¹⁸⁶W(pol t, α) 1980Lo10

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Sc. Wu	NDS 106, 619 (2005)	1-Nov-2005			

Additional information 1. Target: 97.06% enriched ¹⁸⁶W. Projectile: tritons, E=17 MeV. Measured scattered α particles. Detector: magnetic spectrometer, FWHM=24 keV. Determined analyzing powers, nuclear structure factors, $Q(t,\alpha)$ =11.430 MeV 20.

¹⁸⁵Ta Levels

$J^{\pi \dagger}$	T _{1/2}	S [‡]	Comments
$(7/2^+)^{\#}$	49.4 min 15	0.79	$T_{1/2}$: from Adopted Levels.
(9/2 ⁺) & (9/2 ⁻)			Doublet. $9/2^+, 7/2[402]$ and $9/2^-, 9/2[514]$. Spectroscopic factors are: $S(9/2^+) \approx 0.04$, $S(9/2^-) \approx 0.16$.
$(11/2^{-})^{@}$		2.1	
$(1/2^+) \& (3/2^+)^{\&}$			Doublet. $1/2^+, 1/2[411]$ and $3/2^+, 1/2[411]$. Spectroscopic factor for $J^{\pi}=3/2^+$ is <1.3.
$(5/2^+) \& (7/2^+)^{\&}$			Doublet. $5/2^+$, $1/2[411]$ and $7/2^+$, $1/2[411]$. Spectroscopic factors are: $S(5/2^+)\approx 0.16$, $S(7/2^+)\approx 0.58$,
$(15/2^{-})^{@}$			
$(3/2^+)$		0.11	Possibly $3/2^+$, $3/2[402]$ state or K-2 γ vibration based on g.s.
$(7/2^{-})^{a}$		0.35	
$(9/2^{-})^{a}$			
a			
$(11/2^{-})^{u}$		1.4	
$(11/2^{-})$		0.71	
(5/2 ⁺) ^b		0.52	
	$\frac{J^{\pi^{\dagger}}}{(7/2^{+})^{\#}}$ (9/2^{+}) & (9/2^{-}) (11/2^{-})^{@} (1/2^{+}) & (3/2^{+})^{\&} (5/2^{+}) & (7/2^{+})^{\&} (15/2^{-})^{@} (3/2^{+}) (7/2^{-})^{a} (9/2^{-})^{a} (11/2^{-})^{a} (11/2^{-}) (5/2^{+})^{b}	$\frac{J^{\pi^{\dagger}}}{(7/2^{+})^{\#}} \frac{T_{1/2}}{49.4 \text{ min } 15}$ $(9/2^{+}) \& (9/2^{-})$ $(11/2^{-})^{@}$ $(1/2^{+}) \& (3/2^{+})^{\&}$ $(5/2^{+}) \& (7/2^{+})^{\&}$ $(15/2^{-})^{@}$ $(3/2^{+})$ $(7/2^{-})^{a}$ $(9/2^{-})^{a}$ $(11/2^{-})^{a}$ $(11/2^{-})$ $(5/2^{+})^{b}$	$\frac{J^{\pi^{\dagger}}}{(7/2^{+})^{\#}} \frac{T_{1/2}}{49.4 \min 15} \frac{S^{\ddagger}}{0.79}$ $(9/2^{+}) \& (9/2^{-})$ $(11/2^{-})^{\textcircled{0}} 2.1$ $(1/2^{+}) \& (3/2^{+})^{\textcircled{0}}$ $(5/2^{+}) \& (7/2^{+})^{\textcircled{0}}$ $(15/2^{-})^{\textcircled{0}} 0.11$ $(3/2^{+}) 0.35$ $(11/2^{-})^{a} 1.4$ $(11/2^{-}) 0.71$ $(5/2^{+})^{b} 0.52$

 † J^{π} and Nilsson orbital assignments are based on measured angular distributions, on analyzing powers, and on the comparison of calculated cross sections with experimental values.

 $(d\sigma/d\Omega(exp))/(2\times N)$ ($d\sigma/d\Omega(DWBA)$) with N=23. See 1980Lo10 for a comparison with calculated (including the Coriolis interaction) values.

7/2[404] rotational band.

[@] 9/2[514] rotational band. A strong Coriolis mixing with the 7/2[523] and 11/2[505] (unobserved) Nilsson orbitals is expected. $^{\&}$ 1/2[411] rotational band.

^a 7/2[523] rotational band. A strong Coriolis mixing with the 9/2[514] and 5/2[532] (unobserved) Nilsson orbitals is expected.

^b 3/2[411] rotational band member.