			~		History				
			Туре	Author	Citation	Literature Cutoff Date			
		Full I	Evaluation	Sc. Wu	NDS 106,619 (2005)	1-Nov-2005			
$Q(\beta^{-}) = -5.69$ Note: Curren	0×10^3 3; South the second secon	(n)= $9.62 \times 10^3 \ 4$ n has used the	; S(p)=1.8 following (32×10^3 3; Q(a) Q record -569	x)=5180 52012Wa389030 962030 1820	30 <i>5180</i> 5 2003Au03.			
					¹⁸⁵ Au Levels				
				Cross	Reference (XREF) Flags				
				A B	¹⁸⁵ Hg ε decay (HI,xn γ)				
E(level) [‡]	$J^{\pi \dagger}$	$T_{1/2}^{h}$	XREF			Comments			
0.0 ^{<i>a</i>}	5/2-	4.25 min 6	AB	$\%\varepsilon + \%\beta^+ = 99$	9.74 6; %α=0.26 6				
				μ =+2.1/0 1/ T _{1/2} : weight (1968Si01) (1995Bi01 J ^{π} : J from at Nilsson sta experimen % α : From 19 ¹⁸⁵ Hg and 1970Ha18 not been c vacancies μ : Resonance (low-tempe 1987VaZR <r<sup>2>^{1/2}=5.42 nuclides (2</r<sup>	ed average of 4.3 min 2 (), 4.2 min 2 (1970FiZZ), ,1991Bi04). omic beam (1980Ek04). ate mixed with the 5/2,3/2 tal μ . 995Bi01. $\Re \alpha$ =0.10 3 was ¹⁸⁵ Au (1970Ha18), and report $\Re \alpha$ =0.093 20, usi corrected for the ε decay of created by internal converse ionization mass spectrosc ionization mass spectrosc erature) nuclear orientation 1, 1987Wo04. 29 fm 4 for ¹⁸⁵ Au based of 2004An14).	(1953Ra02), 4.3 min 2 (1968De01), 4.3 min 1 4.2 min 3 (1970Ha18), and 4.2 min 1 Calculated $\mu \approx 2.3$ (assuming a 5/2,1/2[541] 2[532] by the Coriolis interaction) agrees with a deduced from an α -particle spectrum with using evaluator's adopted $\%\alpha(^{185}\text{Hg})=6$ 1. ng $\%\alpha(^{185}\text{Hg})=5.5$ 7. These values may have of ^{185}Au (6.8 min), and for the atomic rsion (1991Bi04). $\%\alpha=0.7$ 1 (1991Bi04). scopy (1989Wa11). Other values: +2.17 3, copy (1987Wa06, 1987Wa23); 2.22 14, static on (1985Va07, 1989Ra17). Others: 1987WaZO, on a global fit to charge radius data for all			
0.0+x		6.8 min <i>3</i>	AB	$%ε+%β^+<100; %IT=?$ $T_{1/2}:$ from multiscaling of delayed γ's (1970FiZZ). Other value: 7 min (1960Al20). ε decay was determined from observation of Pt K x-rays. A 145-keV γ ray (with ε or IT decay) was measured by 1970FiZZ					
8.9 ^{<i>a</i>} 1	(9/2)-	4.8 ns 4	AB	J^{π} : (E2) to 5	$/2^-$; band structure.				
23.6 ^e 1	$(1/2)^+$		A	J^{π} : 23.6 γ M2	2 to $5/2^-$; band head of K	$\pi^{\pi} = 1/2^{+}$ rotational band.			
35.78 5	(3/2)-	0.54 ns 5	A	T _{1/2} : from c J ^{π} : 35.7 γ M1	e ce(t) (1985Ab03). $1+E2$ to $(5/2)^{-}$.				
40.8 ^{<i>f</i>} 1	$(3/2)^+$	7 ns 2	A	$T_{1/2}$: from c J ^{π} : 17.2 γ M1	e ce(t) (1983Be48). 1+E2 to $(1/2)^+$; band head	d of $K^{\pi} = 3/2^+$ rotational band.			
107.5 ^b 1	(7/2)-	0.37 ns 4	AB	T _{1/2} : from c J ^{π} : 98.5 γ M1	e ce(t) (1983Be48). 1 to $(9/2)^-$, 107.4 γ M1+E	22 to $5/2^-$; band structure.			
213.7 ^e 1	$(3/2)^+$		Α	J^{π} : 190.1 γ M	$(1)(+E2)$ to $(1/2)^+$; band s	tructure.			
220.1 ^{&} 1	(11/2 ⁻)	26 ns 2	AB	$T_{1/2}$: from contransition to prolate nucleon	e ce(t). The large Weisski to the $(9/2^-)$ level may be clear shape between the in	opf hindrance of 2.1×10^4 for the 211-keV M1 e explained by a change from an oblate to a nitial and final states. Similar hindrances for			

this transition have been observed in other odd-A Au isotopes (1983Be48). J^{π}: 211.2 γ M1 to (9/2⁻). K^{π} =1/2⁻, h_{11/2} rotational band.

¹⁸⁵Au Levels (continued)

E(level) [‡]	$J^{\pi \dagger}$	$T_{1/2}^{h}$	XREF	Comments
221.3 ^{<i>a</i>} 1	(13/2)-	116 ps +11-10	AB	J^{π} : 212.5 γ E2 to (9/2) ⁻ ; band structure.
233.9 <mark>8</mark> 1	$(5/2)^+$		Α	J^{π} : 193.0 γ M1+E2 to (3/2) ⁺ , 210.4 γ (E2) to (1/2) ⁺ ; band structure.
258.7 7	$(3/2,5/2)^{-}$		Α	J^{π} : 258.7 γ M1 to 5/2 ⁻ , 223 γ M1+E2 to (3/2) ⁻ .
280.0 1	(1/2)		A	J^{*} : 244.2 γ M1 to (3/2) , 280 γ (E2) to 5/2 .
288.5 I 291 1 ^e 2	$\frac{3}{2}$		A A	J^{-1} : 260.77 EU+(M1) to J/Z^{-1} . I^{π} : 250.32 M1 to $(3/2)^+$: hand structure
$301.2^{b}1$	$(3/2)^{-}$			I^{π} : 202 A_{α} M1 + E2 to $(0/2)^{-1}$ 103 T_{α} E2 to $(7/2)^{-1}$
322.0.6	(11/2) $(9/2)^{-}$		AD A	$J = 292.47$ M11+E2 to $(9/2)^{-1}$, 195.77 E2 to $(7/2)^{-1}$. $I^{\pi} = 313 \times F0 + M1$ to $(9/2)^{-1}$
330.3 1	$(7/2)^{-}$		A	J^{π} : 321.4 γ M1(+E2) to (9/2 ⁻), 330.2 γ M1(+E2) to 5/2 ⁻ .
388.0 1	(3/2)-		Α	J^{π} : 107.8 γ M1+E2 to (1/2) ⁻ ; 388.3 M1 to 5/2 ⁻ .
429.8? 2	3/2-,5/2-,7/2-		Α	J^{π} : 429.8 γ E2+M1 to 5/2 ⁻ .
439.5 ⁵ 2	$(7/2)^+$		Α	J^{π} : 206 γ M1+E2 to (5/2) ⁺ ; band structure.
490.2 3	$(7/2)^{-}$		A	J^{π} : 270 γ E2 to (11/2 ⁻), 199 γ E1 to (5/2) ⁺ .
535.5 2	(5/2, 1/2, 9/2)	125 ps + 10.8	A AD	J [*] : 205.2 γ MI(+E2) to (7/2) .
572.1.2	(17/2) $3/2^{-} 5/2^{-} 7/2^{-}$	15.5 ps +10-8		J^{π} : 322.77 E2 to (15/2), band structure. J^{π} : 283 4 $_{27}$ M1(+E2) to 5/2 ⁻
583.0 ^g 2	$(9/2)^+$		A	J^{π} : 349.0 γ E2 to (5/2) ⁺ ; band structure.
595.8 2	$(1/2,3/2)^{-}$		Α	J^{π} : 313.2 γ M1(+E2) to (1/2) ⁻ .
616.6 <mark>b</mark> 2	(15/2)-		AB	J^{π} : 315.3 γ E2 to (11/2) ⁻ ; band structure.
648	$(13/2)^{-}$		Α	J^{π} : 426 γ E0+M1 to (13/2) ⁻ .
659.7 3	-		A	J^{π} : 124.1 γ M1+E2 to $(5/2,7/2,9/2)^{-}$.
681.1 2	(13/2)		Α	J^{*} : 461.0 γ M1+E2 to (11/2).
682.3°° 3	$(15/2^{-})$ $(11/2^{-})$		AB	J^{n} : 462.2 γ E2 to (11/2 ⁻); band structure.
712.0 5	(11/2) $(9/2^{-})$		A	J^{π} . $492\gamma = 0 + M1$ to $(11/2^{-})$. $I^{\pi} \cdot \gamma$ to $(7/2)^{-}$ and $(11/2^{-})$ states
776.5 [°] 2	$(15/2^{-})$		AB	J^{π} : The 530.2 γ from the (27/2 ⁻) state of the K^{π} =5/2 ⁻ band to the
				1564.5 level and the 485.2 E2 γ from the 1994.6 level to the (23/2) ⁻ state of the K^{π} =5/2 ⁻ band, and the 556.6 γ from the 1994.6 level to the (25/2) ⁻ state of the K^{π} =5/2 ⁻ band establish the J^{π} 's of the 1564.5 as (23/2 ⁻) and 1994.6 as (27/2 ⁻). From cascade information and band structure, plus 555.2 γ to (13/2 ⁻) of the K^{π} =5/2 ⁻ band, the J^{π} of this level is determined.
789.7 ⁵ 3	$(11/2^+)$		Α	J^{π} : 350 γ (E2) to (7/2) ⁺ ; band structure.
836.3 2			A	
838.2 3	(12/2+)		A	
860.3 ^a 2	(13/2')		AB	J [*] : 243.6 γ to (15/2) , 558.9 γ to (11/2) , 639.2 γ to (13/2) , which are members of the K=5/2 ⁻ g. s. band. Band head of K^{π} =13/2 ⁺ i _{13/2} rotational band.
863.4 <i>3</i>	$(1/2^-, 3/2^-, 5/2^-)$		Α	J^{π} : 267.6 γ M1+E2 to (1/2,3/2) ⁻ .
953.8 ^{<i>a</i>}	$(21/2)^{-}$	4.3 ps 4	В	J^{π} : 409.2 γ E2 to (17/2) ⁻ ; band structure.
954.8 Z	$(13/2^{-})$		A A	$I^{\pi} \cdot 347_{22}$ (E0+M1) to (13/2 ⁻)
$1020.5\ 2$ $1029\ 4^{b}$	$(19/2)^{-}$		R	I^{π} : 412 7 $_{2}$ F2 to (15/2) ⁻ : hand structure
1029.1	$(17/2^+)$		AR	I^{π} : $A2A \downarrow_{V}$ D to $(15/2)^{-}$ 180 5 E2 to $(13/2^{+})$; hand structure
1040.7 2	(17/2)		A	$3 \cdot 424.17 \text{ D to } (15/2) \cdot 100.3 \text{ E2 to } (15/2) \cdot 00000000000000000000000000000000000$
1072.4 3	(3/2 ⁻)		Α	J ^{π} : Based on energy systematics of the same $J^{\pi}=3/2^{-}$ state in ¹⁸⁷ Au (1056 keV) and ¹⁸⁹ Au (1059 keV) (1988Ko22).
1136.2 ^c	$(19/2^{-})$		В	J^{π} : 360.1 γ to (15/2) ⁻ ; band structure.
1209.4 [#] 3	(17/2 ⁻)		AB	J ^{π} : 527.1 γ to (15/2 ⁻); possible (17/2 ⁻) member of $K^{\pi}=1/2^{-}$, configuration=h11/2 (1986La08). (1988Ko22).
1229.3 3	(7 (7 -)		Α	190
1233? 1298.3 <i>3</i>	(5/2 ⁻)		A A	J ^{<i>n</i>} : By analogy with $J^{\pi} = 5/2^{-}$ state in ¹⁸⁹ Au(1254 keV) (1988Ko22).

Continued on next page (footnotes at end of table)

¹⁸⁵Au Levels (continued)

$E(level)^{\ddagger}$	$J^{\pi \dagger}$	$T_{1/2}^{h}$	XREF	Comments
1309.7 2			A	
1328.1 ^d	$(21/2^+)$	16.2 ps 12	В	J^{π} : 287.3 γ E2 to (17/2 ⁺); band structure.
1396.9 <mark>&</mark>	$(19/2^{-})$	*	В	J^{π} : 714.2 γ to (15/2 ⁻); band structure.
1438.1 ^a	$(25/2)^{-}$	<3.5 ps	В	J^{π} : 484.3 γ E2 to (21/2) ⁻ ; band structure.
1509.4 <mark>b</mark>	$(23/2)^{-}$		В	J^{π} : 480.0 γ E2 to (19/2) ⁻ ; band structure.
1548.8 [@]			В	
1564.5 ^C	$(23/2^{-})$		В	J^{π} : See comments for 776.5 level.
1705.8 ^d	$(25/2^+)$	4.8 ps 3	В	J^{π} : 377.7 γ E2 to (21/2 ⁺); band structure.
1761.2 [#]			В	
1986.3 ^a	$(29/2)^{-}$		В	J^{π} : 548.2 γ E2 to (25/2) ⁻ ; band structure.
1994.6 [°]	$(27/2^{-})$		В	J^{π} : See comments for 776.5 level.
2025.2			В	J^{π} : possible (23/2 ⁻) member of $K^{\pi} = 1/2^{-}$, configuration=h11/2 (1986La08).
2095.0 ⁰	$(27/2)^{-}$		В	J^{π} : 585.3 γ to (23/2) ⁻ ; band structure.
2146.4 ^d	$(29/2^+)$	2.77 ps +10-12	В	J^{π} : 440.6 γ E2 to (25/2 ⁺); band structure.
2302.5 [#]			В	
2503 [°]	$(31/2^{-})$		В	J^{π} : 509 γ to (27/2 ⁻); band structure.
2561.7 [@]			В	
2584.3 ^a	$(33/2)^{-}$		В	J^{π} : 598.0 γ to (29/2) ⁻ ; band structure.
2619.3 ^d	$(33/2^+)$	2.31 ps +13-20	В	J^{π} : 472.9 γ E2 to (29/2 ⁺); band structure.
2687.0 ⁰	$(31/2)^{-}$		В	J^{π} : 592.0 γ to (27/2) ⁻ ; band structure.
2831.6 [#]			В	
3037.3 [@]			В	
3059 [°]	$(35/2^{-})$		В	J^{π} : 555.5 γ to (31/2 ⁻); band structure.
3117.3 ^d	$(37/2^+)$	<2.9 ps	В	J^{π} : 498.0 γ E2 to (33/2 ⁺); band structure.
3225.1 ^{<i>a</i>}	$(37/2)^{-}$		В	J^{π} : 640.8 γ to (33/2) ⁻ ; band structure.
3309.7 ⁰	$(35/2)^{-}$		В	J^{π} : 622.7 γ to (31/2) ⁻ ; band structure.
3365.0 [#]			В	
3657 [°]	$(39/2^{-})$		В	XREF: B(3657.0).
acter ad	(11/2)		_	J^* : 598.6 γ to (35/2); band structure.
3657.3ª	$(41/2^+)$		В	XREF: $B(3657.3)$.
3898 1 <mark>4</mark>	$(41/2)^{-}$		R	J^{*} : 540.07 EZ to (57/2°); band structure. I^{π} : 673 0 $_{2}$ to (37/2) ⁻ : band structure
30/5 8 ^b	$(\frac{1}{2})^{-}$		B	I^{π} : 636 lot to $(35/2)^{-}$; band structure
1211 7 <mark>d</mark>	(39/2) $(45/2^+)$		D D	I^{π} : 597 Ac to $(41/2^{+})$; band structure
4244.7 4293 ^C	$(43/2^{-})$		D R	$J = 587.47$ to $(41/2^{-1})$, band structure
4612 ^{<i>a</i>}	$(45/2)^{-}$		B	J^{π} : 714 γ to (41/2) ⁻ : band structure.
4872.9 ^d	$(49/2^+)$		В	J^{π} : 628.2 γ to (45/2 ⁺): band structure.
4967 ^C	$(47/2^{-})$		В	J^{π} : 674 γ to (43/2 ⁻); band structure.
5372 ^a	$(49/2)^{-}$		В	J^{π} : 760 γ to (45/2) ⁻ ; band structure.
5545 <mark>d</mark>	$(53/2^+)$		В	J^{π} : 672 γ to (49/2 ⁺); band structure.
5695 [°]	$(51/2^{-})$		В	J^{π} : 728 γ to (47/2 ⁻); band structure.
6273 ^d	$(57/2^+)$		В	J^{π} : 728 γ to (53/2 ⁺); band structure.
7038 <mark>d</mark>	$(61/2^+)$		В	J^{π} : 765 γ to (57/2 ⁺); band structure.

[†] Spin and parity arguments are based on the energy systematics of rotational bands in ¹⁸⁵Au, ¹⁸⁷Au, and ¹⁸⁹Au (1988Ko22), supplemented by γ -ray multipolarities and decay patterns, and $\gamma(\theta)$ and $\gamma\gamma(\theta)$ measured in (HI,xn γ) reactions. Specific arguments based on γ -ray multipolarities are given with individual levels. ¹⁸⁵Au belongs to a transitional region where oblate

¹⁸⁵Au Levels (continued)

and prolate nuclear shapes coexist. Measurements of the hyperfine structure and isotope shift of ¹⁸⁵Au confirm its large ($\beta \approx 0.25$) g.s. prolate deformation (1989Wal1).

- ‡ From $^{185}\text{Hg}~\varepsilon$ decay, except for levels populated by (HI,xn $\gamma)$ only.
- [#] Band(A): $K^{\pi} = 11/2^{-1}$ rotational band. Configuration=h11/2. Prolate shape. $\alpha = +1/2$.
- [@] Band(a): $K^{\pi}=11/2^{-}$ rotational band. Configuration=h11/2. Prolate shape. $\alpha=-1/2$.
- & Band(B): $K^{\pi} = 1/2^{-}$ rotational band. Configuration=h11/2. Oblate shape.
- ^{*a*} Band(C): $K^{\pi}=5/2^{-}$ g.s. rotational band. Configuration=h9/2. Prolate shape. $\alpha = +1/2$.
- ^b Band(c): $K^{\pi}=5/2^{-}$ g.s. rotational band. Configuration=h9/2. Prolate shape. $\alpha = -1/2$.
- ^{*c*} Band(D): $K^{\pi} = (1/2^{-})$ rotational band. Configuration=f7/2. Prolate shape.
- ^d Band(E): $K^{\pi}=13/2^+$ rotational band. Configuration=i13/2. Prolate shape.
- ^{*e*} Band(F): $K^{\pi}=1/2^+$ rotational band. Configuration=s1/2. Prolate shape.
- ^{*f*} Band(G): $K^{\pi}=3/2^+$ rotational band. Configuration=d3/2. Prolate shape. $\alpha=+1/2$.
- ^g Band(g): $K^{\pi}=3/2^+$ rotational band. Configuration=d3/2. Prolate shape. $\alpha=-1/2$.
- ^h From recoil-distance method (2004Jo07), unless otherwise stated.

	Adopted Levels, Gammas (continued)								
						<u> </u>	(¹⁸⁵ Au)		
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	$\alpha^{\boldsymbol{b}}$	Comments
8.9	(9/2)-	8.9	100	0.0	5/2-	(E2)		169000	 B(E2)(W.u.)=200 120 E_γ: from ce data, magnetic spectrometer (1983Be48,1987KiZV). Mult.: reported by 1987KiZV from ce data. B(E2)(W.u.)=200 120 is consistent with the expected collective E2 character of this transition.
23.6	$(1/2)^+$	23.6 1	100	0.0	5/2-	M2 ^{&}		1.45×10^{4}	
35.78	$(3/2)^{-}$	35.75 5	100	0.0	5/2-	M1+E2&	0.5	155	B(M1)(W.u.)=0.0029; B(E2)(W.u.)=920
40.8	$(3/2)^+$	17.17 3	100	23.6	$(1/2)^+$	M1+E2&	0.13 6	6.6×10 ² 38	B(M1)(W.u.)=0.0009 6; B(E2)(W.u.)=22 +24-17
107.5	$(7/2)^{-}$	98.5 <i>1</i>	100 30	8.9	$(9/2)^{-}$	M1 ^{&}		7.88	B(M1)(W.u.)=0.0053 22
		107.4 <i>1</i>	48 12	0.0	5/2-	M1+E2&	1.2	4.84	B(M1)(W.u.)=0.0010; B(E2)(W.u.)=35
213.7	$(3/2)^+$	190.1 <i>1</i>	100	23.6	$(1/2)^+$	M1(+E2) ^{&}	0.5 +3-5	1.06 16	
220.1	$(11/2^{-})$	211.2 <i>I</i>	100	8.9	$(9/2)^{-}$	M1 ^{&}		0.905	$B(M1)(W.u.)=4.7\times10^{-5} 4$
221.3	$(13/2)^{-}$	212.5 <i>1</i>	100	8.9	(9/2)-	E2&		0.309	B(E2)(W.u.)=0.86 8
233.9	$(5/2)^+$	193.0 <i>1</i>	100 10	40.8	$(3/2)^+$	M1+E2 ^{&}	1.0	0.795	
		210.4 1	30 3	23.6	$(1/2)^+$	(E2) ^{&}		0.319	
258.7	$(3/2, 5/2)^{-}$	222.8 ^d 1	100.0 ^d 6	35.78	$(3/2)^{-}$	M1+E2 ^{&}	0.58	0.650	
		258.7 1	98 10	0.0	5/2-	M1&		0.516	
280.0	$(1/2)^{-}$	244.2 1	100 10	35.78	$(3/2)^{-}$	M1 ^{&}		0.605	
		280.1 ^{#e} 2	21.4 24	0.0	5/2-	(E2) ^{&}		0.127	
288.5	5/2-	181.0 <i>1</i>	43 5	107.5	$(7/2)^{-}$	<u>8</u> -		+	
		288.7 2	100 10	0.0	5/2-	$E0+(M1)^{\alpha}$		≈0.4+	
291.1	$(5/2)^+$	250.3 2	100	40.8	$(3/2)^+$	M1 ^a		0.565	
301.2	$(11/2)^{-}$	193.7 1	39 4	107.5	$(7/2)^{-}$	E2 ^{cc}		0.424	
		292.4 2	100 10	8.9	$(9/2)^{-}$	M1+E2	1.5	0.191	
322.0	$(9/2)^{-}$	313.2	100 10	8.9	(9/2)-	$E0+M1^{\infty}$		0.004	
220.2	(5.10) -	322	und a	0.0	5/2-	E2		0.084	
330.3	$(1/2)^{-}$	222.84 1	40 ⁴ 4	107.5	$(1/2)^{-}$	MI+E2		0.5 3	
		321.4 2	49.5	8.9	(9/2)	$M1 + E2^{\infty}$		0.19 10	
200.0	(2.12) -	330.2 2	100 10	0.0	5/2-	MI+E2	0.50	0.17 10	
388.0	(3/2)	107.8 1	46 15	280.0	(1/2)	$M1+E2^{\circ}$	0.58	5.52	
		129.1 <i>I</i> 352.0	100 10	258.7 35.78	$(3/2,5/2)^{-}$ $(3/2)^{-}$	M1+E2 ^{cc}	0.65	3.11	

S

From ENSDF

 $^{185}_{79}\mathrm{Au}_{106}$ -5

 $^{185}_{79}\mathrm{Au}_{106}$ -5

L

					Adopted L	evels, Gammas	(contin	ued)	
$\gamma(^{185}\text{Au})$ (continued)									
E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [@]	$\delta^{@}$	α b	Comments
388.0	(3/2)-	388.3 2	21.4 23	0.0	5/2-	M1 ^{&}		0.172	
429.8?	3/2-,5/2-,7/2-	429.8 ^{#e} 2	100	0.0	5/2-	E2+M1 ^{&}			
439.5	$(7/2)^+$	205.7 2	48 5	233.9	$(5/2)^+$	M1+E2&		0.7 4	
		398.7 2	100 10	40.8	$(3/2)^+$	E2 ^{&}		0.0464	
490.2	$(7/2)^{-}$	199.1		291.1	$(5/2)^+$	E1 ^{&}		0.0734	
		270.1 2	100 10	220.1	$(11/2^{-})$	E2 ^{&}		0.142	
535.5	(5/2,7/2,9/2)-	205.2 2	100	330.3	$(7/2)^{-}$	M1(+E2) ^{&}		0.7 4	
544.0	$(17/2)^{-}$	322.7 2	100	221.3	$(13/2)^{-}$	E2		0.0835	B(E2)(W.u.)=1.10 8
572.1	3/2-,5/2-,7/2-	283.4 2	100 10	288.5	5/2-	M1(+E2)		0.26 14	
583.0	(9/2)+	$572.2^{c#e} 2$ 143^{a} 292^{a}	37 ^c 4	0.0 439.5 291.1	$5/2^-$ $(7/2)^+$ $(5/2)^+$				
		349.0 2	100 10	233.9	$(5/2)^+$	E2 ^{&}		0.0668	
595.8	$(1/2, 3/2)^{-}$	313.2	8	280.0	$(1/2)^{-}$	M1(+E2) ^{&}		0.20 11	
		572.2 ^{c#e} 2	30 [°] 3	23.6	$(1/2)^+$				
616.6	$(15/2)^{-}$	315.3 2	100 10	301.2	$(11/2)^{-}$	E2		0.0894	
		395.2 2	42 4	221.3	$(13/2)^{-}$	E2(+M1)		0.11 6	
648	$(13/2)^{-}$	326		322.0	(9/2)-	E2 ^a		0.0811	
		426.6	100 11	221.3	$(13/2)^{-}$	E0+M1			
659.7	-	124.1 2	100	535.5	$(5/2,7/2,9/2)^{-}$	M1+E2	0.65	3.51	
681.1	$(13/2^{-})$	461.0 2	100	220.1	$(11/2^{-})$	M1+E2		0.07 4	
682.3	$(15/2^{-})$	462.2 2	100	220.1	$(11/2^{-})$	E2 ^{cc}		0.0317	
712.0 770	$(11/2^{-})$ $(9/2^{-})$	491.9 2 280 550	100	220.1 490.2 220.1	$(11/2^{-})$ $(7/2)^{-}$ $(11/2^{-})$	E0+M1 ^{&}		0.21+ 6	
776.5	$(15/2^{-})$	555.2 2	100	221.3	$(13/2)^{-}$	0.			
789.7	$(11/2^+)$	350.2 2	100	439.5	$(7/2)^+$	(E2) ^{&}		0.0661	101
836.3		827.3 ^{#e} 2	25 3	8.9	$(9/2)^{-}$				I_{γ} : mixed with a γ ray from ¹⁸¹ Os.
838 2		836.3 2 178 5 1	100 9	0.0 659.7	5/2				
050.2		302.9 2	73 7	535.5	$(5/2,7/2,9/2)^{-}$				
860.3	$(13/2^+)$	243.6 2	25 12	616.6	(15/2)-				Doublet. The most intense member (M1+E2) is unplaced.
		558.9 2	100 10	301.2	$(11/2)^{-}$				
962 4	(1/0= 2/0= 5/0=)	039.2.2	19.1 19	221.3	(13/2)	MILEON			
803.4	(1/2, 3/2, 3/2)	207.0" 2	100	595.8	(1/2.3/2)	M1+E2			

6

From ENSDF

Т

γ (¹⁸⁵Au) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\alpha^{\boldsymbol{b}}$	Comments
953.8	$(21/2)^{-}$	409.2 3	100	544.0	$(17/2)^{-}$	E2	0.0433	B(E2)(W.u.)=1.11 + 11 - 8
954.8		653.6 2	25.6 23	301.2	$(11/2)^{-}$			
1029 5	$(12/2^{-})$	6/4./ 2 247.5.2	100 9	280.0	(1/2)		0.21	
1028.5	(15/2)	347.5 2 202 1 ^{#e} 2	100 10	081.1	(13/2)	$(E0+M1)^{-1}$	0.21*	
1029.4	$(19/2)^{-}$	412.7 3	9.0 0	616.6	$(11/2)^{-}$	E2	0.0423	
		484.9 <i>3</i>		544.0	$(17/2)^{-}$			
1040.7	$(17/2^+)$	180.5 2		860.3	$(13/2^+)$	E2	0.543	Multi from (0) (109(1-09). Lowel otherws requires E1
		204.0 424.1 2	100 11	616.6	$(15/2)^{-}$	D		Mult.: from $\gamma(\theta)$ (1980La08). Level scheme requires E1.
1060.2		1036.6 ^{#e} 2	100	23.6	$(1/2)^+$			
1072.4	$(3/2^{-})$	582.2 2	100	490.2	$(7/2)^{-}$			
1136.2	$(19/2^{-})$	360.1 [#]	100	776.5	$(15/2^{-})$			
1209.4	$(17/2^{-})$	527.1 [#] 2	100	682.3	$(15/2^{-})$			
1229.3	$(5/2^{-})$	369.0 <i>2</i> 743	100	860.3 490.2	$(13/2^+)$ $(7/2)^-$			
1298.3	(3/2)	438.0 3	100	860.3	$(13/2^+)$			
1309.7		1286.1 ^{#e} 2	100	23.6	$(1/2)^+$			
1328.1	$(21/2^+)$	287.3 3		1040.7	$(17/2^+)$	E2	0.118	B(E2)(W.u.)<1.74
1396.9	$(19/2^{-})$	299.0 3 714.2 3	100	1029.4 682.3	(19/2) $(15/2^{-})$			
1438.1	$(25/2)^{-}$	484.3 3	100	953.8	$(21/2)^{-}$	E2	0.0282	B(E2)(W.u.)>0.59
1509.4	$(23/2)^{-}$	480.0 3	71	1029.4	$(19/2)^{-}$	E2	0.0288	
1540 0		555.6 <i>3</i>	100	953.8	(21/2)			
1548.8	$(23/2^{-})$	428.3	100	1209.4	(17/2) $(19/2^{-})$			
1705.8	$(25/2^+)$	196.4 ^e		1509.4	$(23/2)^{-}$			
		377.7 3		1328.1	$(21/2^+)$	E2	0.0536	B(E2)(W.u.)<1.54
1761.2		212.4"		1548.8	(10)			
		364.1"		1396.9	$(19/2^{-})$			
1986 3	$(29/2)^{-}$	551.5" 548.2.3	100	1209.4	(1/2) $(25/2)^{-}$	E2	0.0210	
1994.6	$(27/2^{-})$	429.6 [#]	100	1564.5	$(23/2^{-})$	112	0.0210	
	< ·/- /	485.2 3	100	1509.4	$(23/2)^{-}$	E2	0.0281	
		556.6 3	100	1438.1	$(25/2)^{-}$			
2025.2		263.9 [#]		1761.2				
		4′/6 [#]		1548.8	(10/2-)			
		628.0"		1396.9	(19/2)			

From ENSDF

	Adopted Levels, Gammas (continued)									
	γ ⁽¹⁸⁵ Au) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.@	α b	Comments		
2095.0	$(27/2)^{-}$	530.2 [#]		1564.5	(23/2 ⁻)	E2	0.0227			
		585.3 [#]		1509.4	$(23/2)^{-}$					
2146.4	$(29/2^+)$	440.6 <i>3</i>	100	1705.8	$(25/2^+)$	E2	0.0357	B(E2)(W.u.)=1.19 + 5 - 4		
2302.5		277.3" 5.41.0 #		2025.2						
2502	$(21/2^{-})$	541.2" 500#	100	1/01.2	(27/2-)					
2505	(31/2)	250.2 [#]	100	1994.0	(27/2)					
2301.7		239.2 536.5 <mark>#</mark>		2502.5						
2584.3	$(33/2)^{-}$	598.0 <i>3</i>	100	1986.3	$(29/2)^{-}$					
2619.3	$(33/2^+)$	472.9 <i>3</i>	100	2146.4	$(29/2^+)$	E2	0.0299	B(E2)(W.u.) = 1.01 + 10 - 6		
2687.0	$(31/2)^{-}$	592.0 [#]	100	2095.0	$(27/2)^{-}$					
2831.6		269.9 <mark>#</mark>	100	2561.7						
3037.3		205.7#		2831.6						
		476#		2561.7						
3059	$(35/2^{-})$	555.5"	100	2503	$(31/2^{-})$	ED	0.0262	$\mathbf{D}(\mathbf{E}_{2})(\mathbf{W}_{1}) > 0.62$		
3225.1	$(37/2)^{-1}$	498.0 3 640.8 <i>3</i>	100	2584.3	$(33/2^{-1})$ $(33/2)^{-1}$	E2	0.0205	B(E2)(W.U.) > 0.05		
3309.7	$(35/2)^{-}$	622.7 [#]	100	2687.0	$(31/2)^{-}$					
3365.0		327 #	100	3037.3						
3657	$(39/2^{-})$	598.6 [#]	100	3059	$(35/2^{-})$					
3657.3	$(41/2^+)$	540.0 <i>3</i>	100	3117.3	$(37/2^+)$	E2	0.0217			
3898.1	$(41/2)^{-}$	673.0 [#]	100	3225.1	$(37/2)^{-}$					
3945.8	$(39/2)^{-}$	636.1 #	100	3309.7	$(35/2)^{-}$					
4244.7	$(45/2^+)$	58/.43	100	3657.3	$(41/2^{+})$					
4293	$(43/2)^{-}$	035.4" 714#	100	3037	(39/2)					
4012	(43/2) $(40/2^+)$	628.2 [#]	100	3090.1 1211 7	(41/2) $(45/2^+)$					
4072.9	(49/2)	674 [#]	100	4244.7	$(43/2^{-})$					
5372	$(49/2)^{-}$	760 [#]	100	4612	$(45/2)^{-}$					
5545	$(53/2^+)$	672 [#]	100	4872.9	$(49/2^+)$					
5695	$(51/2^{-})$	728 ^{d#e}	<100 ^d	4967	$(47/2^{-})$					
6273	$(57/2^+)$	728 ^{d#e}	$\leq 100^{d}$	5545	$(53/2^+)$					
7038	$(61/2^+)$	765 ^{#e}	100	6273	$(57/2^+)$					
					. , ,					

 $^{185}_{79}\mathrm{Au}_{106}$ -8

From ENSDF

$\gamma(^{185}\text{Au})$ (continued)

[†] From ¹⁸⁵Hg ε decay, except for γ rays measured in (HI,xn γ) only.

[‡] Experimental $\alpha(K)$.

- [#] Placement in level scheme is uncertain. [@] From $\gamma(\theta)$, $\gamma\gamma(\theta)$ in (HI,xn γ), unless otherwise specified. Quadrupole transitions are assumed to be stretched E2. [&] From ce data in ¹⁸⁵Hg ε decay.

^{*a*} From level energy differences (1988Pa15).

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

¹⁸⁵₇₉Au₁₀₆

	Legend
Level Scheme (continued)	\longrightarrow $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
Intensities: Type not specified	$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
@ Multiply placed: intensity suitably divided	$I_{\gamma} > 10\% \times I_{\gamma}^{max}$

¹⁸⁵₇₉Au₁₀₆

¹⁸⁵₇₉Au₁₀₆

Adopted Levels, Gammas

 $^{185}_{79}{\rm Au}_{106}$

