¹⁸⁵Ir ε decay 1962Ha24,1970FiZZ,1971AhZX

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 106, 619 (2005)	1-Nov-2005

Parent: ¹⁸⁵Ir: E=0.0; $J^{\pi}=5/2^-$; $T_{1/2}=14.4 \text{ h} I$; $Q(\varepsilon)=2474 28$; $\mathscr{H}\varepsilon + \mathscr{H}\beta^+$ decay=100.0 1962Ha24: Radioactivity ¹⁸⁵Ir; measured E γ , Conversion electrons, mult., mixing ratios. 1970FiZZ: Radioactivity ¹⁸⁵Ir; Ge(Li) detector; measured E γ , $I\gamma$, $\gamma\gamma$ -coin, deduced K Conv. Coeff.; $T_{1/2}$ of ^{185m}Os . 1971AhZX: Radioactivity ¹⁸⁵Ir; measured E γ , $I\gamma$, $\gamma\gamma$ -coin., ICC; ¹⁸⁵Os deduced levels, J^{π} . 1981Sp06: Radioactivity ¹⁸⁵Ir; measured NMR, $\gamma(\theta, T)$, deduced K Conv. Coeff.; oriented nuclei. ¹⁸⁵Os deduced levels, J^{π} . Other measurements: 1958Di44, 1963Em02, 1965Qa01.

Because of the large number of unplaced γ rays the decay scheme is incomplete, and therefore, ε populations to the various levels have not been deduced.

¹⁸⁵Os Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$1/2^{-}$	93.6 d 5	T _{1/2} : From Adopted Levels.
37.4 <i>1</i>	3/2-		
97.4 2	$5/2^{-}$		
102.3 7	7/2-	3.0 µs 4	$T_{1/2}$: from delayed $\gamma\gamma$ coincidences (1970FiZZ).
127.9 2	3/2-		
198.1 2	$7/2^{-}$		
222.4 <i>3</i>	5/2-		
260.5 6	9/2-		
275.7 8	$11/2^{+}$	0.78 μs 5	$T_{1/2}$: from delayed $\gamma\gamma$ coincidences (1970FiZZ).
317.8 <i>3</i>	9/2-		
351.7 <i>3</i>	7/2-		
402.6 7	9/2+		
729.4 4	$(5/2^-, 7/2^-)$		
1769.8	5/2+		J^{π} : 1732 γ E1 to 3/2 ⁻ , $\gamma\gamma(\theta, H)$ (1981Sp06).
1866.3	5/2+		J^{π} : 1829 γ E1 to 3/2 ⁻ , $\gamma\gamma(\theta, H)$ (1981Sp06).
1907.6	5/2+		J^{π} : 1870 γ E1 to 3/2 ⁻ , $\gamma\gamma(\theta, H)$ (1981Sp06).
2003.8	5/2+		J ^π : 1876γ E1 to $3/2^-$, $\gamma\gamma(\theta, H)$ (1981Sp06).

[†] From Adopted Levels, unless otherwise specified.

¹⁸⁵Ir ε decay **1962Ha24,1970FiZZ,1971AhZX** (continued)

 $\gamma(^{185}\text{Os})$

I γ normalization: from decay scheme assuming no ε population to g.s. from ¹⁸⁵Ir($J^{\pi}=5/2^{-}$), and $\Sigma I(\gamma+ce)$ (to g.s.)=100%. The normalization factor 0.07 *l* should be considered an upper limit because there is a total unplaced γ -ray transition intensity of $\approx 20\%$, some of which may feed the ground state. ce data listed in this table are from 1962Ha24, unless otherwise noted.

E_{γ}^{\dagger}	Ι _γ ‡ b	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α^{C}	Comments
(4.9)		102.3	7/2-	97.4 5	5/2-				Transition was not observed. Delayed $(158.2\gamma)(37.4, 60.0, 97.4 \gamma' s)$ coincidences observed in ¹⁸³ W(α ,2n γ) (1975So01) imply its existence.
(15.2)		275.7	$11/2^{+}$	260.5 9	9/2-				Transition not observed, its existence is inferred by the 158.2 γ measured in the delayed spectrum in ¹⁸³ W(α 2ng) (1975So01)
24.20 ^{<i>a</i>} 4	0.26 11	222.4	5/2-	198.1 7	7/2-	M1+E2	0.09 +5-3	94 22	$\alpha(L) = 72 \ 12; \ \alpha(M) = 17 \ 3$ $\delta: \text{ from ce}(L1)/\text{ce}(L2)\text{exp}=3.0 \ 15.$
30.4 ^{<i>a</i>} 5	0.30 13	127.9	3/2-	97.4 5	5/2-	(M1)		33.5	α_{γ} : from $\text{Ice}(L1)=12.5$ and $\alpha_{(L1)}=45.4$. $\alpha(L)=-25.7$; $\alpha(M)=-5.89$ Mult.: from $\text{ce}(L1)$:ce (M) exp=7:2.
33.85 ^{<i>a</i>} 5	0.18 8	351.7	7/2-	317.8 9	9/2-	(M1)		24.4	α_{γ} : from $\text{Ice}(L1) = 7/3$ and $\alpha_{\gamma}(L1) = 23.2$. $\alpha(L) = 18.7$; $\alpha(M) = 4.28$ From $\text{ce}(L1)/\text{ce}(M) \exp = 3$.
37.4 1	49 10	37.4	3/2-	0.0 1	1/2-	M1+E2	0.05 1	19.2	I_{γ} : from Ice(L1)=3.0 <i>I</i> 2 and α (L1)=16.86. α (L)= 14.7; α (M)= 3.38 %I γ =3.5 2.
60.0 ^{<i>a</i>} 1	82 17	97.4	5/2-	37.4 3	3/2-	M1+E2	0.18 3	5.6 4	δ: from ce(L1):ce(L2):ce(L3)exp=600 120:90 18:33 7. I _γ : from Ice(L1)=723 and α (L)=14.7. α (L)= 4.32 23; α (M)= 1.01 6; α (N+)= 0.308 23 δ: from ce(L1):ce(L2):ce(L3)exp=250 50:60 12:45 9. I _γ : from Ice(L1)=250 50 and α (L1)=3.04. I _γ (60γ)/I _γ (97γ)=1.65 was measured in the (α ,2nγ) reaction. This ratio and I _γ (97γ) yield
(64.9)		102.3	7/2-	37.4 3	3/2-				$I\gamma(60\gamma)=99$. Transition was not observed. A weak E2 transition to the $3/2^{-}, 1/2[510]$ state is expected in analogy with the decay pattern of the $7/2^{-}, 7/2[502]$ state in 183 W
90.45 14	18.6 <i>19</i>	127.9	3/2-	37.4 3	3/2-	M1(+E2)	≤1.5	7.4 5	$\alpha(K) = 5 \ 3; \ \alpha(L) = 2.2 \ 15; \ \alpha(M) = 0.5 \ 4; \ \alpha(N+) = 0.16 \ 13$
94.5 2	5.7 6	222.4	5/2-	127.9 3	3/2-	M1+E2	0.9 3	6.28 18	δ: trom ce(L1):ce(L2)exp=18 4:3.5 14. α(K)= 3.5 7; α(L)= 2.1 4; α(M)= 0.52 9; α(N+)= 0.16 3 δ: from α(L1)exp=0.46 19 and ce(L1):ce(L2):ce(L3)exp=2.6 10/4.0
97.4 2	60 12	97.4	5/2-	0.0 1	1/2-	E2		4.93	$16/3.6\ 15.$ $\alpha(K) = 0.842; \ \alpha(L) = 3.07; \ \alpha(M) = 0.781; \ \alpha(N+) =$

 \mathbf{N}

				¹⁸⁵ I	r ɛ decay	1962Ha24,1	970FiZZ,1	971AhZX (continued)
						$\gamma(^{185}\text{Os})$) (continued	<u>4)</u>
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{c}	Comments
100.75 16	35 4	198.1	7/2-	97.4 5/2-	M1+E2	0.22 5	5.63	0.235 I_{γ} : from Ice(L2)=95 <i>19</i> and α (L2)=1.58. Mult.: from ce(L2):ce(L3):ce(M):ce(N)exp=95:85:47:12. α (K)= 4.52; α (L)= 0.85; α (M)= 0.198; α (N+)= 0.061 δ : from α (K)exp=4.2 <i>9</i> and ce(K):ce(L1):ce(L2):ce(L3)exp=145 <i>30</i> :26
119.65 <i>18</i>	0.76 8	317.8	9/2-	198.1 7/2-	M1+E2	≤1.2	3.1 6	5:3.5 14:2.5 10. $\alpha(K) = 2.2 11; \alpha(L) = 0.7 4; \alpha(M) = 0.16 10; \alpha(N+) = 0.05 3$
124.95 ^{<i>a</i>} 20	0.47 19	222.4	5/2-	97.4 5/2-	(M1)		3.07	δ: from α (K)exp=2.6 <i>11</i> . α (K)= 2.54; α (L)= 0.411; α (M)= 0.0942; α (N+)= 0.0294
								 I_γ: from Ice(K)=1.2 5 and α(K)=2.536 (M1 theory). Mult.: M1,E2 from decay scheme. Only conversion electrons were observed. An upper limit on Iγ gives α(K)exp<1.7, and δ<0.9. Evaluator adopts (M1).
126.9 2	12 5	402.6	9/2+	275.7 11/2+	M1+E2	≈0.4	2.77 15	$\alpha(K) = 2.16\ 24;\ \alpha(L) = 0.46\ 8;\ \alpha(M) = 0.109\ 20;\ \alpha(N+) = 0.034\ 5$
								o: from ce(K):ce(L1):ce(L2):ce(L3)exp=≈18:5.2: ≈1:weak. I _γ : from measured Iγ(126.9γ+127.9γ)=21.7 22 and calculated Iγ(127.9)=9.7 39. Iγ(126.9)=10 5, from Ice(L1)=3.2 and α (L1)=0.31. Iγ(126.9)=10 5, from Iγ(126.9)/Iγ(300.3)=1.05 45 in (α.2nγ).
127.9 2	10 4	127.9	3/2-	0.0 1/2-	M1		2.87	$\alpha(K) = 2.37; \ \alpha(L) = 0.384; \ \alpha(M) = 0.0881; \ \alpha(N+) = 0.0275$
								Mult.: from ce(K)/ce(L)exp=5.1. I_{γ} : $I_{\gamma}(126.9\gamma+127.9\gamma)=21.7$ 22 was measured. $I_{\gamma}(127.9\gamma)=9.7$ 39 from Ice(K)=23 9 and α (K)=2.37.
129.4 ^{<i>a</i>} 2		351.7	7/2-	222.4 5/2-	(E2+M1)		2.2 6	$\alpha(K) = 1.4 \ 9; \ \alpha(L) = 0.6 \ 3; \ \alpha(M) = 0.15 \ 7; \ \alpha(N+) = 0.045 \ 19$
								Mult.: from ce(K):ce(L2):ce(L2)exp= ≈ 0.5 : $\approx 1.1:0.55$. The L1, L2 lines were only partially resolved.
142.1 ^{&} 2	0.6 1	402.6	9/2+	260.5 9/2-	[E1]		0.160	$\alpha(K) = 0.131; \ \alpha(L) = 0.0223; \ \alpha(M) = 0.00509; \ \alpha(N+) = 0.00153$
153.5 2	29 <i>3</i>	351.7	7/2-	198.1 7/2-	M1+E2	0.8 3	1.37 14	$\alpha(K) = 0.99 \ 17; \ \alpha(L) = 0.29 \ 5; \ \alpha(M) = 0.070 \ 11; \ \alpha(N+) = 0.0214 \ 21$
158.2 2	34 4	260.5	9/2-	102.3 7/2-	M1+E2		1.2 4	
160.7 2	25 3	198.1	7/2-	37.4 3/2-	E2		0.721	Mult.: from $\alpha(L1)\exp=0.13$ and ce(K):ce(L1):ce(L2):ce(M)exp= $\approx 30:4.6$:weak:1.4. $\alpha(K) = 0.300; \ \alpha(L) = 0.317; \ \alpha(M) = 0.0801; \ \alpha(N+) = 0.0240$ Mult.: from $\alpha(M)\exp=0.06 \ 3$ and
^x 177.3	1.7							$ce(K):ce(L2):ce(L3):ce(M):ce(N)exp = \approx 5:<5.9:<5.8:1.6:0.44.$

l

ω

				18	35 Ir ε decay	1962H	la24,1970Fiz	ZZ,1971AhZX (continued)
						<u>γ(</u>	¹⁸⁵ Os) (conti	inued)
E_{γ}^{\dagger}	I_{γ} ‡ b	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{c}	Comments
185.0 2	12.3 12	222.4	5/2-	37.4 3/2-	M1(+E2)		0.7 3	$\alpha(K) = \begin{array}{ccc} 0.5 & 3; & \alpha(L) = \\ 0.0113 & 17 \end{array} \qquad 0.15 & 7; & \alpha(M) = \\ 0.0113 & 17 \end{array} \qquad 0.037 & 17; & \alpha(N+) = \\ 0.0113 & 17 \\ \text{Mult: from } \alpha(K) \exp[0.7, 22 \exp(-0.7, 22 \exp(-0.7$
x188.7 & 2 x189.4 x193.6 x203.3 x205.8 x217.5	1.7 2 3.1 1.0 1.0 1.0							where non $u(\mathbf{R})exp=0.7$ 22and $ec(\mathbf{R}).ec(\mathbf{L}).ec(\mathbf{W})exp=0.0.1.5$.weak.
220.4 2	16.7 <i>17</i>	317.8	9/2-	97.4 5/2-	E2		0.243	$\alpha(K)$ = 0.133; $\alpha(L)$ = 0.0832; $\alpha(M)$ = 0.0208; $\alpha(N+)$ = 0.00619 Mult.: from $\alpha(K)$ exp=0.08 4 and ce(K):ce(L2):ce(L3):ce(M)exp=1.4: ≈ 0.77 : <0.64:0.25
222.3 2	23.9 24	222.4	5/2-	0.0 1/2-	(E2)		0.236	$\alpha(K) = 0.130; \ \alpha(L) = 0.0803; \ \alpha(M) = 0.0201; \ \alpha(N+) = 0.00596$ Mult.: from $\alpha(L2)\exp[=0.042\ 17$ and $\alpha(K)\exp[=0.0201; \alpha(N+)] = 0.00596$
223.8 2	30 <i>3</i>	351.7	7/2-	127.9 3/2-	E2		0.231	$\alpha(K) = 0.128; \ \alpha(L) = 0.0782; \ \alpha(M) = 0.0195; \ \alpha(N+) = 0.00581$ Mult.: from $\alpha(L3) \exp[=0.023 \ 10$ and $ee(K):ee(L2):ee(L3):ee(M) \exp[=<5.8: <1.7:0.7:0.34.$
^x 228.9	1.2							
254.2 2 x266.5 ^a 4	1.0 190 <i>19</i>	351.7	7/2-	97.4 5/2-	M1+E2	0.3 1	0.397 15	$\alpha(K) = 0.325 \ 14; \ \alpha(L) = 0.0549 \ 25; \ \alpha(M) = 0.0126 \ 6; \ \alpha(N+) = 0.00384 \ 10$ δ : from $\alpha(K) \exp = 0.26 \ 6$ and ce(K):ce(L1):ce(L3) \exp = 50 \ 10:8.5 \ 20:0.20 \ 8. Ice(K)=0.35 \ 14.
^x 276.5 ^x 282.1 ^x 283.1	2.6 1.4							
300.3 2	9.3 10	402.6	9/2+	102.3 7/2-	E1		0.0245	$\alpha(K)$ = 0.0203; $\alpha(L)$ = 0.00320; $\alpha(M)$ = 0.000730; $\alpha(N+)$ = 0.000217 Mult.: from $\alpha(K)$ exp=0.027 11. Ice(K)=0.28 12.
x308.6	1.2	251 7	7/2-	27 4 2/2-	(50)		0.0004	
^{314.2} ² ^x 321.4 2	4.0 4	331.7	1/2	37.4 3/2	[E2] M1		0.0804 0.221	$\alpha(\mathbf{K}) = 0.0529; \ \alpha(\mathbf{L}) = 0.0209; \ \alpha(\mathbf{M}) = 0.00514; \ \alpha(\mathbf{N}+) = 0.00152$ $\alpha(\mathbf{K}) = 0.183; \ \alpha(\mathbf{L}) = 0.0293; \ \alpha(\mathbf{M}) = 0.00670; \ \alpha(\mathbf{N}+) = 0.00203$ Mult.: from $\alpha(\mathbf{K})$ exp=0.22 9. (1970FiZZ).
^x 339.2 5	2.0				(M1+E2)		0.13 6	$\alpha(K) = 0.10 6$; $\alpha(L) = 0.021 9$; $\alpha(M) = 0.0048 21$; $\alpha(N+) = 0.0014 3$ Mult.: from $\alpha(K) \exp[=0.10$.
^x 346.8 ^x 352.4 ^a 6	0.9							Ice(K)=0.30 /2.
x358.4 x367.3	1.0 1.2							

4

				18	⁸⁵ Ir ε ά	lecay 190	62Ha24,1	970FiZZ,19	71AhZX (continued)
							$\gamma(^{185}\text{Os})$	(continued)	2
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	J_i^π	E_f	J_f^{π}	Mult. [#]	$\delta^{@}$	α ^C	Comments
^x 370.6 377.6 2	1.2 3.0 <i>3</i>	729.4	(5/2 ⁻ ,7/2 ⁻)	351.7	7/2-	(M1)		0.143	α(K) = 0.119; α(L) = 0.0189; α(M) = 0.00433; α(N+) = 0.00131 Mult.: from α(K)exp=0.16 7 and ce(K):ce(L1)exp=0.48:weak. I _γ : measured intensities of 1970FiZZ and 1971AhZX do not agree: I _γ =3.0 (1970FiZZ), I _γ =11.4 (1971AhZX). I _γ =4.0 <i>16</i> from Ice(K)=0.48 <i>19</i> and α(K)=0.119.
x382.2 x394.4 x398.5 2	1.0 1.1 4.6 5					(M1)		0.124	$\alpha(K) = 0.103; \ \alpha(L) = 0.0164; \ \alpha(M) = 0.00375; \ \alpha(N+) = 0.00114$
^x 402.6 ^x 406.9 2	2.3 6.5 7					(M1)		0.118	Mult.: from α (K)exp=0.08 3 (1970FiZZ). α (K)= 0.0976; α (L)= 0.0155; α (M)= 0.00354; α (N+)= 0.00108
^x 418.8 2	3.8 4					(M1+E2)	0.6 4	0.090 17	Mult.: from α (K)exp=0.10 2. α (K)= 0.073 15; α (L)= 0.0126 23; α (M)= 0.0029 5; α (N+)= 0.00088 10 St from α (K)exp=0.074 14
^x 426.8 ^x 431.4 7	2.0 5.4					(M1+E2)			δ: from $α(K)exp=0.074$ 14. I _γ : from 1971AhZX. Mult.: from $α(K)exp≈0.046$.
x446.1 x449.8 x453.0 x464.9 x486.4 x489.0 x501.0	0.9 1.5 0.7 1.5 1.2 2.9 1.8								
507.0 2	9.7 <i>10</i>	729.4	(5/2 ⁻ ,7/2 ⁻)	222.4	5/2-	(M1)		0.0664	$\alpha(K) = 0.0549; \ \alpha(L) = 0.00864$ Mult : from $\alpha(K) \exp(0.036)$
^x 513.1 2	13.1 14					(M1+E2)	1.5 6	0.035 5	$\alpha(K) = 0.028 5; \alpha(L) = 0.0054 7$ δ : from $\alpha(K) \exp[=0.028 5].$
^x 517.4 ^x 533.0 ^x 539.2 2	3.1 1.1 18.6 <i>19</i>					(M1+E2)		0.038 19	$\alpha(K) = 0.031 \ 16; \ \alpha(L) = 0.0054 \ 24$ Mult : from $\alpha(K) \exp \alpha(0.030)$
^x 544.9 ^x 550.4 2 ^x 576.1 ^x 590.0 601.3 ^x 627.2 2 ^x 638.5 ^{&} 2	2.0 16.7 <i>17</i> 2.0 2.2 2.0 8.0 8 4.2 <i>4</i>	729.4	(5/2 ⁻ ,7/2 ⁻)	127.9	3/2-				

S

				18	35 Ir ε decay	1962Ha24,1970FiZZ,1971AhZX (continued)
						γ ⁽¹⁸⁵ Os) (continued)
E_{γ}^{\dagger}	I_{γ} ‡ b	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Comments
^x 642.8	4.1					
x646.2 2	17.7 18					
$x_{670.9}$	6.1					
x681.5	3.2					
691.9	6.0	729.4	$(5/2^{-},7/2^{-})$	37.4	$3/2^{-}$	
^x 695.4	2.1					
^x 710.6	1.7					
x ⁷ /26.5	1.1					
×745.2	3.0 8.1					$E : from 1962H_{2}24$
^x 759.2	2.0					L_{γ} . Hold 1902Hd2+.
x761.2	2.2					
^x 785.4	1.4					
^x 796.4	2.0					
x798.2	2.0					
×807.3 ×817.1	10.6					
x823.9	0.7					
x828.3	2.0					
^x 850.8	2.5					
^x 855.7	1.1					
^x 860.6	0.5					
x013.0	0.9					
x925.0	4 4					
x954.9	1.5					
^x 959.0	3.2					
^x 966.2	2.5					
^x 978.2	1.6					
×997.2 ×1016.8	1./					
^x 1038.7	0.5					
1040.7		1769.8	5/2+	729.4	$(5/2^{-},7/2^{-})$	$I_{\gamma}(1038.7\gamma + 1040.7\gamma) = 6.8$ was measured.
^x 1064.2	2.8					
^x 1076.2	1.2					
⁴ 1079.3	1.4					
^x 1094.4 ^x 1101.8	1.2					
x1127.9	2.0					
^x 1153.9	1.0					
^x 1157.5	1.0					
^x 1165.9	1.0					
1178.1	1.0	1907.6	5/2+	729.4	$(5/2^-, 7/2^-)$	

6

 $^{185}_{76}\mathrm{Os}_{109}$ -6

From ENSDF

 $^{185}_{76}\mathrm{Os}_{109}\text{-}6$

							¹⁸⁵ Ιr ε d	lecay 1962Ha24,1970FiZZ,1971AhZX (continued)
								$\gamma(^{185}\text{Os})$ (continued)
	r †	т †b		τπ	Б	īπ	N 1/#	
	E_{γ}	$I_{\gamma} = 0$	$E_i(level)$	J_i^{n}	E_f	\mathbf{J}_{f}^{π}	Mult."	Comments
	^x 1190.4	2.0						
	^x 1205.3	0.4						
	^x 1221.2	1.2						
	×1226.1	2.3						
	x1230.6	1.8						
	$x_{1237.0}$	1.2						
	x1255.6	1.0						
	x1264.4	3.1						
	^x 1266.6	3.1						
	^x 1299.7	6.3						
	^x 1310.9	12.3						
	^x 1318.2	4.3						
	^x 1325.2	4.1						
	^x 1345.9	1.8						
	^x 1359.1	2.7						
	×1361.8	2.3						
	x1300.0	2.5						
1	x1300.0	2.7						
	x1409 1	1.2						
	1418.1	7.7	1769.8	$5/2^{+}$	351.7	$7/2^{-}$		
	^x 1441.3	7.7	170510	0/2	00117	.,=		
	^x 1463.1	2.3						
	^x 1465.8	2.1						
	^x 1478.3	1.8						
	^x 1512.0	0.5						
	^x 1568.3	3.6	1 - 10 0	T (D)	1001	- 10		
	1571.6	3.8	1769.8	5/2+	198.1	7/2-		
	×15/9.9	1.4						
	1641.8	2.8	1760.8	5/2+	127.0	3/2-		
	1652.2	0.7	2003.8	5/2+	351.7	$\frac{3}{2}$		
	1668.3	52.0	1866.3	$5/2^+$	198.1	$7/2^{-}$	E1	Mult.: from $\alpha(K) \exp[=0.00048 \ 11 \ (1981 \text{Sp06})]$.
	1685.0	4.3	1907.6	$5/2^+$	222.4	$5/2^{-}$		
	^x 1698.5	2.3		- 1		- /		
	^x 1701.0	2.8						
	1709.6	4.9	1907.6	$5/2^{+}$	198.1	7/2-		
	1732.2	39.4	1769.8	5/2+	37.4	3/2-	E1	Mult.: from α (K)exp=0.00072 <i>15</i> (1981Sp06).
	1738.4	34.4	1866.3	5/2+	127.9	3/2-	E1	Mult.: from α (K)exp=0.00096 21 (1981Sp06).
	~1757.6	13.0						
	^{~1} /03.1	1.4	1966 2	5/2+	07.4	5/2-		
	1700.0	1.0	1000.5	5/2	97.4	5/2 2/2-		
	1//9.84	5.4 ⁴⁴	1907.6	5/21	127.9	3/2		Possible doublet.
	1779.8 ^{<i>a</i>}	5.4 ^{<i>a</i>}	1907.6	5/2+	127.9	3/2-		Possible doublet.

 $^{185}_{76}\mathrm{Os}_{109}$ -7

From ENSDF

 $^{185}_{76}\mathrm{Os}_{109}$ -7

185 Ir ε decay 1962Ha24,1970FiZZ,1971AhZX (continued)

$\gamma(^{185}\text{Os})$ (continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.#	Comments
1804.9^e 5.9 2003.8 $5/2^+$ 198.1 $7/2^-$ E1Mult.: from $\alpha(K)exp<0.001$ (1981Sp06). 1828.8 144 1866.3 $5/2^+$ 37.4 $3/2^-$ E1Mult.: from $\alpha(K)exp=0.00047$ 10 (1981Sp06). $x^{1}1854.7$ 1.0 17.2 1907.6 $5/2^+$ 37.4 $3/2^-$ E1Mult.: from $\alpha(K)exp=0.00039$ 9 (1981Sp06). 1870.0 17.2 1907.6 $5/2^+$ 37.4 $3/2^-$ E1Mult.: from $\alpha(K)exp=0.00039$ 9 (1981Sp06). 1876.0 6.4 2003.8 $5/2^+$ 127.9 $3/2^-$ E1Mult.: from $\alpha(K)exp=0.00021$ 19 (1981Sp06). $x^1882.5$ 2.1 $x^{1}1901.3$ 0.5 $x^{1}1920.3$ 0.5 $x^{1}1924.0$ 1.0 $x^{1}1938.0$ 0.5 $x^{1}1942.3$ 0.5 $x^{1}1942.3$ 0.5	1779.8 ^{de} ^x 1794.2	5.4 ^d 0.5	2003.8	5/2+	222.4	5/2-		
1828.8 144 1866.3 $5/2^+$ 37.4 $3/2^-$ E1 Mult.: from $\alpha(K)exp=0.00047$ 10 (1981Sp06). *1854.7 1.0 10 100 100 1981Sp06). 1870.0 17.2 1907.6 $5/2^+$ 37.4 $3/2^-$ E1 Mult.: from $\alpha(K)exp=0.00039$ 9 (1981Sp06). 1876.0 6.4 2003.8 $5/2^+$ 127.9 $3/2^-$ E1 Mult.: from $\alpha(K)exp=0.00021$ 19 (1981Sp06). *1882.5 2.1 2.1 Mult.: from $\alpha(K)exp=0.00021$ 19 (1981Sp06). *1882.5 2.1 10 127.9 $3/2^-$ E1 Mult.: from $\alpha(K)exp=0.00021$ 19 (1981Sp06). *1882.5 2.1 10 127.9 $3/2^-$ E1 Mult.: from $\alpha(K)exp=0.00021$ 19 (1981Sp06). *1920.3 0.5 0.5 10 10 10 10 *1938.0 0.5 0.5 10 10 10 10 10 *1942.3 0.5 0.5 10 10 10 10 10 10	1804.9 ^e	5.9	2003.8	$5/2^{+}$	198.1	$7/2^{-}$	E1	Mult.: from α (K)exp<0.001 (1981Sp06).
^x 1854.7 1.0 1870.0 17.2 1907.6 $5/2^+$ 37.4 $3/2^-$ E1 Mult.: from $\alpha(K)exp=0.00039 \ 9 \ (1981Sp06)$. 1876.0 6.4 2003.8 $5/2^+$ 127.9 $3/2^-$ E1 Mult.: from $\alpha(K)exp=0.00021 \ 19 \ (1981Sp06)$. ^x 1882.5 2.1 ^x 1893.2 1.0 ^x 1901.3 0.5 ^x 1924.0 1.0 ^x 1938.0 0.5 ^x 1942.3 0.5	1828.8	144	1866.3	$5/2^+$	37.4	$3/2^{-}$	E1	Mult.: from $\alpha(K) \exp = 0.00047 \ 10 \ (1981 \text{Sp06}).$
1870.017.21907.6 $5/2^+$ 37.4 $3/2^-$ E1Mult.: from $\alpha(K)exp=0.00039$ 9 (1981Sp06).1876.06.42003.8 $5/2^+$ 127.9 $3/2^-$ E1Mult.: from $\alpha(K)exp=0.00021$ 19 (1981Sp06). $^{x}1882.5$ 2.1.10Mult.: from $\alpha(K)exp=0.00021$ 19 (1981Sp06). $^{x}1991.3$ 0.5 $^{x}1924.0$ 1.0 $^{x}1938.0$ 0.5 $^{x}1942.3$ 0.5	^x 1854.7	1.0						
1876.0 6.4 2003.8 $5/2^+$ 127.9 $3/2^-$ E1 Mult.: from $\alpha(K)exp=0.00021$ 19 (1981Sp06). $^{x}1882.5$ 2.1 $^{x}1932.2$ 1.0 $^{x}1901.3$ 0.5 $^{x}1920.3$ 0.5 $^{x}1924.0$ 1.0 $^{x}1938.0$ 0.5 $^{x}1942.3$ 0.5 0.5	1870.0	17.2	1907.6	$5/2^{+}$	37.4	3/2-	E1	Mult.: from α (K)exp=0.00039 9 (1981Sp06).
$x_{1882.5}$ 2.1 $x_{1893.2}$ 1.0 $x_{1901.3}$ 0.5 $x_{1920.3}$ 0.5 $x_{1924.0}$ 1.0 $x_{1938.0}$ 0.5 $x_{1942.3}$ 0.5	1876.0	6.4	2003.8	$5/2^{+}$	127.9	$3/2^{-}$	E1	Mult.: from α (K)exp=0.00021 <i>19</i> (1981Sp06).
$\begin{array}{cccc} x_{1893.2} & 1.0 \\ x_{1901.3} & 0.5 \\ x_{1920.3} & 0.5 \\ x_{1924.0} & 1.0 \\ x_{1938.0} & 0.5 \\ x_{1942.3} & 0.5 \end{array}$	^x 1882.5	2.1						
$\begin{array}{ccc} x_{1901.3} & 0.5 \\ x_{1920.3} & 0.5 \\ x_{1924.0} & 1.0 \\ x_{1938.0} & 0.5 \\ x_{1942.3} & 0.5 \end{array}$	^x 1893.2	1.0						
$\begin{array}{ccc} {}^{x}1920.3 & 0.5 \\ {}^{x}1924.0 & 1.0 \\ {}^{x}1938.0 & 0.5 \\ {}^{x}1942.3 & 0.5 \end{array}$	^x 1901.3	0.5						
$\begin{array}{ccc} {}^{x}1924.0 & 1.0 \\ {}^{x}1938.0 & 0.5 \\ {}^{x}1942.3 & 0.5 \end{array}$	^x 1920.3	0.5						
$ x_{1938.0} 0.5 x_{1942.3} 0.5 $	^x 1924.0	1.0						
^x 1942.3 0.5	^x 1938.0	0.5						
	^x 1942.3	0.5						
^x 1948.4 1.7	^x 1948.4	1.7						
1966.5 1.4 2003.8 $5/2^+$ 37.4 $3/2^-$	1966.5	1.4	2003.8	$5/2^{+}$	37.4	3/2-		
x1978.4 0.5	^x 1978.4	0.5						
^x 1982.4 0.2	^x 1982.4	0.2						
⁴ 1996.6 0.5	^x 1996.6	0.5						
	*2014.4	0.2						
	*2026.2	0.7						
	×2044.4	1.4						
*2049.7 4.9	*2049.7	4.9						
[†] From 1962Ha24 (conv. electrons by magnetic spectrometer), 1970FiZZ (γ), 1971AhZX (γ). All I γ and E γ values given without uncertainties are from 1971AhZX, except for those high-energy E1 transitions determined by 1981Sp06.	[†] From 1 1971Ał	962Ha24 (ZX, excep	(conv. electron to the converse of the convers	ons by	magneti ergy E1	c spect transiti	rometer), ions deterr	1970FiZZ (γ), 1971AhZX (γ). All I γ and E γ values given without uncertainties are from nined by 1981Sp06.
[‡] From 1970FiZZ and 1971AhZX. See 1974El08 for comparison of measured intensities. Relative intensities are normalized to 60 for 97.4γ E2 to give	[‡] From 1	970FiZZ a	and 1971Ah	ZX. See	1974E	108 for	compariso	on of measured intensities. Relative intensities are normalized to 60 for 97.4 γ E2 to give
$\alpha(1,2)=1.58$	$\alpha(L2) =$	1.58.						, .
[#] From Iv and ce data of 1962Ha24 unless otherwise indicated normalized to $\alpha(L_2)(97.4v)=1.58$ Uncertainties on Ice's are $\approx 20\%$ for the strong lines and	# From I	v and ce d	ata of 1962	На24 п	nless of	herwise	e indicated	normalized to $\alpha(L_2)(97.4\gamma)=1.58$ Uncertainties on Ice's are $\approx 20\%$ for the strong lines and
$\approx 40\%$ for the weak ones (1962Ha24)	$\approx 40\%$ f	for the west	ak ones (106)	$52H_{9}24$. marcutou	

[@] Derived by evaluator from ce data of 1962Ha24 using the minimization method and computer code of 1980Ry04. Evaluator assigned uncertainties to Ice following authors' guidelines. [&] Observed by 1970FiZZ only.

^a Observed in ce spectrum by 1962Ha24 only.
^b For absolute intensity per 100 decays, multiply by 0.07 *1*.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with undivided intensity.

¹⁸⁵Ir ε decay **1962Ha24,1970FiZZ,1971AhZX** (continued)

 $\gamma(\frac{185}{Os})$ (continued)

^e Placement of transition in the level scheme is uncertain.

^x γ ray not placed in level scheme.

9

