185 Ta β^- decay 1970Ma60,1969Ku07

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 106, 619 (2005)	1-Nov-2005

Parent: ¹⁸⁵Ta: E=0.0; $J^{\pi}=(7/2^+)$; $T_{1/2}=49.4$ min *15*; $Q(\beta^-)=1994$ *14*; $\%\beta^-$ decay=100.0 Additional information 1

Additional information 1. 1970Ma60: Radioactivity ¹⁸⁵Ta produced by ¹⁸⁶W(γ ,p); enriched target; Ge(Li) detectors; measured E γ , I γ , I(ce).

1969Ku07: Radioactivity of ¹⁸⁵Ta produced by W(γ ,p); Ge(Li) and Si(Li) detectors; measured E γ , I γ , I(ce), E β , ICC, $\beta\gamma$ -delay,

 $X\gamma$ -delay. Others: 1955Po26, 1960Mo04.

¹⁸⁵W Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 23.6 2 66.1 <i>1</i> 93.30 [@] 5	3/2 ⁻ 1/2 ⁻ 5/2 ⁻ 3/2 ⁻	75.1 d 3	T _{1/2} : from Adopted Levels.
173.91 <i>5</i> 188.3 <i>2</i>	7/2 ⁻ 5/2 ⁻	<1.5 [#] ns	
243.7 <i>1</i> 391.0 2 785.4 <i>4</i> 1059 2	7/2 ⁻ (9/2 ⁻) (9/2 ⁻) 7/2 ⁻	19.3 [#] ns 5	

[†] From a least-squares fit to γ -ray energies of 1970Ma60 and 1969Ku07, unless otherwise specified.

[‡] From Adopted Levels.

[#] From β - γ delayed coincidence (1969Ku07).

[@] From ¹⁸⁵W IT decay (1.67 min).

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments				
(935 14)	1059	0.56 11	7.5 1	av E β =	307 5			
(1209 14)	785.4	1.7 4	7.5 1	av $E\beta =$	415 6			
(1603 14)	391.0	1.9 5	7.9 1	av $E\beta =$	577 6			
(1750 14)	243.7	68 11	6.5 1	av $E\beta =$	639 6			
				E(decay): Other v 1951M	β spectrum measured by 1969Ku07 in coincidence with $173.9\gamma + 177.6\gamma$. value: 1720, from a singles spectrum (1955Po26). Others: 1950Du54, o47, 1960Mo04.			
(1806 <i>14</i>) (1820 <i>14</i>)	188.3 173.91	0.55 9 27 11	8.6 <i>1</i> 6.9 <i>2</i>	av Eβ= av Eβ=	663 <i>6</i> 669 <i>6</i>			

[†] Absolute intensity per 100 decays.

185 Ta β^- decay **1970Ma60,1969Ku07** (continued)

 $\gamma(^{185}W)$

Iy normalization: from decay scheme if $\Sigma I(\gamma + ce)$ to g.s. and passing through the first three excited states equals 100%, thus neglecting possible β^- populations to these levels. The same value of the β^- endpoint energy observed from a singles β^- spectrum, and from a β^- spectrum in coincidence with 173.9 γ + 177.6 γ indicates negligible β^- population to these states (1969Ku07). This justifies the normalization procedure used. $\% I\gamma (173.9\gamma + 177.6\gamma) = 0.60\ 25\ (1960Mo04)$.

E_{γ}^{\dagger}	I_{γ} ‡ e	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\mathbf{@}}$	α^{f}	$I_{(\gamma+ce)}^{e}$	Comments
23.6 ^b 2	0.50 ^b 15	23.6	1/2-	0.0	3/2-	(M1+E2)	0.10 3	93 23		$\begin{array}{ll} \alpha(\text{L})=&71\ 13;\ \alpha(\text{M})=&17\ 3\\ \text{I}_{\gamma}{:}\ \text{I}_{\gamma}{=}0.4\ 2\ \text{from intensity balance at 23.6 level, and}\\ \alpha(\text{exp}){=}92\ 20\ \text{deduced in}\ ^{185}\text{W IT decay (1.67 min).} \end{array}$
										δ: from α=92 20 deduced in 185W IT decay (1.67 min).
42.5 ^b 7	0.20 6	66.1	5/2-	23.6	1/2-	E2		189		α (L)= 142; α (M)= 35.4 I _y : from I _Y (66.1 _y)=15 3, and
										$I\gamma(42.5\gamma)/I\gamma(66.1\gamma)=0.013$ <i>3</i> measured in ¹⁸⁵ W IT decay (1.67 min).
66.1 <i>3</i>	15 3	66.1	5/2-	0.0	3/2-	M1+E2	1.1 3	13 <i>3</i>		Mult.: from ¹⁸⁵ W IT decay (1.67 min). $\alpha(L) = 10.0 \ 17; \ \alpha(M) = 2.5 \ 4; \ \alpha(N+) =$
			,		,					0.72 15 δ : from $\alpha(L) \exp[-10.3] I6$ (weighted average of 11.0
										28 and 10 2, from ¹⁸⁵ W IT decay (1.67 min) (1969Ku07)). α (M)exp=3.5 <i>17</i> (1969Ku07).
69.7 <mark>8bd</mark> 3		93.30	3/2-	23.6	1/2-				1.21 ^{<i>a</i>} 22	
69.7 ^{hdb} 3	7.8 ^h 10	243.7	7/2-	173.91	7/2-	M1+E2	0.27 6	8.3 50		α (L)= 2.6 3; α (M)= 0.61 7; α (N+)= 0.181 24
										α: Eγ=69.7 keV is very close to the K-binding energy (=69.525 keV). The value for α (K) used here covers the range from Eγ<69.5 keV (α (K)=0), to Eγ=70.0 keV (α (K)=10.4 for δ =0.27).
										δ: deduced from α (L)exp=2.9 <i>13</i> , α (M)exp=0.8 <i>3</i> (1969Ku07).
93.30 ^{&} 5	0.076 25	93.30	3/2-	0.0	3/2-	[M1,E2]		5.6 4	0.50 ^a 16	I_{γ} : from $I(\gamma+ce)$ and α .
94.6 ^{ci}	0.062 12	188.3	5/2-	93.30	3/2-	[M1,E2]		5.4 4		$\alpha(K) = 2.9 \ 19; \ \alpha(L) = 1.9 \ 10; \ \alpha(M) = 0.5$ 3; $\alpha(N+) = 0.14 \ 8$
										I_{γ} : from $I_{\gamma}(188\gamma)=0.48 \ 8$, and $I_{\gamma}(94.6\gamma)/I_{\gamma}(188\gamma)=0.129 \ 10$ measured in ¹⁸⁵ W IT decay (1.67 min). Other value: <0.3 (1970Ma60).
107.80 10	10.7 6	173.91	7/2-	66.1	5/2-	M1+E2	1.2 +6-3	3.36 10		$\alpha(K) = 1.80\ 25;\ \alpha(L) = 1.18\ 12;\ \alpha(M) = 0.29\ 3;\ \alpha(N+) = 0.086\ 9$

 \mathbf{b}

					185 Ta β	decay	1970Ma60,19	<mark>69Ku07</mark> (co	ontinued)	
γ ⁽¹⁸⁵ W) (continued)										
E_{γ}^{\dagger}	Ι _γ ‡ <i>е</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^f	Comments	
122.05 ^{&} 7	0.060 11	188.3	5/2-	66.1	5/2-	[M1,E2]		2.3 5	δ: deduced from α(L)exp=1.8 6, α(M)exp=1.0 4 (1969Ku07). α(K)= 1.4 9; α(L)= 0.6 3; α(M)= 0.16 8; α(N+)= 0.047 22 $ I_{\gamma}: from Iγ(188γ)=0.48 8, and Iγ(122γ)/Iγ(188γ)=0.125 11 $	
147.3 <i>1</i>	4.6 5	391.0	(9/2-)	243.7	7/2-	(M1+E2)	0.8 6	1.34 <i>19</i>	measured in ¹⁸⁵ W IT decay (1.67 min). $\alpha(K) = 1.0 \ 3; \ \alpha(L) = 0.29 \ 8; \ \alpha(M) = 0.068 \ 19;$ $\alpha(N+) = 0.020 \ 4$ δ : derived from $\alpha(K) \exp[=0.95 \ 32 \ (1969 \text{Ku} 07).$	
150.3 ^{ci} 2	0.48 ^c 12	243.7	7/2-	93.30	3/2-	[E2]		0.844	$\alpha(K) = 0.361; \ \alpha(L) = 0.365; \ \alpha(M) = 0.0913; \ \alpha(N+) = 0.0968$	
164.9 ^c 3	0.48 ^c 18	188.3	5/2-	23.6	1/2-	[E2]		0.607	$\alpha(K) = 0.285; \ \alpha(L) = 0.243; \ \alpha(M) = 0.0607; \ \alpha(N+) = 0.0170$	
173.91 5	88 6	173.91	7/2-	0.0	3/2-	E2		0.504	$\alpha(K) = 0.248; \ \alpha(L) = 0.194; \ \alpha(M) = 0.0482; \ \alpha(N+) = 0.0141$ Mult: from $\alpha(K) \exp(0.247; \ \alpha(L) \exp(-0.165; \ and$	
177.59 8	100.0 14	243.7	7/2-	66.1	5/2-	M1(+E2)	0.3 +4-3	0.88 8	$\begin{array}{l} \alpha(M) \exp = 0.05 \ 2 \ (1969 Ku07). \\ \alpha(K) = \ 0.75 \ 10; \ \alpha(L) = \ 0.130 \ 24; \ \alpha(M) = \ 0.030 \ 6; \\ \alpha(N+) = \ 0.0090 \ 8 \\ \delta: \ deduced \ from \ \alpha(K) \exp = 0.74 \ 14, \ \alpha(L) \exp = 0.10 \ 3, \end{array}$	
188.2 2	0.48 8	188.3	5/2-	0.0	3/2-	[M1,E2]		0.60 22	α (M)exp=0.05 2 (1969Ku07). α (K)= 0.44 24; α (L)= 0.12 5; α (M)= 0.029 13;	
243.7 3	14.6 11	243.7	7/2-	0.0	3/2-	[E2]		0.163	$\alpha(N+) = 0.0087 \ 14$ $\alpha(K) = 0.1002; \ \alpha(L) = 0.0480; \ \alpha(M) = 0.0118; \ \alpha(N+) = 0.0128$	
394.4 5	3.0 10	785.4	(9/2-)	391.0	(9/2 ⁻)	[M1]		0.109	0.00342 $\alpha(K) = 0.0904; \ \alpha(L) = 0.0141; \ \alpha(M) = 0.00317; \ \alpha(N+) = 0.00022$	
541.7 5 *580.5 10 *588.7 10 *913 3	3.0 <i>10</i> 2.1 <i>7</i> 3.1 <i>10</i> 0.47 <i>14</i>	785.4	(9/2 ⁻)	243.7	7/2-	[M1]		0.0475	$\alpha(K) = 0.0395; \ \alpha(L) = 0.00606$	
965 3 993 3 1059 3 *1122 3 *1138 3 *1147 3	0.35 11 0.9 3 0.9 3 0.008 3 0.03 1 0.03 1	1059 1059 1059	7/2 ⁻ 7/2 ⁻ 7/2 ⁻	93.30 66.1 0.0	3/2 ⁻ 5/2 ⁻ 3/2 ⁻	[E2] [M1] [E2]		0.00489 0.0102 0.00406	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00398; \ \alpha(\mathbf{L}) = 0.000678 \\ &\alpha(\mathbf{K}) = 0.00852; \ \alpha(\mathbf{L}) = 0.00128 \\ &\alpha(\mathbf{K}) = 0.00332; \ \alpha(\mathbf{L}) = 0.000550 \end{aligned}$	

[†] Weighted average, with χ^2 minimization, from 1970Ma60 and 1969Ku07, unless otherwise specified. Values for E γ >300 keV are from 1969Ku07. [‡] From a statistical analysis of γ -ray intensities from 1970Ma60 and 1969Ku07, unless otherwise specified. The scales for the linearly related intensities from both

studies have been adjusted using the methods of Tepel (1980TeZW) and Lederer (1982LeZJ). After a statistical analysis, data uncertainties have been increased

ω

 $^{185}_{74}\mathrm{W}_{111}\text{--}3$

From ENSDF

$\gamma(^{185}W)$ (continued)

when needed for minimizing χ^2 . Calculations have been done using the computer program GAMUT (1984FiZU). Intensities for E γ >300 keV are from 1969Ku07.

[#] From ce data of 1969Ku07. Transitions from ²⁰³Tl, ¹⁷⁰Yb, ⁵⁷Fe, and ¹⁸⁰W were used for normalizing ce and photon intensities.

[@] Deduced from conversion coefficients (1969Ku07).

 $^{\&}\gamma$ ray not observed. E γ is from ^{185}W IT decay (1.67 min).

^{*a*} From intensity balance at 93.3 level, and $I(\gamma+ce)(69.7\gamma)/I(\gamma+ce)(93.3\gamma)=2.8$ 10 deduced from intensity balance at 93.3 level in ¹⁸⁵W IT decay (1.67 min).

^b From 1969Ku07.

^c From 1970Ma60.

- ^d Multiply placed; however, I γ component from 93.30 level (deduced from I(γ +ce)) is negligible.
- ^e For absolute intensity per 100 decays, multiply by 0.257 9.

f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*g*} Multiply placed.

- ^h Multiply placed with intensity suitably divided.
- ^{*i*} Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

¹⁸⁵Ta β^- decay 1970Ma60,1969Ku07

Decay Scheme

