184 W(α ,t),(3 He,d) **1971Lu01** Type Author Citation Literature Cutoff Date Full Evaluation S. -c. Wu NDS 106, 619 (2005) 1-Nov-2005 1971Lu01: Eα=30 MeV, FWHM≈11 keV; E(³He)=28 MeV, FWHM≈15 keV. ¹⁸⁴W target enriched to 94.3 atomic percent; 50µg/cm² self-supported target and 20µg/cm² target evaporated on carbon foil; NTB nuclear emulsion detector with Enge spectrograph; 0.9 mm Al absorber for deuteron detections. $Q(^{3}\text{He,d})=-98 \ 40 \text{ keV}.$ See 1971Lu01 for the theoretical spectroscopic factors including some Coriolis mixing. ¹⁸⁵Re Levels Summary Of d σ /d Ω (45 °) For (3 He,d) And (α ,t) In μ b/sr And (3 He,d) Structure Factors (1971Lu01): E(level) $\sigma(\alpha,t)$ $\sigma(^{3}\text{He,d})$ $\sigma(^{3}\text{He,d})/\sigma(t,\alpha)$ $U^{2}C^{2}(A,T)$ | r(rever) | $\sigma(\alpha, \epsilon)$ | U (ne, | u) | 0 (1 | ie, uj/o(t, | α) 0 C | (A, I) | | |--|--|---|---|--|--|--|------------------------|-------------| | 0 | 80.7 15 | 61.2 | 25 | | 1.32 6 | 0.7 | 4 | | | 546 | 22.5 8 | 5.9 | 19 | | 3.8 5 | 0.3 | 0 | | | 647 | 15.1 6 | 29.9 | 19 | | 0.43 3 | 0.2 | 0 | | | 717 | 2.0 2 | 7.0 | 9 | | 0.29 5 | 0.0 | 4 | | | 770 | 1.5 2 | 6.2 | 8 | | 0.24 4 | 0.0 | 3 | | | 876 | 9.3 5 | 16.4 | 13 | | 0.57 5 | 0.1 | 7 | | | 917 | 111.7 18 | 45.2 | 22 | | 2.47 13 | 2.2 | 6 | | | 932 | 30.0 10 | 37.2 | 22 | | 0.81 3 | 0.5 | 6 | | | 1013 | 5.3 4 | 8.6 | 9 | | 0.62 8 | 0.0 | 72 | | | 1220 | 6.9 5 | 32.7 | 18 | | 0.21 2 | | | | | 1303 | 27.9 9 | 14.3 | 12 | | 1.95 18 | 0.4 | 7 | | | 1344 | 3.9 4 | 5.6 | 12 | | 0.70 20 | | | | | 1434 | 2.7 2 | 10.5 | 11 | | 0.26 3 | | | | | 1497 | 9.1 6 | 40.2 | 21 | | 0.23 3 | | | | | 1596 | 5.2 6 | 5.1 | | | 1.6 3 | | | | | 1651 | 28.8 9 | 61.2 | | | 0.47 2 | 0.6 | 8 | | | 1700 | 4.8 4 | 71.6 | 27 | | 0.07 1 | 0.2 | 5 | | | | | | | | | | | | | E(level) [†] | $J^{\pi \ddagger}$ | L | # 5 | s [@] | E(level) [†] | $J^{\pi \ddagger}$ | L# | S@ | | 0& | | $\frac{L}{2}$ | | S [@] 0.74 | | | <u>L</u> # | <u>s</u> @ | | 0 ^{&}
124 ^{&} <i>i</i> | J ^{π‡} 5/2 ⁺ 7/2 ⁺ | | | | 1045 ^d
1143 ^d | $\frac{J^{\pi \ddagger}}{(1/2^{-})}$ $(3/2^{-})$ | <u>L</u> # | <u>s</u> @ | | | 5/2+ | | | | 1045 ^d | (1/2 ⁻)
(3/2 ⁻) | <u>L</u> # | <u>s</u> @ | | 0 ^{&}
124 ^{&} <i>i</i> | 5/2 ⁺
7/2 ⁺ | | (| | 1045 ^d
1143 ^d | (1/2-) | L# 0,1 | <u>S</u> @ | | 0&
124&i
287&i
546 ^a
609? ^j | 5/2 ⁺
7/2 ⁺
9/2 ⁺ | 2 | (| 0.74 | 1045 ^d 1143 ^d 1189 ^d 1220 1278 | (1/2 ⁻)
(3/2 ⁻)
(7/2 ⁻) | <u>L</u> # | <u>s</u> @ | | 0&
124& <i>i</i>
287& <i>i</i>
546 ^a | 5/2 ⁺
7/2 ⁺
9/2 ⁺ | 2 | (| 0.74 | 1045 ^d 1143 ^d 1189 ^d 1220 | (1/2 ⁻)
(3/2 ⁻)
(7/2 ⁻) | 0,1 | S.@
0.68 | | 0&
124&i
287&i
546 ^a
609? ^j
647 ^b
717 ^b | 5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺ | 5 | 1 (| 0.74 | 1045 ^d 1143 ^d 1189 ^d 1220 1278 | (1/2 ⁻)
(3/2 ⁻) | | | | 0&
124& <i>i</i>
287& <i>i</i>
546 ^a
609? ^{<i>j</i>}
647 ^b
717 ^b
770 ^b | 5/2 ⁺
7/2 ⁺
9/2 ⁺
(11/2 ⁻) | 5 0, | (
1 (
1 (| 0.74 0.35 0.19 | 1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f | (1/2 ⁻)
(3/2 ⁻)
(7/2 ⁻) | 4 | | | 0&
124&i
287&i
546 ^a
609? ^j
647 ^b
717 ^b | 5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺ | 5 0, 0, | (
1 (
1 (| 0.74
0.35
0.19
0.07 | 1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343 | (1/2 ⁻)
(3/2 ⁻)
(7/2 ⁻) | 4
2,3 | | | 0&
124&i
287&i
546a
609?j
647b
717b
770b
826i
876c | 5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺ | 5
0,
0,
0, | 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 | 0.74
0.35
0.19
0.07 | 1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343 1434 | (1/2 ⁻)
(3/2 ⁻)
(7/2 ⁻) | 4
2,3
0,1 | | | 0&
124&i
287&i
546a
609?j
647b
717b
770b
826i | 5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺ 5/2 ⁺ k 1/2 ⁺ & 3/2 ⁺ | 5
0,
0,
0,
2 | 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 | 0.74
0.35
0.19
0.07
0.05 | 1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343 1434 1496 | (1/2 ⁻)
(3/2 ⁻)
(7/2 ⁻) | 4
2,3
0,1 | | | 0&
124&i
287&i
546a
609?j
647b
717b
770b
826i
876c | 5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺ 5/2 ⁺ k 1/2 ⁺ & 3/2 ⁺ (5/2 ⁻) & (9/2) | 5
0,
0,
0,
2 | 1 (1 (1 (1 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 | 0.74
0.35
0.19
0.07
0.05 | 1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343 1434 1496 1538 | (1/2 ⁻)
(3/2 ⁻)
(7/2 ⁻)
(11/2 ⁻) ^k | 4
2,3
0,1
0,2 | | | 0&
124&i
287&i
546a
609?j
647b
717b
770b
826i
876c
917d | 5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺ 5/2 ⁺ k 1/2 ⁺ & 3/2 ⁺ | 5
0,
0,
0,
0,
2
2 ⁻) 4, | 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 | 0.74
0.35
0.19
0.07
0.05
0.13
3.38 | 1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343 1434 1496 1538 1596 | (1/2 ⁻)
(3/2 ⁻)
(7/2 ⁻) | 4
2,3
0,1
0,2 | 0.68 | [†] ΔE≈2 keV. [‡] Assignments were based on deduced L-values, comparison of measured cross sections with calculated ones, and previous works. ## ¹⁸⁴W(α ,t),(³He,d) **1971Lu01** (continued) ## ¹⁸⁵Re Levels (continued) - # Inferred from comparison of measured $\sigma(\alpha,t)/\sigma(^3He,d)$ with values obtained from DWBA calculations. See Adopted Levels for adopted J^{π} . - [®] Structure factor $U^2C^2 = d\sigma/d\Omega(60^\circ)/(2 d\sigma/d\Omega(60^\circ)(DWBA))$ from 1971Lu01 for (³He,d). see table above for structure factors obtained from the (α,t) data of 1971Lu01. - & 5/2[402] rotational band. - ^a Member of 9/2[514] band. Bandhead, predicted at 387 keV, was not seen. - ^b 1/2[400] rotational band. The observed strengths were about one third of the values expected for members of the 1/2[400] band. Mixing of this state with the (K-2) γ -vibration coupled to 5/2[402], as proposed by 1967Bi10, is consistent with the observed (3 He,d) and (α ,t) strengths. - ^c 1/2[411] rotational band. - ^d 1/2[541] rotational band. - ^e 3/2[402] rotational band. - ^f Bandhead of 11/2[505]. - ^g 3/2, 3/2[651] state. - ^h 1/2, 1/2[660] state. - i Seen in (α,t) only. - ^j This peak may be due to ¹⁸²W impurity in target material. - ^k The suggested L value does not agree with the proposed J^{π} value.