¹⁸⁸Hg α decay **1993ΤοΖΥ,1979Ha10**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009				

Parent: ¹⁸⁸Hg: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.25$ min 15; $Q(\alpha)=4705$ 17; % α decay=3.7×10⁻⁵ 8

 $T_{1/2}(^{188}$ Hg)=3.25 min 15, measured by 1972Fi12, is the adopted half-life in 2002Si10 and used for the calculations here. Other measurement: 3.7 min (1960Po07,1960Al20).

 $\%\alpha$ =3.7×10⁻⁵% 8 is from 1979Ha10. other: 4.2×10⁻⁵%, preliminary value from 1993ToZY.

 $Q(\alpha)(^{188}Hg)=4710\ 20$ is calculated from the measured α energy of 4610 20; this $Q(\alpha)$ value is recommended by 2003Au03 and 2009AuZZ.

¹⁸⁴Pt Levels

$\frac{\mathrm{E(level)}}{0.0}$	$\frac{\mathbf{J}^{\pi}}{0^{+}}$			
				α radiations
Eα	E(level)	Ια [‡]	HF [†]	Comments
4610 20	0.0	96 <i>4</i>	1.0	E α : measurement of 1979Ha10. I α : only one α group has been observed. Upper limit on intensity of an unobserved 4450-keV α transition to the 2 ⁺ state at 162.98 keV is calculated to be <8.3 per 100 α decays by assuming its hindrance to be greater than 1. Possible α decays to higher levels are not expected to change drastically the deduced intensity of I α (4610 α to g.s.)=96 4.

[†] $r_0(^{184}\text{Pt})=1.481$ *16* is calculated by requiring Hf(4610 α)=1.0. I α (4610 α)=96 4 (>92) per 100 α decays is used in computation. [‡] For absolute intensity per 100 decays, multiply by 3.7×10^{-7} 8.