¹⁸⁴**Ta** β^- **decay 1973Ya02**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009

Parent: ¹⁸⁴Ta: E=0.0; J^{π}=(5⁻); T_{1/2}=8.7 h *I*; Q(β ⁻)=2866 26; % β ⁻ decay=100.0

Others: 1964Ve01, 1969FaZY, 1969Mo07, 1973Wa18, 1984Bu37, 2004Xu08.

1973Ya02: source from ¹⁸⁶W(d, α) using natural and 95% enriched targets and ED=14 and 18 MeV; Ge(Li) detector (FWHM=2.0 At 1332), Ge(Li) x-ray spectrometer (FWHM \approx 0.75 At 122), NaI and anthracene β detectors; measured E γ , I γ , $\gamma\gamma$ coin, E β , $\beta\gamma$ coin.

The decay scheme is based on that proposed by 1973Ya02.

$\beta\gamma$: see 1973Ya02.

 $\gamma\gamma$: see 1973Ya02.

 β endpoint energies: 1973Ya02, 1964Ve01, 1973Wa18. note that 1964Ve01 report E(β)= 1755 20 (0.86% 17) and 2644 28 (0.15% 3), but 1973Ya02 do not observe these groups and estimate I β <0.035% for them.

 $\beta \gamma(t) \ (\beta)(E(\gamma) > 500) \ (1969Mo07).$ For $T_{1/2}$, see $\gamma \gamma(t)$.

¹⁸⁴W Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		
111.196 <i>19</i>	2+		
364.05 4	4+		
748.31 5	6+		
903.27 4	2+		
1005.97 4	3+		
1130.00 4	(2)-		
1133.83 5	4+		
1221.29 4	3-		
1284.99 <i>4</i>	5-	7.70 μs 3	$T_{1/2}$: from $\gamma\gamma(t)$ (1969FaZY). other: 8.0 μ s 4 (1969Mo07).
1294.9 <i>4</i>	5+		
1345.40 10	(4 ⁻)		
1424.94 7	$(3)^{+}$		
1446.26 4	6-		
1501.57 5	7-		
1536.64 16	(4^{+})		
1581.46 10	(6 ⁻)		
1676.45 <i>14</i>	(5 ⁺)		
1699.02 6	$(5)^{+}$		
1746.04 6	$(6)^{+}$		
2029.86? 8	(5 ⁻ ,6,7 ⁻)		
2389.14 12	$(4^{-},5,6^{-})$		
2492.66 11	(4-,5,6)		

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

$^{184}\mathrm{Ta}\,\beta^{-}$ decay 1973Ya02 (continued)

β^- radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log <i>ft</i>	Comments
$(3.7 \times 10^2 \ 3)$	2492.66	0.34 4	7.43 12	av E β =107.6 85
$(4.8 \times 10^2 \ 3)$	2389.14	0.76 8	7.43 10	av $E\beta = 141.7 89$
$(8.4 \times 10^2 \ 3)$	2029.86?	0.89 12	8.20 8	av $E\beta = 270.5 \ 99$
$(1.12 \times 10^3 \ 3)$	1746.04	14.7 8	7.43 5	av E β =381 11
				$E\beta = 1123 \ 26 \ (1973 Ya02).$
$(1.17 \times 10^3 \ 3)$	1699.02	82 4	6.75 5	av E β =399 11
				$E\beta = 1165 \ 26 \ (1973 Ya02).$
$(1.19 \times 10^3 \ 3)$	1676.45	0.39 10	9.10 12	av E β =408 11
$(1.28 \times 10^3 \ 3)$	1581.46	0.21 12	9.5 <i>3</i>	av E β =447 11
$(1.44 \times 10^3 \ 3)$	1424.94	0.50 11	10.10 ¹ <i>u</i> 11	av E β =505 11
$(1.58 \times 10^{3\#} 3)$	1284.99	4 3	8.6 4	av Eβ=569 11

[†] From intensity imbalance At each level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

 $\gamma(^{184}W)$

I γ normalization: From Σ (I(γ +ce) to g.s.)=100 (No feeding to 0⁺ g.s. expected from (5⁻) parent. Several of the strongest lines are reported also In 2004Xu08; source from ^{nat}W(n,p), E(n)=14 MeV.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{e}	$I_{(\gamma+ce)}^{d}$	Comments
55.33 4	0.57 ^{&} 14	1501.57	7-	1446.26 6-	M1+E2	0.051 17	4.67 12	3.3 7	ce(L)/(γ +ce)=0.637 10; ce(M)/(γ +ce)=0.146 5; ce(N+)/(γ +ce)=0.0411 13 ce(N)/(γ +ce)=0.0350 12; ce(O)/(γ +ce)=0.00568 17; ce(P)/(γ +ce)=0.000393 10 I(γ +ce): from intensity balance at 1501 level assuming No β^{-} branch to that level (Δ I=2 $\Delta \pi$ =No)
63.70 4	2.43 ^{<i>a</i>} 11	1284.99	5-	1221.29 3-	E2		25.7	65.0 20	$ce(L)/(\gamma+ce)=0.729 \ 8; \ ce(M)/(\gamma+ce)=0.184 \ 4; ce(N+)/(\gamma+ce)=0.0492 \ 10 ce(N)/(\gamma+ce)=0.0433 \ 9; \ ce(O)/(\gamma+ce)=0.00588 \ 12; ce(P)/(\gamma+ce)=7.85\times10^{-6} \ 16 I(\gamma+ce): from intensity balance at 1221 level assuming No \ \theta^{-}$ branch to that level ($\Delta I=2, \Delta \pi=N_0$)
87.46 <i>4</i>	1.31 20	1221.29	3-	1133.83 4+	E1		0.529		$\alpha(K) = 0.429 \ 6; \ \alpha(L) = 0.0773 \ 11; \ \alpha(M) = 0.01767 \ 25; \ \alpha(N+) = 0.00482 \ 7 \ \alpha(N) = 0.00416 \ 6; \ \alpha(O) = 0.000624 \ 9; \ \alpha(P) = 3.01 \times 10^{-5} \ 5 \ I_{\gamma}: \ authors' \ measured \ value \ is \ 1.07 \ 11. \ Value \ shown here \ is \ based \ on \ authors' \ I(87\gamma)/I(91\gamma) \ and \ I(91\gamma) \ as revised \ by \ the \ evaluator.$
91.27 4	1.48 ^b 9	1221.29	3-	1130.00 (2)-	M1+E2	0.62 4	6.03	10.4 6	ce(K)/(γ +ce)=0.566 8; ce(L)/(γ +ce)=0.223 9; ce(M)/(γ +ce)=0.054 3; ce(N+)/(γ +ce)=0.0148 8 ce(N)/(γ +ce)=0.0129 7; ce(O)/(γ +ce)=0.00188 9; ce(P)/(γ +ce)=5.69×10 ⁻⁵ 20 I(γ +ce): from intensity balance at the 1130 level
111.192 20	32.9 14	111.196	2+	0.0 0+	E2		2.57		assuming No β^- branch to that level ($\Delta J=3$). $\alpha(K)=0.721 \ 10; \ \alpha(L)=1.403 \ 20; \ \alpha(M)=0.354 \ 5; \ \alpha(N+)=0.0950 \ 14$ $\alpha(N)=0.0835 \ 12; \ \alpha(Q)=0.01145 \ 16; \ \alpha(P)=5.54\times10^{-5} \ 8$
112 ^f		1536.64	(4+)	1424.94 (3)+					E_{γ} : from level scheme In fig. 7 of 1973Ya02; absent from table 1
123.96 8	0.70 5	1130.00	(2)-	1005.97 3+	(E1)		0.215		$\alpha(K)=0.1765 \ 25; \ \alpha(L)=0.0298 \ 5; \ \alpha(M)=0.00679 \ 10; \alpha(N+)=0.00187 \ 3 \alpha(N)=0.001607 \ 23; \ \alpha(O)=0.000246 \ 4; \alpha(P)=1.297\times10^{-5} \ 19$

ω

					18	84 Ta β^- decay	1973Y a(2 (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^e	Comments
(127.86 [#])	0.0031 [#] 13	1133.83	4+	1005.97	3+	E2(+M1)	>2.8	1.56 6	$\alpha(K)=0.61 \ 8; \ \alpha(L)=0.72 \ 3; \ \alpha(M)=0.180 \ 7; \ \alpha(N+)=0.0485$
151.08 12	0.22 4	1284.99	5-	1133.83	4+	[E1]		0.1286	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.0426 \ 17; \ \alpha(\mathrm{O}) = 0.00589 \ 21; \ \alpha(\mathrm{P}) = 4.9 \times 10^{-5} \ 9 \\ \alpha(\mathrm{K}) = 0.1062 \ 15; \ \alpha(\mathrm{L}) = 0.01744 \ 25; \ \alpha(\mathrm{M}) = 0.00397 \ 6; \\ \alpha(\mathrm{N}+) = 0.001095 \ 16 \end{array} $
161.269 <i>15</i>	4.4 12	1446.26	6-	1284.99	5-	M1+E2	0.53 7	1.09 3	$ \begin{aligned} &\alpha(\text{N}) = 0.000942 \ 14; \ \alpha(\text{O}) = 0.0001454 \ 21; \ \alpha(\text{P}) = 8.02 \times 10^{-6} \ 12 \\ &\alpha(\text{K}) = 0.85 \ 4; \ \alpha(\text{L}) = 0.183 \ 6; \ \alpha(\text{M}) = 0.0430 \ 15; \\ &\alpha(\text{N}+) = 0.0120 \ 4 \end{aligned} $
≈162	2 3 [°] 10	1699.02	$(5)^+$	1536 64	(4^{+})	[M1]		1 202	$\alpha(N)=0.0103 \ 4; \ \alpha(O)=0.00160 \ 4; \ \alpha(P)=8.5\times10^{-5} \ 4$ E _y : from Adopted Gammas. $\alpha(K)\approx 0.998; \ \alpha(L)\approx 0.1580; \ \alpha(M)\approx 0.0360; \ \alpha(N+.)\approx 0.01018$
102	2.5 10	10)).02	(5)	1550.01	(1)			1.202	$\alpha(N) \approx 0.00866; \ \alpha(O) \approx 0.001413; \ \alpha(P) \approx 0.0001006$
191.0 5	0.05 2	1536.64	(4 ⁺)	1345.40	(4 ⁻)	[E1]		0.0704 11	α (K)=0.0584 9; α (L)=0.00934 15; α (M)=0.00212 4; α (N+)=0.000588 10
203.7 5	0.04 2	1424.94	(3)+	1221.29	3-	[E1]		0.0598 10	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.000505 \ 8; \ \alpha(\mathrm{O}) = 7.87 \times 10^{-5} \ 13; \ \alpha(\mathrm{P}) = 4.55 \times 10^{-6} \ 7 \\ \alpha(\mathrm{K}) = 0.0496 \ 8; \ \alpha(\mathrm{L}) = 0.00789 \ 13; \ \alpha(\mathrm{M}) = 0.00179 \ 3; \\ \alpha(\mathrm{N}+) = 0.000497 \ 8 \end{array} $
215.34 6	15.8 16	1221.29	3-	1005.97	3+	E1		0.0519	α (N)=0.000426 7; α (O)=6.67×10 ⁻⁵ 11; α (P)=3.90×10 ⁻⁶ 6 α (K)=0.0431 6; α (L)=0.00682 10; α (M)=0.001549 22; α (N+)=0.000430 6
216.54 5	2.4 3	1501.57	7-	1284.99	5-	E2		0.237	α (N)=0.000369 6; α (O)=5.78×10 ⁻⁵ 9; α (P)=3.41×10 ⁻⁶ 5 α (K)=0.1362 19; α (L)=0.0764 11; α (M)=0.0189 3; α (N+)=0.00513 8
									α (N)=0.00448 7; α (O)=0.000635 9; α (P)=1.096×10 ⁻⁵ 16
226.744	9.2 5	1130.00	(2)-	903.27	2+	E1+M2+E3		0.059 5	$\alpha(\mathbf{K})=0.059; \ \alpha(\mathbf{L})=0.042; \ \alpha(\mathbf{M})=0.0132; \ \alpha(\mathbf{N}+)=0.00088$
(230.56 [#])	0.027# 4	1133.83	4+	903.27	2+	E2		0.193	α (K)=0.1150 <i>17</i> ; α (L)=0.0592 <i>9</i> ; α (M)=0.01465 <i>21</i> ; α (N+)=0.00397 <i>6</i>
244.44 6	4.9 6	1746.04	(6)+	1501.57	7-	[E1]		0.0378	α (N)=0.00347 5; α (O)=0.000494 7; α (P)=9.37×10 ⁻⁶ 14 α (K)=0.0314 5; α (L)=0.00492 7; α (M)=0.001116 16; α (N+)=0.000310 5
252.85 4	61 4	364.05	4+	111.196	2+	E2		0.1437	$\alpha(N)=0.000266\ 4;\ \alpha(O)=4.19\times10^{-5}\ 6;\ \alpha(P)=2.53\times10^{-6}\ 4$ $\alpha(K)=0.0898\ 13;\ \alpha(L)=0.0411\ 6;\ \alpha(M)=0.01011\ 15;$ $\alpha(N+)=0.00275\ 4$
≈253	6.8 20	1699.02	(5)+	1446.26	6-	[E1]		0.0347	α (N)=0.00240 4; α (O)=0.000344 5; α (P)=7.45×10 ⁻⁶ 11 α (K) \approx 0.0289; α (L) \approx 0.00451; α (M) \approx 0.001022; α (N+) \approx 0.000284
274.07 7	0.60 6	1699.02	(5)+	1424.94	(3)+	[E2]		0.1118	$\begin{array}{l} \alpha(\mathrm{N}) \approx 0.000244; \ \alpha(\mathrm{O}) \approx 3.84 \times 10^{-5}; \ \alpha(\mathrm{P}) \approx 2.33 \times 10^{-6} \\ \mathrm{I}_{\gamma}: \ \mathrm{from} \ \gamma\gamma \ \mathrm{coin} \ (1973 \mathrm{Ya02}). \\ \alpha(\mathrm{K}) = 0.0724 \ 11; \ \alpha(\mathrm{L}) = 0.0300 \ 5; \ \alpha(\mathrm{M}) = 0.00737 \ 11; \\ \alpha(\mathrm{N}+) = 0.00201 \ 3 \\ \alpha(\mathrm{N}) = 0.001747 \ 25; \ \alpha(\mathrm{O}) = 0.000252 \ 4; \ \alpha(\mathrm{P}) = 6.10 \times 10^{-6} \ 9 \end{array}$

4

From ENSDF

 $^{184}_{74}W_{110}\text{--}4$

L

					184 Ta β	[–] decay	1973Ya02 (co	ontinued)	
						$\gamma(^{184}W)$) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
(279.0 [#])	<0.001 [#]	1284.99	5-	1005.97	3+	[M2]		1.111	α (K)=0.867 <i>13</i> ; α (L)=0.187 <i>3</i> ; α (M)=0.0444 <i>7</i> ; α (N+)=0.01259 <i>18</i>
294.99 12	0.67 10	1424.94	(3)+	1130.00	(2) ⁻	E1		0.0238	$\begin{aligned} &\alpha(N) = 0.01074 \ 15; \ \alpha(O) = 0.001729 \ 25; \ \alpha(P) = 0.0001136 \ 16 \\ &\alpha(K) = 0.0199 \ 3; \ \alpha(L) = 0.00306 \ 5; \ \alpha(M) = 0.000694 \ 10; \\ &\alpha(N+) = 0.000193 \ 3 \\ &\alpha(N) = 0.0001656 \ 24; \ \alpha(O) = 2.62 \times 10^{-5} \ 4; \ \alpha(P) = 1.630 \times 10^{-6} \\ &23 \end{aligned}$
296.46 10	0.96 14	1581.46	(6 ⁻)	1284.99	5-				
299.79 7	0.65 7	1746.04	(6)+	1446.26	6-	[E1]		0.0229	α (K)=0.0191 3; α (L)=0.00294 5; α (M)=0.000667 10; α (N+)=0.000186 3 α (N)=0.0001591 23; α (O)=2.52×10 ⁻⁵ 4; α (P)=1.571×10 ⁻⁶ 22
315.4 4	0.41 10	1536.64	(4^{+})	1221.29	3-				
318.04 6	31.7 8	1221.29	3-	903.27	2+	E1+M2	-0.020 10	0.0202 5	$\alpha(K)=0.0168 \ 4; \ \alpha(L)=0.00259 \ 7; \ \alpha(M)=0.000587 \ 16; \ \alpha(N+)=0.000164 \ 5 \ \alpha(N)=0.000140 \ 4; \ \alpha(O)=2.23\times10^{-5} \ 7; \ \alpha(P)=1.40\times10^{-6} \ 4$
331.06 12	0.17 4	1676.45	(5^{+})	1345.40	(4 ⁻)				
339.53 10	0.26 5	1345.40	(4 ⁻)	1005.97	3+	[E1]		0.0170 <i>3</i>	
354.0 2	0.20 8	1699.02	$(5)^+$	1345.40	(4 ⁻)	[E1]		0.01544	$\alpha(K)=0.01291$ 19; $\alpha(L)=0.00196$ 3; $\alpha(M)=0.000444$ 7; $\alpha(N+)=0.0001241$ 18
									α (N)=0.0001061 <i>15</i> ; α (O)=1.689×10 ⁻⁵ 24; α (P)=1.077×10 ⁻⁶ <i>16</i>
359.2 <i>3</i> <i>x</i> 371.09 <i>10</i>	0.15 <i>4</i> 0.36 <i>6</i>	2389.14	(4 ⁻ ,5,6 ⁻)	2029.86?	(5 ⁻ ,6,7 ⁻)				
381.6 5	0.23 12	1676.45	(5^{+})	1294.9	5+				
(381.82 [#] 14)	0.29 [#] 3	1284.99	5-	903.27	2+	[E3]		0.1579	$\alpha(K)=0.0827 \ 12; \ \alpha(L)=0.0570 \ 8; \ \alpha(M)=0.01438 \ 21; \ \alpha(N+)=0.00392 \ 6$
384.28 5	17.3 5	748.31	6+	364.05	4+	E2		0.0418	$\alpha(N)=0.00342 \ 5; \ \alpha(O)=0.000490 \ 7; \ \alpha(P)=9.34\times10^{-6} \ 14$ $\alpha(K)=0.0302 \ 5; \ \alpha(L)=0.00885 \ 13; \ \alpha(M)=0.00213 \ 3;$ $\alpha(N+)=0.000585 \ 9$ $\alpha(N)=0.000587 \ 8; \ \alpha(O)=7.54\times10^{-5} \ 14; \ \alpha(D)=2.60\times10^{-6} \ 4$
(385.52 [#])	<0.010 [#]	1133.83	4+	748.31	6+	[E2]		0.0414	$\alpha(N)=0.000507, \alpha(C)=7.34\times10^{-11}, \alpha(P)=2.09\times10^{-4}$ $\alpha(K)=0.0300, \beta; \alpha(L)=0.00876, 13; \alpha(M)=0.00211, 3;$ $\alpha(N+)=0.000579, 9$ $\alpha(N)=0.000579, 27; \alpha(Q)=7.46\times10^{-5}, 14; \alpha(P)=2.67\times10^{-6}, 4$
414.01 5	100	1699.02	(5)+	1284.99	5-	E1 [@]		0.01078	$\alpha(N)=0.000302^{-7}, \alpha(O)=7.40\times10^{-7} II, \alpha(\Gamma)=2.07\times10^{-2} 4^{-2} \alpha(K)=0.00903 I3; \alpha(L)=0.001356 I9; \alpha(M)=0.000306 5; \alpha(N+)=8.58\times10^{-5} I2 \alpha(N)=7.33\times10^{-5} I1; \alpha(O)=1.172\times10^{-5} I7; \alpha(P)=7.62\times10^{-7} I1 Mult.: from \alpha(K)exp=0.0113 I4 (1984Bu37).$

S

From ENSDF

 $^{184}_{74}\rm{W}_{110}\text{-}5$

L

					184	4 Ta β^{-} decay	1973Ya02 (cont	inued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
461.06 5	14.8 <i>4</i>	1746.04	(6)+	1284.99	5-	E1@		0.00848 12	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00711 \ 10; \ \alpha(\mathrm{L}) = 0.001059 \ 15; \\ &\alpha(\mathrm{M}) = 0.000239 \ 4; \ \alpha(\mathrm{N}+) = 6.70 \times 10^{-5} \ 10 \\ &\alpha(\mathrm{N}) = 5.72 \times 10^{-5} \ 8; \ \alpha(\mathrm{O}) = 9.18 \times 10^{-6} \ 13; \\ &\alpha(\mathrm{P}) = 6.05 \times 10^{-7} \ 9 \\ &\mathrm{Mult.: \ from } \ \alpha(\mathrm{K}) \mathrm{exp} = 0.0084 \ 19 \ (1984\mathrm{Bu}37). \end{aligned}$
x516.59 20 528.28 6 536.71 6	0.42 5 1.38 15 17.7 6	2029.86? 1284.99	(5 ⁻ ,6,7 ⁻) 5 ⁻	1501.57 748.31	7- 6 ⁺	E1+M2+E3		0.0068 1	$\alpha(K)=0.0057; \ \alpha(L)=0.00086; \ \alpha(M)=0.000195; \ \alpha(N+)=0.000025$
(539.22 [#] 25)	0.16 [#] 2	903.27	2+	364.05	4+	E2		0.01744	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01349 \ I9; \ \alpha(\mathbf{L}) = 0.00303 \ 5; \ \alpha(\mathbf{M}) = 0.000716 \\ &I0 \ \alpha(\mathbf{N}+) = 0.000198 \ 3 \\ &\alpha(\mathbf{N}) = 0.0001710 \ 24; \ \alpha(\mathbf{O}) = 2.62 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{P}) = 1.238 \times 10^{-6} \ I8 \end{aligned}$
[*] 576.3 5 641.99 <i>10</i>	0.14 <i>4</i> 1.95 <i>16</i>	1005.97	3+	364.05	4+	M1+E2	-8.5 8	0.01183 <i>18</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00938 \ 14; \ \alpha(\mathbf{L}) = 0.00188 \ 3; \ \alpha(\mathbf{M}) = 0.000440 \\ &7; \ \alpha(\mathbf{N}+) = 0.0001224 \ 18 \\ &\alpha(\mathbf{N}) = 0.0001052 \ 15; \ \alpha(\mathbf{O}) = 1.636 \times 10^{-5} \ 24; \\ &\alpha(\mathbf{P}) = 8.69 \times 10^{-7} \ 13 \end{aligned}$
x655.3 2 769.76 8	0.35 <i>3</i> 1.25 <i>9</i>	1133.83	4+	364.05	4+	M1+E2	-6.3 +20-32	0.0080 4	$\begin{aligned} &\alpha(\text{K}) = 0.0065 \ 3; \ \alpha(\text{L}) = 0.00119 \ 4; \ \alpha(\text{M}) = 0.000275 \ 9; \\ &\alpha(\text{N}+) = 7.68 \times 10^{-5} \ 24 \\ &\alpha(\text{N}) = 6.59 \times 10^{-5} \ 20; \ \alpha(\text{O}) = 1.04 \times 10^{-5} \ 4; \\ &\alpha(\text{P}) = 6.0 \times 10^{-7} \ 3 \end{aligned}$
^x 785.8 5 792.07 5	0.11 <i>3</i> 20.2 <i>5</i>	903.27	2+	111.196	2+	M1+E2	-16.8 5	0.00733 11	$\alpha(K)=0.00593 \ 9; \ \alpha(L)=0.001082 \ 16; \ \alpha(M)=0.000251 \ 4; \ \alpha(N+)=7.00\times10^{-5} \ 10 \ \alpha(N)=6.00\times10^{-5} \ 9; \ \alpha(O)=9.45\times10^{-6} \ 14; \ \alpha(P)=5 \ 50\times10^{-7} \ 8$
807.68 <i>10</i> ^x 851.1 <i>4</i>	0.67 8 0.07 4	2389.14	(4 ⁻ ,5,6 ⁻)	1581.46	(6 ⁻)				
857.24 10	0.93 6	1221.29	3-	364.05	4+	E1		0.00238 4	$\alpha(K)=0.00201 \ 3; \ \alpha(L)=0.000288 \ 4; \ \alpha(M)=6.46\times10^{-5} \ 9; \ \alpha(N+)=1.82\times10^{-5} \ 3 \ \alpha(N)=1.550\times10^{-5} \ 22; \ \alpha(O)=2.52\times10^{-6} \ 4; \ \alpha(P)=1.758\times10^{-7} \ 25$
894.77 5	14.8 <i>4</i>	1005.97	3+	111.196	2+	M1+E2	-13.2 9	0.00569 8	$\alpha(K) = 0.00464 7; \ \alpha(L) = 0.000808 \ 12; \ \alpha(M) = 0.000186$ 3; \alpha(N+) = 5.21×10 ⁻⁵ 8 \alpha(N) = 4.46×10 ⁻⁵ 7; \alpha(O) = 7.08×10 ⁻⁶ 10; \alpha(D) = 4.22×10 ⁻⁷ 6
903.29 5	20.8 5	903.27	2+	0.0	0+	E2		0.00554 8	$\alpha(\mathbf{r})=4.32 \times 10^{-6} \text{ o}$ $\alpha(\mathbf{K})=0.00452 \ 7; \ \alpha(\mathbf{L})=0.000786 \ 11; \ \alpha(\mathbf{M})=0.000181 \ 3; \ \alpha(\mathbf{N}+)=5.07 \times 10^{-5} \ 7 \ \alpha(\mathbf{N})=4.34 \times 10^{-5} \ 6; \ \alpha(\mathbf{O})=6.89 \times 10^{-6} \ 10; \ \alpha(\mathbf{P})=4.20 \times 10^{-7} \ 6$

6

					18	34 Ta β^- decay	1973Ya0	2 (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	$\alpha^{\boldsymbol{e}}$	Comments
920.93 5	44.4 11	1284.99	5-	364.05	4+	E1+M2+E3		0.0030 2	$\alpha(K)=0.0024; \ \alpha(L)=0.00039; \ \alpha(M)=0.000088;$
930.9 <i>5</i> 942.9 <i>4</i> 980.6 <i>8</i> 1018 75 9	0.11 <i>3</i> 0.14 <i>3</i> 0.06 <i>2</i> 0.52 5	1294.9 2389.14 1345.40	5^+ (4 ⁻ ,5,6 ⁻) (4 ⁻) (2) ⁻	364.05 1446.26 364.05	4^+ 6^- 4^+ 2^+	(F1)			α(N+)=0.000030
1018.75 9	0.87 6	1130.00	(2) 4 ⁺	111.196	2+ 2+	E2		0.00431 6	$\alpha(K)=0.00354 5; \alpha(L)=0.000591 9; \alpha(M)=0.0001356 19; \alpha(N+)=3.80\times10^{-5} 6$ $\alpha(N)=3.25\times10^{-5} 5; \alpha(O)=5.19\times10^{-6} 8; \alpha(P)=3.29\times10^{-7} 5$
1043.1 8	≈0.01	2389.14	$(4^{-},5,6^{-})$	1345.40	(4 ⁻)				
1040.4 0 1060.7 4	0.00 2 0.10 3	1424.94	(4, 5, 6) $(3)^+$	364.05	0 4 ⁺	E2		0.00401 6	$\alpha(K)=0.00330\ 5;\ \alpha(L)=0.000545\ 8;\ \alpha(M)=0.0001248\ 18;\ \alpha(N+)=3.50\times10^{-5}\ 5$
1093.8 10	0.03 2	2389.14	(4 ⁻ ,5,6 ⁻)	1294.9	5+				$a(\mathbf{N}) = 2.99 \times 10^{-5}$, $a(\mathbf{C}) = 4.79 \times 10^{-7}$, $a(\mathbf{r}) = 5.00 \times 10^{-5}$
1104.4 3	0.06 3	2389.14	$(4^{-},5,6^{-})$	1284.99	5 ⁻	E1. 1/2	0.00.2	0.00150.10	(II) 0.00124.0 (I) 0.000101.12 (II) 4.0 (II) 5.2
1110.12 8	3.10 10	1221.29	3	111.196	21	E1+M2	+0.08 3	0.00159 10	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00134 \ 8; \ \alpha(\mathbf{L}) = 0.000191 \ 13; \ \alpha(\mathbf{M}) = 4.3 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{N}+) = 1.37 \times 10^{-5} \ 9 \\ &\alpha(\mathbf{N}) = 1.03 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 1.68 \times 10^{-6} \ 12; \ \alpha(\mathbf{P}) = 1.19 \times 10^{-7} \\ &9; \ \alpha(\mathbf{IPF}) = 1.65 \times 10^{-6} \ 3 \end{aligned}$
^x 1115.8 9	$0.03 \ l$ 0 34 10	1536.64	(4^{+})	364.05	<u>/</u> +				
1173.77 8	6.6 <i>5</i>	1284.99	5-	111.196	2+	(E3)		0.00698 10	α (K)=0.00556 8; α (L)=0.001090 16; α (M)=0.000254 4; α (N+)=7.19×10 ⁻⁵ 10 α (N)=6.11×10 ⁻⁵ 9; α (O)=9.63×10 ⁻⁶ 14; α (P)=5.59×10 ⁻⁷ 8: α (IPF)=6.64×10 ⁻⁷ 10
1207.67 10	0.41 4	2492.66	(4 ⁻ ,5,6)	1284.99	5-				
1221.27 14	0.13 2	1221.29	3-	0.0	0+	(E3)		0.00639 9	$\alpha(K)=0.00511 \ 8; \ \alpha(L)=0.000982 \ 14; \ \alpha(M)=0.000229 \ 4; \\ \alpha(N+)=6.61\times10^{-5} \ 10 \\ \alpha(N)=5.49\times10^{-5} \ 8; \ \alpha(O)=8.68\times10^{-6} \ 13; \ \alpha(P)=5.12\times10^{-7} \\ 8; \ \alpha(IPF)=2 \ 01\times10^{-6} \ 3 \\ \end{array}$
1312.2 4	0.14 4	1676.45	(5 ⁺)	364.05	4+				o, a(11) 2.01/10 5
1313.6 2	0.46 7	1424.94	(3)+	111.196	2+	E2		0.00266 4	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00220 \ 3; \ \alpha(\mathrm{L}) = 0.000345 \ 5; \ \alpha(\mathrm{M}) = 7.84 \times 10^{-5} \ 11; \\ \alpha(\mathrm{N}+) = 4.19 \times 10^{-5} \ 6 \\ \alpha(\mathrm{N}) = 1.88 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 3.04 \times 10^{-6} \ 5; \ \alpha(\mathrm{P}) = 2.04 \times 10^{-7} \ 3; \\ \alpha(\mathrm{IPF}) = 1.99 \times 10^{-5} \ 3 \end{array} $
1334.9 <i>3</i>	0.07 2	1699.02	(5)+	364.05	4+				
1425.54 20	0.23 2	1536.64	(4^{+})	111.196	2^{+}				

[†] From 1973Ya02, except as noted.

 \neg

From ENSDF

 $^{184}_{74}\mathrm{W}_{110}\text{--}7$

$\gamma(^{184}W)$ (continued)

- [‡] From Adopted Gammas, except as noted.
- [#] γ not observed In β^- decay. I γ calculated from branching in Adopted Gammas; E γ from level energy difference.
- [@] From I(ce(K)) (1984Bu37) and I γ (1973Ya02), normalized so α (K)exp(253)= α (K)(E2 theory)=0.0898.
- [&] from I(γ +ce), α . The authors' measured value of 1.2 *3* results in a negative β -feeding to the 1446 level and a β -feeding of 2.6% to the 1501 level. Based on log *ft*>11 for a second forbidden non-unique transition, one can deduce I(β to the 1501 level)<0.001%. From the observed branching of the 55 γ in 169-d ¹⁸⁴Re decay, one can deduce I γ (55 γ)=0.59 *10* in Ta decay, in good agreement with the value adopted here.
- ^{*a*} from I(γ +ce) and α . The authors' measured value of 3.5 4 results in a large negative β ⁻branch to the 1221 level (-20% 8) and a β ⁻branch of 24% 8 to the 1285 level, in disagreement with the directly measured value of 0.7% (1973Ya02). From the observed I(921 γ)/I(63.7 γ)=18.7 9 In Adopted Gammas, one expects I γ (63.7 γ)=2.37 13 for Ta β ⁻ decay, in good agreement with the value deduced here by the evaluator.
- ^b from I(γ +ce) and α . The authors' measured value of 1.17 *11* results in a β ⁻feeding of 1.5% to the 1130 level, in disagreement with the expected negligible feeding based on ΔJ =3. From the observed branching of the 91.3 γ in 169-d ¹⁸⁴Re decay, one deduces I γ (91.3 γ)=1.44 *10* for Ta decay, in good agreement with the value adopted here.
- ^{*c*} from $\gamma\gamma$ coin (1973Ya02). however, 1984Bu37 report an upper limit for 162ce(K) which, combined with this I γ , implies an α (K)exp several times lower than that from M1 or E2 theory; consequently, they conclude that I γ (162) from 1973Ya02 is overestimated, possibly due to the complexity of the γ spectrum.
- ^d For absolute intensity per 100 decays, multiply by 0.72 3.
- ^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^f Placement of transition in the level scheme is uncertain.
- ^x γ ray not placed in level scheme.

 ∞

¹⁸⁴Ta β^- decay 1973Ya02

 $^{184}_{74}\rm{W}_{110}$

 $^{184}_{74}\mathrm{W}_{110}\text{--}10$

From ENSDF

10