172 **Yb**(19 **F**,5n γ) 2012Li08,2006Zh38

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. C. Batchelder and A. M. Hurst, M. S. Basunia	NDS 183, 1 (2022)	1-Mar-2022	

Adapted/edited the XUNDL dataset Compiled by M. Birch and B. Singh (McMaster); May 12, 2012.
2012Li08,2006Zh38: ¹⁹F beam, E=104 MeV; Target=1.9 mg/cm² ¹⁷²Yb; Gamma rays detected by the GEMINI array consisting of 13 HPGe detectors with BGO anti-Compton shields. Measured Eγ, Iγ, γγ-coin, DCO ratio. Deduced levels, J, π, multipolarities. 2012Li08 and 2006Zh38 - same research group.

evel	s
	evel

E(level) [†]	J^{π}	Comments
0.0+x	(7^{-})	E(level), J^{π} : From Adopted Levels.
455.3+x [@]	(11 ⁻)	Additional information 1.
658.6+x [#]	(11^{+})	Additional information 2.
771.1+x ^{&}	(12 ⁻)	
775.4+x [‡]	(12^{+})	
924.9+x [#]	(13 ⁺)	
927.4+x [@]	(13 ⁻)	
1092.9+x [‡]	(14^{+})	
1292.2+x [#]	(15^+)	
1293.2+x ^{&}	(14 ⁻)	
1496.8+x [‡]	(16 ⁺)	
1632.8+x [@]	(15 ⁻)	
1737.8+x <mark>#</mark>	(17^{+})	
1964.6+x [‡]	(18^{+})	
1991.1+x ^{&}	(16 ⁻)	
2159.4+x	(14^+)	
$2212.6 + x^{a}$	(15^{+})	
2225.8+X"	(19^{+})	
$2343.6 + x^{\circ}$ 2400.5 + x^{a}	(17) (17^+)	
2461.5+x [‡]	(20^{+})	
2584.6+x ^a	(18^{+})	
2666.0+x	(18 ⁻)	
2724.8+x [#]	(21^{+})	
2788.7+x ^a	(19+)	
2919.6+x ^o	(20 ⁺)	
2985.8+x*	(22+)	
3265.0+x'' 3374.3+x	(23^+) (21^+)	
$3430.9 + x^{b}$	(21^{-})	
$35714 + x^{\ddagger}$	(22^{+})	
3806.3+x	(21^{+}) (22^{+})	
3880.6+x [#]	(25 ⁺)	
3935.1+x ^b	(23 ⁺)	
4185.6+x ^b	(24 ⁺)	
4236.5+x [‡]	(26 ⁺)	
4582.3+x [#]	(27 ⁺)	

172 **Yb**(19 **F**,5n γ) 2012Li08,2006Zh38 (continued)

¹⁸⁶Au Levels (continued)

E(level) [†]	J^{π}
4682.0+x ^b	(25 ⁺)
4980.5+x [‡]	(28+)
5007.8+x ^b	(26 ⁺)

[†] From a least-squares fit to γ -ray energies, assuming equal weight for all γ -ray energies. 455.3+x and 658.6+x levels were held fixed.

[‡] Band(A): π =(+), α =0 prolate band. Possible configuration=(ν 9/2[624])(π 1/2[541]).

[#] Band(B): π =(+), α =1 prolate band. Possible configuration=($\nu 9/2[624]$)($\pi 1/2[541]$).

[@] Band(C): $K^{\pi} = (11^{-}), \alpha = 1$ oblate band. See comment on signature partner of this band.

& Band(D): $K^{\pi} = (11^{-}), \alpha = 0$ oblate band. Probable configuration = $(\nu i_{13/2}^{-1})(\pi h_{11/2}^{-1})$. Same characteristic energy spacing as 11⁻ isomer bands in α =188-194 odd-odd Au isotopes. ^{*a*} Seq. (π h⁻¹_{11/2})(ν i⁻²_{13/2})j. Where j=p_{3/2},f_{5/2}. ^{*b*} Band(E): Oblate Band. π h⁻¹_{11/2} \otimes ν (i⁻²_{13/2}h⁻¹_{9/2}).

$\gamma(^{186}\mathrm{Au})$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult.	Comments
(53.2^{\ddagger})	2212.6+x	(15^+) (12^+)	2159.4+x	(14^+)		E_{γ} : From level energy difference.
130.8	2919.6+x	(12^{-}) (20^{+})	2788.7+x	(11^{-}) (19^{+})	D+Q	Mult.: From DCO=0.77 6 (2012Li08). δ : 2012Li08 suggest a positive δ
149.5	924.9+x	(13+)	775.4+x	(12^{+})		0. 2012Eloo suggest a positive 0.
156.2 [‡]	927.4+x	(13-)	771.1+x	(12 ⁻)		
168.2	1092.9+x	(14^{+})	924.9+x	(13 ⁺)		
184.1 [‡]	2584.6+x	(18^{+})	2400.5+x	(17^{+})		DCO($I\gamma(40)/I\gamma(90)$)=0.69 5 (2012Li08).
187.9 [‡]	2400.5+x	(17^{+})	2212.6+x	(15^{+})		
199.4	1292.2+x	(15^{+})	1092.9+x	(14^{+})		
204.1 [‡]	2788.7+x	(19 ⁺)	2584.6+x	(18 ⁺)		DCO($I\gamma(40)/I\gamma(90)$)=0.65 4 (2012Li08).
204.8	1496.8+x	(16^+)	1292.2+x	(15^+)		
226.8	1964.6+x	(18^+)	1737.8+x	(17^+)		
235.8	2461.5+X	(20^{+})	2223.8+X	(19^{+})		
241.2	1/5/.0+X	(17)	1490.0+X	(10)		
250.4 ⁺ 261.0	4185.0+X 2085.8+x	(24^{+})	3935.1+X	(23^{+}) (21^{+})		
261.0	$2985.8 \pm x$ 2225 8 \pm x	(22) (19^+)	1964.6+x	(21) (18^+)		
263.4	2223.0+x 2724.8+x	(21^+)	2461.5 + x	(20^+)		
266.2	924.9+x	(13^+)	658.6+x	(11^+)		
279.1	3265.0+x	(23^{+})	2985.8+x	(22^+)		
306.5	3571.4+x	(24 ⁺)	3265.0+x	(23 ⁺)		
309.3	3880.6+x	(25^{+})	3571.4+x	(24^{+})		
315.8 [‡]	771.1+x	(12^{-})	455.3+x	(11^{-})		
317.5	1092.9+x	(14^{+})	775.4+x	(12^{+})		
322.3 [‡]	2666.0+x	(18 ⁻)	2343.6+x	(17 ⁻)		
335.0 [‡]	2919.6+x	(20^{+})	2584.6+x	(18 ⁺)		
339.6 [‡]	1632.8+x	(15 ⁻)	1293.2+x	(14 ⁻)		
346.0	4582.3+x	(27^{+})	4236.5+x	(26^{+})		
352.5	2343.6+x	(17^{-})	1991.1+x	(16^{-})		

				¹⁷² Yk	ο (¹⁹ F,5n γ)	2012Li08,2006Zh38 (continued)			
					<u> </u>	(¹⁸⁶ Au) (con	tinued)		
E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π
356.0	4236.5+x	(26^+)	3880.6+x	(25 ⁺)	524.2	2985.8+x	(22^{+})	2461.5+x	(20 ⁺)
358.4 [‡]	1991.1+x	(16 ⁻)	1632.8+x	(15 ⁻)	540.1	3265.0+x	(23+)	2724.8+x	(21+)
365.7 [‡] 367.2 403.8	1293.2+x 1292.2+x 1496.8+x	(14^{-}) (15^{+}) (16^{+})	927.4+x 924.9+x 1092.9+x	(13^{-}) (13^{+}) (14^{+})	585.8 615.4 665.2	3571.4+x 3880.6+x 4236.5+x	(24^+) (25^+) (26^+)	2985.8+x 3265.0+x 3571.4+x	(22^+) (23^+) (24^+)
432.0 [‡]	3806.3+x	(22^{+})	3374.3+x	(21^+)	674.9 [‡]	2666.0+x	(18 ⁻)	1991.1+x	(16 ⁻)
445.5	1737.8+x	(17 ⁺)	1292.2+x	(15 ⁺)	698.0 [‡]	1991.1+x	(16 ⁻)	1293.2+x	(14 ⁻)
454.7 [‡]	3374.3+x	(21^{+})	2919.6+x	(20 ⁺)	701.4	4582.3+x	(27 ⁺)	3880.6+x	(25 ⁺)
467.9	1964.6+x	(18^{+})	1496.8+x	(16 ⁺)	705.4 [‡]	1632.8+x	(15 ⁻)	927.4+x	(13 ⁻)
472.2 [‡] 487.9	927.4+x 2225.8+x	(13 ⁻) (19 ⁺)	455.3+x 1737.8+x	(11 ⁻) (17 ⁺)	710.6 [‡] 744.0	2343.6+x 4980.5+x	(17 ⁻) (28 ⁺)	1632.8+x 4236.5+x	(15 ⁻) (26 ⁺)
496.4 [‡]	4682.0+x	(25^+)	4185.6+x	(24 ⁺)	746.8 [‡]	4682.0+x	(25^+)	3935.1+x	(23 ⁺)
496.8	2461.5+x	(20^{+})	1964.6+x	(18 ⁺)	754.8 [‡]	4185.6+x	(24^{+})	3430.9+x	(22 ⁺)
499.0	2724.8+x	(21^{+})	2225.8+x	(19 ⁺)	822.2 [‡]	5007.8+x	(26^{+})	4185.6+x	(24^{+})
504.2 [‡]	3935.1+x	(23 ⁺)	3430.9+x	(22 ⁺)	919.4 [‡]	2212.6+x	(15^{+})	1293.2+x	(14 ⁻)
511.3 [‡]	3430.9+x	(22^{+})	2919.6+x	(20 ⁺)	1232.0 [‡]	2159.4+x	(14^{+})	927.4+x	(13 ⁻)
522.1 [‡]	1293.2+x	(14 ⁻)	771.1+x	(12 ⁻)					

[†] From 2006Zh38, except otherwise noted. [‡] From 2012Li08.

¹⁷²Yb(¹⁹F,5nγ) 2012Li08,2006Zh38

Level Scheme

 $^{186}_{79}{\rm Au}_{107}$

¹⁷²Yb(¹⁹F,5nγ) 2012Li08,2006Zh38

Legend

Level Scheme (continued)

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹⁸⁶₇₉Au₁₀₇

¹⁸⁶₇₉Au₁₀₇