184 W(α ,t),(3 He,d) **1971Lu01**

Type Author Citation Literature Cutoff Date
Full Evaluation S. -c. Wu NDS 106, 619 (2005) 1-Nov-2005

1971Lu01: Eα=30 MeV, FWHM≈11 keV; E(³He)=28 MeV, FWHM≈15 keV. ¹⁸⁴W target enriched to 94.3 atomic percent; 50µg/cm² self-supported target and 20µg/cm² target evaporated on carbon foil; NTB nuclear emulsion detector with Enge spectrograph; 0.9 mm Al absorber for deuteron detections.

 $Q(^{3}\text{He,d})=-98 \ 40 \text{ keV}.$

See 1971Lu01 for the theoretical spectroscopic factors including some Coriolis mixing.

¹⁸⁵Re Levels

Summary Of d σ /d Ω (45 °) For (3 He,d) And (α ,t) In μ b/sr And (3 He,d) Structure Factors (1971Lu01):

E(level) $\sigma(\alpha,t)$ $\sigma(^{3}\text{He,d})$ $\sigma(^{3}\text{He,d})/\sigma(t,\alpha)$ $U^{2}C^{2}(A,T)$

r(rever)	$\sigma(\alpha, \epsilon)$	U (ne,	u)	0 (1	ie, uj/o(t,	α) 0 C	(A, I)	
0	80.7 15	61.2	25		1.32 6	0.7	4	
546	22.5 8	5.9	19		3.8 5	0.3	0	
647	15.1 6	29.9	19		0.43 3	0.2	0	
717	2.0 2	7.0	9		0.29 5	0.0	4	
770	1.5 2	6.2	8		0.24 4	0.0	3	
876	9.3 5	16.4	13		0.57 5	0.1	7	
917	111.7 18	45.2	22		2.47 13	2.2	6	
932	30.0 10	37.2	22		0.81 3	0.5	6	
1013	5.3 4	8.6	9		0.62 8	0.0	72	
1220	6.9 5	32.7	18		0.21 2			
1303	27.9 9	14.3	12		1.95 18	0.4	7	
1344	3.9 4	5.6	12		0.70 20			
1434	2.7 2	10.5	11		0.26 3			
1497	9.1 6	40.2	21		0.23 3			
1596	5.2 6	5.1			1.6 3			
1651	28.8 9	61.2			0.47 2	0.6	8	
1700	4.8 4	71.6	27		0.07 1	0.2	5	
E(level) [†]	$J^{\pi \ddagger}$	L	# 5	s [@]	E(level) [†]	$J^{\pi \ddagger}$	L#	S@
0&		$\frac{L}{2}$		S [@] 0.74			<u>L</u> #	<u>s</u> @
0 ^{&} 124 ^{&} <i>i</i>	J ^{π‡} 5/2 ⁺ 7/2 ⁺				1045 ^d 1143 ^d	$\frac{J^{\pi \ddagger}}{(1/2^{-})}$ $(3/2^{-})$	<u>L</u> #	<u>s</u> @
	5/2+				1045 ^d	(1/2 ⁻) (3/2 ⁻)	<u>L</u> #	<u>s</u> @
0 ^{&} 124 ^{&} <i>i</i>	5/2 ⁺ 7/2 ⁺		(1045 ^d 1143 ^d	(1/2-)	L# 0,1	<u>S</u> @
0& 124&i 287&i 546 ^a 609? ^j	5/2 ⁺ 7/2 ⁺ 9/2 ⁺	2	(0.74	1045 ^d 1143 ^d 1189 ^d 1220 1278	(1/2 ⁻) (3/2 ⁻) (7/2 ⁻)	<u>L</u> #	<u>s</u> @
0& 124& <i>i</i> 287& <i>i</i> 546 ^a	5/2 ⁺ 7/2 ⁺ 9/2 ⁺	2	(0.74	1045 ^d 1143 ^d 1189 ^d 1220	(1/2 ⁻) (3/2 ⁻) (7/2 ⁻)	0,1	S.@ 0.68
0& 124&i 287&i 546 ^a 609? ^j 647 ^b 717 ^b	5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺	5	1 (0.74	1045 ^d 1143 ^d 1189 ^d 1220 1278	(1/2 ⁻) (3/2 ⁻)		
0& 124& <i>i</i> 287& <i>i</i> 546 ^a 609? ^{<i>j</i>} 647 ^b 717 ^b 770 ^b	5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻)	5 0,	(1 (1 (0.74 0.35 0.19	1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f	(1/2 ⁻) (3/2 ⁻) (7/2 ⁻)	4	
0& 124&i 287&i 546 ^a 609? ^j 647 ^b 717 ^b	5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺	5 0, 0,	(1 (1 (0.74 0.35 0.19 0.07	1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343	(1/2 ⁻) (3/2 ⁻) (7/2 ⁻)	4 2,3	
0& 124&i 287&i 546a 609?j 647b 717b 770b 826i 876c	5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺	5 0, 0, 0,	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	0.74 0.35 0.19 0.07	1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343 1434	(1/2 ⁻) (3/2 ⁻) (7/2 ⁻)	4 2,3 0,1	
0& 124&i 287&i 546a 609?j 647b 717b 770b 826i	5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺ 5/2 ⁺ k 1/2 ⁺ & 3/2 ⁺	5 0, 0, 0, 2	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	0.74 0.35 0.19 0.07 0.05	1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343 1434 1496	(1/2 ⁻) (3/2 ⁻) (7/2 ⁻)	4 2,3 0,1	
0& 124&i 287&i 546a 609?j 647b 717b 770b 826i 876c	5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺ 5/2 ⁺ k 1/2 ⁺ & 3/2 ⁺ (5/2 ⁻) & (9/2)	5 0, 0, 0, 2	1 (1 (1 (1 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5	0.74 0.35 0.19 0.07 0.05	1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343 1434 1496 1538	(1/2 ⁻) (3/2 ⁻) (7/2 ⁻) (11/2 ⁻) ^k	4 2,3 0,1 0,2	
0& 124&i 287&i 546a 609?j 647b 717b 770b 826i 876c 917d	5/2 ⁺ 7/2 ⁺ 9/2 ⁺ (11/2 ⁻) 1/2 ⁺ 3/2 ⁺ 5/2 ⁺ k 1/2 ⁺ & 3/2 ⁺	5 0, 0, 0, 0, 2 2 ⁻) 4,	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	0.74 0.35 0.19 0.07 0.05 0.13 3.38	1045 ^d 1143 ^d 1189 ^d 1220 1278 1303 ^f 1343 1434 1496 1538 1596	(1/2 ⁻) (3/2 ⁻) (7/2 ⁻)	4 2,3 0,1 0,2	0.68

[†] ΔE≈2 keV.

[‡] Assignments were based on deduced L-values, comparison of measured cross sections with calculated ones, and previous works.

¹⁸⁴W(α ,t),(³He,d) **1971Lu01** (continued)

¹⁸⁵Re Levels (continued)

- # Inferred from comparison of measured $\sigma(\alpha,t)/\sigma(^3He,d)$ with values obtained from DWBA calculations. See Adopted Levels for adopted J^{π} .
- [®] Structure factor $U^2C^2 = d\sigma/d\Omega(60^\circ)/(2 d\sigma/d\Omega(60^\circ)(DWBA))$ from 1971Lu01 for (³He,d). see table above for structure factors obtained from the (α,t) data of 1971Lu01.
- & 5/2[402] rotational band.
- ^a Member of 9/2[514] band. Bandhead, predicted at 387 keV, was not seen.
- ^b 1/2[400] rotational band. The observed strengths were about one third of the values expected for members of the 1/2[400] band. Mixing of this state with the (K-2) γ -vibration coupled to 5/2[402], as proposed by 1967Bi10, is consistent with the observed (3 He,d) and (α ,t) strengths.
- ^c 1/2[411] rotational band.
- ^d 1/2[541] rotational band.
- ^e 3/2[402] rotational band.
- ^f Bandhead of 11/2[505].
- ^g 3/2, 3/2[651] state.
- ^h 1/2, 1/2[660] state.
- i Seen in (α,t) only.
- ^j This peak may be due to ¹⁸²W impurity in target material.
- ^k The suggested L value does not agree with the proposed J^{π} value.