpha(P)=0.00013/8$ 20
550.80	(1,2)	305.5 1	100	251.50 2	MI+E2	0.4	0.280	$\alpha(\mathbf{N}) = 0.2334; \alpha(\mathbf{L}) = 0.04106; \alpha(\mathbf{M}) = 0.0093714$
505.02		202.0.1	100	202.02	M1		0.076	$\alpha(N) = 0.002384; \alpha(O) = 0.0004346; \alpha(P) = 2.75 \times 10^{-5} 4$
393.92		202.9 1	100	393.02	IVI I		0.976	$\alpha(\mathbf{K}) = 0.802 \ I2; \ \alpha(\mathbf{L}) = 0.1334 \ I9; \ \alpha(\mathbf{M}) = 0.0309 \ S$
509 21	(1^{-})	102 1 7	12 1	405.21 (1-)	M1 + E2	2.2	0.524	$\alpha(N)=0.007/1 II; \alpha(O)=0.001418 20; \alpha(P)=9.58\times10^{-5} I4$
398.21	(1)	195.1 1	42 4	403.21 (1)	MIT+E2	2.5	0.334	$u(\mathbf{K}) = 0.294 \ J; \ u(\mathbf{L}) = 0.1747 \ 2J; \ u(\mathbf{M}) = 0.0443 \ 7$
		22451	21.2	262 61 1+				$\alpha(N)=0.01094\ 10;\ \alpha(O)=0.00181\ 3;\ \alpha(P)=3.24\times10^{-5}\ 5$
		234.3 1	51 5 100 10	303.01 1 251.50 2 ⁻	E2		0.0672	$\alpha(K) = 0.0427.7; \alpha(L) = 0.0170.2; \alpha(M) = 0.00447.7$
		540.7 1	100 10	231.30 2	E2		0.0075	$u(\mathbf{K}) = 0.04577, u(\mathbf{L}) = 0.01795, u(\mathbf{M}) = 0.0044777$ $u(\mathbf{M}) = 0.001102, 16, u(\mathbf{M}) = 0.000186, 2, u(\mathbf{M}) = 4.72 \times 10^{-6}.7$
611.0		360 4 3	100	251 50 2-				$a(\mathbf{N})=0.001105\ 10;\ a(\mathbf{O})=0.000180\ 5;\ a(\mathbf{P})=4.75\times10^{-7}$
664 30	(1^{-})	315 2 1	100	$231.30 \ 2$ $349 \ 10 \ 2^{-}$	M1		0.290	$\alpha(K) = 0.239.4$; $\alpha(I) = 0.0394.6$; $\alpha(M) = 0.00912.13$
004.50	(1)	515.21	100	549.10 2	1011		0.290	$a(\mathbf{K}) = 0.23774; a(\mathbf{L}) = 0.03740; a(\mathbf{K}) = 0.0091273$
689 43	(1^{-})	284 1 1	70.7	405.21 (1 ⁻)	$M1\pm F2$	0.4	0 349	$\alpha(\mathbf{K}) = 0.002274, \alpha(\mathbf{C}) = 0.0004160, \alpha(\mathbf{L}) = 2.05 \times 10^{-4}$
007.45	(1)	207.11	10 1	403.21 (1)	WII L2	0.4	0.547	$\alpha(\mathbf{N}) = 0.2054, \alpha(\mathbf{L}) = 0.00057, \alpha(\mathbf{N}) = 0.0117777$ $\alpha(\mathbf{N}) = 0.002035; \alpha(\mathbf{L}) = 0.0005338; \alpha(\mathbf{P}) = 3.35 \times 10^{-5}5$
		325.9.1	30.3	363.61 1+				$u(1)=0.00235, u(0)=0.000355, u(1)=5.55\times 10^{-5}$
		438.3.3	100 10	$251.50 \ 2^{-1}$				
715.49	$(0^+, 1^+)$	218.9 1	77 9	$496.60 (1^+)$	M1		0.790	$\alpha(K)=0.650\ 10;\ \alpha(L)=0.1079\ 16;\ \alpha(M)=0.0250\ 4$
	(* ,-)			.,				$\alpha(N)=0.00623 9; \alpha(O)=0.001146 17; \alpha(P)=7.75\times10^{-5} 11$
		351.8 <i>3</i>	100 11	363.61 1+	M1		0.216	$\alpha(K) = 0.178 \ 3; \ \alpha(L) = 0.0292 \ 5; \ \alpha(M) = 0.00676 \ 10$
								$\alpha(N)=0.001684\ 24;\ \alpha(O)=0.000310\ 5;\ \alpha(P)=2.10\times10^{-5}\ 3$
732.7		732.7 3	100	0.0 3-				a(1)
800.3		395.1 <i>3</i>	100	405.21 (1-)				
804.7		553.2 <i>3</i>	100	251.50 2-				
942.6		691.1 <i>3</i>	100	251.50 2-				
1032.3		639.3 <i>3</i>	100	393.02				
1044.3		651.3 <i>3</i>	100	393.02				
1144.1		780.5 <i>3</i>	100	363.61 1+				
1145.1		412.4 3	100	732.7				
1283.0		478.3 3	100	804.7				
1300.6		702.4 3	100	598.21 (1 ⁻)				
1503.8		1140.2 3	100	363.61 1+				
1608.66		1112.0.3	100 10	496.60 (l')				
1686.06		1245.1 3	62 0 40 4	$303.01 1^{+}$				
1000.90		1190.5 5	40 4 100 10	$490.00 (1^{\circ})$				
1601 36		1323.4 3	26.3	496 60 (1+)				
1091.30		1177.7 J	20 5	+90.00 (I)				

S

$^{186}_{79}\mathrm{Au}_{107}$ -5

From ENSDF

						Adopted	Levels, G	ammas (continued)
							γ(¹⁸⁶ Au)	(continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α ^{&}	Comments
1691.36		1327.6 3	100 10	363.61	1+			
106.6+x	(8 ⁻)	106.8 [‡]	100	0.0+x	(7 ⁻)	D+Q [‡]		
228.6+x	(9 ⁻)	122.1	$100^{\ddagger} 5$	106.6+x	(8 ⁻)	D+Q [‡]		
		228.5 [‡]	50 [‡] 5	0.0+x	(7 ⁻)			
398.1+x	(10 ⁻)	169.4 [‡]	100 [‡] 4	228.6+x	(9 ⁻)	D+Q [‡]		
		291.5 [‡]	51.9 [‡] 21	106.6+x	(8 ⁻)	(Q) [‡]		
455.3+x	(11 ⁻)	57 ^{‡a}	100	398.1+x	(10 ⁻)	[M1]	6.71	B(M1)(W.u.)=0.00038 5 α (L)=5.15 8; α (M)=1.196 17 α (N)=0.298 5; α (O)=0.0548 8; α (P)=0.00370 6 Mult.: D from RUL; Δπ=no favored by isomer systematics in heavier odd-odd Au isotopes.
561.4+x	(11 ⁻)	163.4 [‡]	45 [‡] 5	398.1+x	(10 ⁻)			
		332.8 [‡]	100^{\ddagger}	228.6+x	(9 ⁻)	Q [‡]		
658.6+x	(11^{+})	99 ^{‡a}	100 [‡]	559.3+x?	(9+)			
770.9+x	(12 ⁻)	315.6 [@]	100	455.3+x	(11 ⁻)			
775.5+x	(12^{+})	117.1 [@]	100	658.6+x	(11^{+})			
791.1+x	(12 ⁻)	229.8 [‡]	75 [‡] 3	561.4+x	(11 ⁻)	D+Q [‡]		
		392.9 [‡]	100 [‡] 4	398.1+x	(10 ⁻)	Q [‡]	0.0478	α (K)=0.0325 5; α (L)=0.01153 17; α (M)=0.00286 4 α (N)=0.000708 10; α (O)=0.0001204 17; α (P)=3.56×10 ⁻⁶ 5
924.8+x	(13 ⁺)	149.5 [‡]	100 [‡] 5	775.5+x	(12^{+})	D+Q [‡]		
		266.0 [@]	48 [‡] 10	658.6+x	(11^{+})			
927.3+x	(13 ⁻)	156.4 [@]	25.0 [‡] 22	770.9+x	(12 ⁻)	D+Q [‡]		
		472.0 [@]	$100^{\ddagger} 6$	455.3+x	(11 ⁻)			
994.7+x	(13 ⁻)	203.5 [‡]	43 [‡] 6	791.1+x	(12 ⁻)	D+Q [‡]		
		433.3 [‡]	$100^{\ddagger} 4$	561.4+x	(11 ⁻)	(Q) [‡]		
1093.0+x	(14^{+})	168.1 [‡]	$100^{\ddagger} 6$	924.8+x	(13 ⁺)	D+Q [‡]		
		317.6	79 [‡] 6	775.5+x	(12^{+})	Q [‡]		
1276.3+x	(14-)	281.5 [‡]	63 [‡] 3	994.7+x	(13 ⁻)	D+Q [‡]		
		485.2 [‡]	100 [‡] 5	791.1+x	(12 ⁻)	Q [‡]		
1292.3+x	(15^{+})	199.4 [#]	93 [‡] 7	1093.0+x	(14^{+})	D+Q‡		
		367.3	100 [‡] 12	924.8+x	(13 ⁺)			
1293.2+x	(14-)	366.0 [@]	100 [‡] 3	927.3+x	(13 ⁻)			
		522.4 [@]	42 [‡] 3	770.9+x	(12 ⁻)			
1496.9+x	(16 ⁺)	204.8 [#]	89 [‡] 7	1292.3+x	(15^{+})			
		403.9 [@]	100 [‡] 5	1093.0+x	(14+)	(Q) [‡]	0.0444	α (K)=0.0305 5; α (L)=0.01050 15; α (M)=0.00260 4 α (N)=0.000643 9; α (O)=0.0001097 16; α (P)=3.34×10 ⁻⁶ 5

From ENSDF

 $^{186}_{79}\mathrm{Au}_{107}$ -6

 $^{186}_{79}\mathrm{Au}_{107}$ -6

Т

						Adop	ted Levels,	Gammas (continued)			
γ ⁽¹⁸⁶ Au) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α &	Comments			
1518.0+x	(15^{-})	241.6 [‡]	40 [‡] 3	1276.3+x	(14^{-})						
		523.4 [‡]	100 [‡] 6	994.7+x	(13 ⁻)		0.0231	α (K)=0.01708 24; α (L)=0.00460 7; α (M)=0.001120 16 α (N)=0.000277 4; α (O)=4.81×10 ⁻⁵ 7; α (P)=1.89×10 ⁻⁶ 3			
1632.9+x	(15 ⁻)	339.7 [‡]	41 [‡] 4	1293.2+x	(14 ⁻)	D+Q [‡]					
		705.5‡	100 [‡] 4	927.3+x	(13-)	Q [‡]	0.01176	α (K)=0.00915 <i>13</i> ; α (L)=0.00199 <i>3</i> ; α (M)=0.000476 <i>7</i> α (N)=0.0001180 <i>17</i> ; α (O)=2.09×10 ⁻⁵ <i>3</i> ; α (P)=1.017×10 ⁻⁶ <i>15</i>			
1738.0+x	(17^{+})	241.2 [‡]	62 [‡] 6	1496.9+x	(16^{+})						
		445.6 [‡]	100 [‡] 6	1292.3+x	(15^{+})	Q [‡]					
1844.7+x	(16 ⁻)	326.7 [‡]	42 [‡] 6	1518.0+x	(15 ⁻)						
		568.4 [‡]	100 [‡] 6	1276.3+x	(14 ⁻)	(Q) [‡]					
1964.9+x	(18 ⁺)	226.9 [‡]	$60^{\ddagger} 4$	1738.0+x	(17^{+})	D+Q [‡]					
		468.0 [‡]	100 [‡] 8	1496.9+x	(16 ⁺)	(Q) [‡]					
1991.3+x	(16 ⁻)	358.4 [‡]	58 [‡] 8	1632.9+x	(15 ⁻)						
		698.1 [‡]	100 [‡] <i>10</i>	1293.2+x	(14 ⁻)	(Q) [‡]					
2124.0+x	(17 ⁻)	279.2 [‡]	24 [‡] 4	1844.7+x	(16 ⁻)						
		606.0 [‡]	100 [‡] 6	1518.0+x	(15 ⁻)						
2159.3+x	(14^{+})	1232.0 [#]	100	927.3+x	(13 ⁻)						
2212.6+x	(15^{+})	53 ^{#a}		2159.3+x	(14^{+})						
		919.4 <mark>#</mark>		1293.2+x	(14 ⁻)	D		Mult.: From (¹⁹ F,4n γ).			
2226.1+x	(19 ⁺)	261.5 [‡]	64 [‡] 9	1964.9+x	(18^{+})						
		488.0 [@]	100 [‡] 7	1738.0+x	(17^{+})						
2343.6+x	(17 ⁻)	352.5 [‡]	51 [‡] 7	1991.3+x	(16 ⁻)						
		710.6	100 [‡] 7	1632.9+x	(15 ⁻)	Q [‡]					
2400.5+x	(17^{+})	188.0 [@]	100	2212.6+x	(15^{+})	(Q)		Mult.: From $({}^{19}F,4n\gamma)$.			
2462.0+x	(20^{+})	235.9 [‡]	52 [‡] 8	2226.1+x	(19 ⁺)						
		497.0 <mark>@</mark>	100 [‡] 6	1964.9+x	(18^{+})						
2488.5+x	(18 ⁻)	364.4	27 5	2124.0+x	(17 ⁻)						
		643.8 [‡]	100 [‡] 7	1844.7+x	(16 ⁻)						
2584.6+x	(18 ⁺)	184.1 [#]	100	2400.5+x	(17^{+})			Observed but unplaced in 171 Yb(19 F,4n γ).			
2604.9+x	(18 ⁺)	204.4	100	2400.5+x	(17^{+})						
2665.9+x	(18 ⁻)	322.4	48 [‡] 9	2343.6+x	(17 ⁻)						
		674.6 [@]	100 [‡] 9	1991.3+x	(16 ⁻)						
2725.4+x	(21^+)	263.5	57‡7	2462.0+x	(20^{+})						
		499.2 [@]	100 [‡] 7	2226.1+x	(19^{+})						
2788.8+x	(19 ⁺)	204.1 [#]	100	2584.6+x	(18^{+})						

Ţ

From ENSDF

γ (¹⁸⁶Au) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [†]	Comments
2808.5+x	(19 ⁻)	320.2 [‡]	23 [‡] 5	2488.5+x	(18 ⁻)		
		684.6 [‡]	100 [‡] 8	2124.0+x	(17 ⁻)		
2919.6+x	(20^{+})	130.8 [#]		2788.8+x	(19 ⁺)		Observed but unplaced in 171 Yb(19 F,4n γ).
		335.0 [#]		2584.6+x	(18^{+})		
2986.4+x	(22^{+})	261.1 [‡]	56 [‡] 8	2725.4+x	(21^{+})		
		524.3 [‡]	100 [‡] 8	2462.0+x	(20^{+})		
3114.4+x	(20^{+})	510.9 [‡]	100	2604.9+x	(18 ⁺)		
3196.9+x	(20^{-})	388.6 [‡]	24 [‡] 6	2808.5+x	(19 ⁻)		
		708.3 [‡]	100 [‡] 9	2488.5+x	(18 ⁻)		
3265.9+x	(23^{+})	279.4 [@]	54 [‡] 8	2986.4+x	(22 ⁺)		
		540.5 [@]	100 [‡] 8	2725.4+x	(21 ⁺)		
3374.3+x	(21^{+})	454.7 [#]	100	2919.6+x	(20^{+})		
3430.9+x	(22^{+})	511.3#	100	2919.6+x	(20^{+})		
3549.5+x?	(21 ⁻)	741 ^{‡a}	100	2808.5+x	(19 ⁻)		
3572.4+x	(24^{+})	306.8 [@]	100 [‡] 24	3265.9+x	(23^{+})		
		586.2 [@]	100 [‡] 12	2986.4+x	(22^{+})		
3619.0+x	(21^{+})	504.6 [‡]	100	3114.4+x	(20^{+})	(D+Q) [‡]	
3806.3+x	(22^{+})	432.0 [#]	100	3374.3+x	(21^{+})		
3868.8+x	(22^{+})	250 ⁴ <i>a</i>	<21	3619.0+x	(21^{+})		
		754.4	100 8	3114.4+x	(20^{+})		
3881.6+x	(25^{+})	309.3#		3572.4+x	(24+)		
		615.4 "		3265.9+x	(23 ⁺)		
3935.2+x	(23+)	504.2^{m}	100	3430.9+x	(22+)		
3954+x?	(22^{-})	757+ ⁴	100	3196.9+x	(20^{-})		
4185.6+x	(24+)	250.4"		3935.2+x	(23^{+})		
1007 5	(2(+))	/54.8" 256.0#		3430.9+X	(22^{+})		
4237.5+x	(26.)	336.0" 665.2#		3881.0+X	(23^{+})		
1592 2 L V	(27^{+})	$246.0^{\#}$		3372.4+X	(24^{+})		
4383.2+X	(27)	540.0 701.4#		4237.3+X	(20)		
4682 0±v	(25^{+})	496.4 [#]		$4185.6 \pm v$	(23^{+})		
7002.0TX	(23)	746 8 [#]		$3035 \ 7 \pm v$	(24)		
4981 5+v	(28^{+})	740.8 744 0 [#]	100	4237 5 + x	(25)		
5007.8 + v	(26^+)	822.2 [#]	100	4185.6+v	(20^{+})		
5007.01A	(20)	022.2	100	1102.0 ГА	(27)		

 $\gamma(^{186}Au)$ (continued)

9

[†] From ¹⁸⁶Hg ε decay, except as noted.
[‡] From (¹⁹F,4nγ).
[#] From (¹⁹F,5nγ).
[@] Average of data from (¹⁹F,4nγ) and (¹⁹F,5nγ).
[&] Additional information 4.
^a Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level γ Decay (Uncertain) ----+ ⁸22,2 100 001 0:54 | $\frac{(26^+)}{(28^+)}$ 5007.8+x 4981.5+x 246.8 (25⁺) 4682.0+x 201.4 346.0 (27^{+}) 4583.2+x $\frac{(26^+)}{(24^+)}$ -5-5--5-5-4237.5+x 4185.6+x + ^{25> 100} + 304.2 <u>3954+x</u> 3935.2+x (22^{-}) (23^{+}) . 60 IV-8 5 (25+) 4320 3881.6+x $\frac{(22^+)}{(22^+)}$ ŝ + 204.6 (02), -3868.8+x 3806.3+x 3.65 0 0, 3.06 10 1 0.6 10 007 · $\frac{(21^+)}{(24^+)}$ 3619.0+x $\left|\frac{1}{3}i_{i,3}\right|$ 1 3572.4+x + 40¹ (21⁻) _ _ <u>3549.5+x</u> $\frac{340.5}{230.5}$ (22^+) 3430.9+x (21^+) 3374.3+x 2003 100 12 (23^{+}) 3265.9+x -8 (20⁻) 3196.9+x 9015 (20^{+}) 8-6 3114.4+x 324,3 261,1 $|\frac{1}{3} \frac{68_{4}}{32_{0}} \frac{1}{23_{1}} \frac{1}{23_{1}}$ (22^{+}) 2<u>986.4+x</u> ³³⁵ ³⁰° (20^{+}) ↓ ↓ 2919.6+x $\frac{1}{2} \frac{\frac{89}{29}}{50} \frac{1}{5}$ Ţ (19⁻) 2808.5+x (19^+) 2788.8+x (21^+) 2725.4+x (18+) 2604.9+x (18+) ¥ * 2584.6+x (18^{-}) 2488.5+x (20^{+}) 2462.0+x (19⁺) 2226.1+x (17^{-}) 2124.0+x 0.0 10.7 min 5 3-

¹⁸⁶₇₉Au₁₀₇

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁸⁶₇₉Au₁₀₇

 $^{186}_{~79}{\rm Au}_{107}$

¹⁸⁶₇₉Au₁₀₇

Adopted Levels, Gammas

 $^{186}_{79}\mathrm{Au}_{107}$

