(HI,xnγ) **1988Kr17**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009

1988Kr17 (see also 1986Kr09): ¹⁷⁴Yb(¹⁴N,4nγ), E=65,68,70,73,75,80 MeV; ¹⁷⁵Lu(¹³C,4nγ), E=64 MeV; ¹⁷⁶Yb(¹⁴N,6nγ), E=96 MeV; ¹⁷⁶Lu(¹²C,4nγ), E=68 MeV; intrinsic Ge with NaI(Tl) Compton suppression spectrometer; measured Eγ, Iγ, γγ-coin, $\gamma\gamma(\theta)$.

					¹⁸⁴ Ir Levels	
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 [@]	5-		633.9 ^a 6	(9+)	1591.5 [@] 6	(15 ⁻)
41.80 [@] 25	(6) ⁻		648.4 [@] 5	(11) ⁻	1792.4 5	(14^{+})
70.9 <i>3</i>	4-		658.8 <mark>&</mark> 4	(9)+	1977.1 [@] 6	(16 ⁻)
111.0 [@] 4	$(7)^{-}$		858.3 ^{&} 4	$(10)^{+}$	2039.1 ^{&} 6	(15 ⁺)
207.8 [@] 5	$(8)^{-}$		877.2 [@] 6	(12) ⁻	2179.7 ^a 7	(15 ⁺)
225.8 ^{<i>a</i>} 4	3+	470 ^b μs 30	1030.7 ^{<i>a</i>} 5	(11^{+})	2204.5 [@] 6	(17 ⁻)
232.6 ^a 8	(5 ⁺)		1071.1 [@] 6	(13 ⁻)	2291.3 6	(16 ⁺)
327.3 [@] 5	(9)-		1076.0 ^{&} 4	$(11)^{+}$	2556.8 ^{&} 7	(17^{+})
328.40 ^{&} 24	$(7)^{+}$	350 ns 90	1307.9 5	(12 ⁺)	2655.5? [@] 9	(18 ⁻)
367.9 ^a 6	$(7)^+$		1377.5 [@] 6	(14-)	2837.6 7	(18+)
481.4 ^{&} 4	$(8)^{+}$		1548.4 <mark>&</mark> 5	(13 ⁺)	2899.0? [@] 10	(19 ⁻)
485.5 [@] 5	(10) ⁻		1550.0 ^a 6	(13 ⁺)	3138.2? ^{&} 7	(19 ⁺)

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

[#] From $\gamma\gamma(t)$ for isomers in the nanosecond region; from pulsed beam multispectrum analysis for the microsecond isomer (1988Kr17).

[@] Band(A): $K^{\pi}=5^{-}$ g.s. decoupled band. Likely configuration: $(\pi \ 1/2[541])+(\nu \ 9/2[624])$ (1988Kr17).

& Band(B): $K^{\pi} = (7)^+$ band. Likely $(\pi 5/2[402]) \otimes (\nu i_{13/2})$ band. assignment supported by $\delta > 0$ for $\Delta J = 1$ intraband transitions and magnitude of deduced $(g_K - g_R)$ (1988Kr17).

^{*a*} Band(C): $K^{\pi}=3+? \Delta J=2$ band. Doubly-decoupled ($\pi h_{9/2}$) \otimes ($\nu 1/2[521]$) band with both particles occupying predominantly $\Omega=1/2$ orbitals (1988Kr17).

^b From $155\gamma(t)$ In ¹⁷⁶Lu(¹²C,4n γ), E=68 MeV, pulsed beam.

							$\gamma(^{184}\text{Ir})$	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
(6.8 8)		232.6	(5^{+})	225.8	3+			E_{γ} : from level energy difference. Transition unobserved.
41.7 3	9 1	41.80	(6)-	0.0	5-	M1	13.9 4	Mult.: from the intensity balance, $\alpha(\exp)=11 I$ which is slightly lower than $\alpha(M1 \text{ theory})=13.9$. Additional, unidentified feeding could remove this difference. There is no experimental reason to exclude E1+M2; however, the systematics of odd-odd Ir levels favor $\Delta \pi$ =No.
69.2 <i>3</i>	25 ^{ab} 4	111.0	(7) ⁻	41.80	(6) ⁻	M1	3.14 6	Mult.: from intensity balance, $\alpha(\exp)=3.07$ in agreement with $\alpha(M1 \text{ theory})=3.14$.
70.9 <i>3</i>	4.2 9	70.9	4-	0.0	5-			I_{γ} : includes $K\alpha_1$ x ray contaminant.
96.8 <i>3</i>	13 1	207.8	(8)-	111.0	(7)-	M1+E2	6.0 8	Mult.: $A_2 = -0.72$ 3, $A_4 = +0.52$ 4. M1+E2 is consistent with intensity balance through lower levels.

Continued on next page (footnotes at end of table)

					(HI,xnγ	') 1988Kr1'	7 (continued	l)	
γ ⁽¹⁸⁴ Ir) (continued)									
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	α^{d}	Comments
119.6 <i>3</i>	17 ^{<i>a</i>} 2	327.3	(9)-	207.8	(8)-	M1(+E2)		3.0 7	contains ¹⁸² Os contaminant. Mult.: from intensity balance, $\alpha(\exp)=4.2$ 6 which is consistent with $\alpha(M1$ theory)=3.67.
135.3 3	4.3 4	367.9	(7)+	232.6	(5 ⁺)	E2		1.402 23	Mult.: A_2 =+0.61 8, A_4 consistent with 0. From intensity balance, $\alpha(\exp)$ =1.5 2 which is consistent with $\alpha(E2$ theory)=1.40.
152.9 <i>3</i>	8.3 8	481.4	(8)+	328.40	$(7)^{+}$	D+Q			Mult.: $A_2 = +0.41 \ 4$, $A_4 = +0.13 \ 6$. contains ¹⁸³ Ir contaminant.
154.9 <i>3</i>	17.0 17	225.8	3+	70.9	4-	E1+M2 [@]	0.09 [@] 3	0.22 7	
158.2 3	17 2	485.5	(10)-	327.3	(9)-	D+Q			Mult.: $A_2 = -0.40 4$, A_4 consistent with 0.
163.1 3	15.0 15	648.4	(11) ⁻	485.5	$(10)^{-}$	D+Q			Mult.: $A_2 = -0.41$ 5, A_4 consistent with 0.
177.4 3	6.1 ^{<i>a</i>} 6	658.8	(9)+	481.4	(8)+	D+Q			contains 174 Yb contaminant. Mult.: A ₂ =+0.39 <i>12</i> , A ₄ =+0.29 <i>22</i> .
193.2 <i>3</i>	8.8 9	1071.1	(13 ⁻)	877.2	$(12)^{-}$				
199.5 3	4.6^{a} 7	858.3	$(10)^{+}$	658.8	$(9)^{+}$	D+Q			Mult: $A_2 = +0.38\ 25,\ A_4 = +0.7\ 4.$
214.4 5	4.0 9 $4.5^{a} 9$	327.3	$(13)^{-}$	1377.3	$(14)^{-}$	1E21		0.0265	Mult A ₂ consistent with 0.
217.5 3	4.5 7	1076.0	$(11)^+$	858.3	$(10)^+$	D+Q		0.0205	Mult.: A ₂ =+0.25 <i>16</i> , A ₄ =+0.33
(225.8)	1.2 2	225.8	3+	0.0	5-				E_{γ} : from E(level) difference.
226.8 <i>3</i>	4.7 5	2204.5	(17^{-})	1977.1	(16 ⁻)				Mult.: $A_2 = +0.23$ 14.
229.0 3	19.0 19	877.2	$(12)^{-}$	648.4	$(11)^{-}$	D+Q			Mult.: $A_2 = -0.18 5$, $A_4 = -0.18 7$.
231.7 3	1.54 3	1307.9	(12+)	10/6.0	(11) ⁺				
243 ^J 266.0 <i>3</i>	9.5 9	2899.0? 633.9	(19 ⁻) (9 ⁺)	2655.5? 367.9	(18^{-}) $(7)^{+}$	Q			Mult.: A_2 =+0.43 9, A_4 consistent with 0.
277.5 3	4.3 ^{<i>a</i>} 6	485.5	(10)-	207.8	(8)-				
286.5 3	83	328.40	(7)+	41.80	(6) ⁻	(E1(+M2))		0.7 7	Mult.: $A_2=+0.32$ 6, $A_4=-0.11$ 7; consistent with D ($\Delta J=0$) or $\Delta J=2$ or D+Q ($\Delta J=1$). Systematics of neighboring odd-odd Ir isotopes favor E1. Were the 287 γ a $\Delta J=0$ transition, an unobserved band member near the g.s. should exist.
306.0 <i>3</i>	5.9 9	1377.5	(14 ⁻)	1071.1	(13 ⁻)	D+Q			Mult.: $A_2 = -0.50 \ 26$, A_4 consistent with 0.
321.4 <i>3</i>	15.0 15	648.4	(11)-	327.3	(9)-	Q			Mult.: $A_2 = +0.17$ 7, A_4 consistent with 0.
328.5 3	7.0 ^{<i>a</i>} 11	328.40	(7)+	0.0	5-	M2		0.814	Mult.: A ₂ =0, A ₄ consistent with 0. From the intensity balance through the 328.4 level, $\alpha(\exp)=1.4$ 9 which compares favorably with $\alpha(M2$ theory)=0.81. Any additional,

				((HI,xnγ)) 1988	Kr17 (cont	inued)
						γ(¹⁸⁴ Ir) (co	ontinued)	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
								unobserved population of the 328.4 level would
220 5 2	4.00 7	(50.0	$(0)^{+}$	229.40	(7)+			increase $\alpha(\exp)$.
330.3 3	4.9 /	030.0	(9)	528.40 491.4	(7)	0		Contains a fr containnant.
3/0./ 3	9.0 14	838.3	$(10)^{-1}$	481.4	$(8)^{-1}$	Q D O		Mult.: $A_2 = +0.87 T/$, A_4 consistent with 0.
201 1 2	12018	1977.1	(10)	1091.0	(13)	D+Q		Mult.: $A_2=0$, A_4 consistent with 0.
391.1 3	12.0 10	0/1.2	(12)	405.5	(10)	Q		Mult.: $A_2 = +0.55$ 10, A_4 consistent with 0.
206.9.2	8012	1020 7	(11+)	622.0	(0^{+})	[E2]	0.0420	Contains a -10.25 /8 A $-$ 0.20 24 Authors
390.8 3	8.0 15	1050.7	(11)	033.9	(9*)	[E2]	0.0430	Mult.: $A_2 = +0.25$ 76, $A_4 = -0.39$ 24. Authors assign E2, but A_2 and A_4 are also consistent with D+Q.
417.4 <i>3</i>	10.0 ^a 15	1076.0	$(11)^{+}$	658.8	$(9)^{+}$			
423.2 <i>3</i>	20 2	1071.1	(13-)	648.4	$(11)^{-}$			
449.8 <i>3</i>	10.0 15	1307.9	(12^{+})	858.3	$(10)^{+}$			
450 ^f	С	2655.5?	(18^{-})	2204.5	(17^{-})			
472.4 3	10 1	1548.4	(13^{+})	1076.0	$(11)^{+}$	0		Mult.: $A_2 = +0.55$ 22, A_4 consistent with 0.
484.5 <i>3</i>	7.0 12	1792.4	(14^+)	1307.9	(12^{+})			2 ' T
490.7 <i>3</i>	3.4 <mark>a</mark> 5	2039.1	(15^{+})	1548.4	(13^{+})	[E2]	0.0249	
498.9 <i>3</i>	9.0 <mark>a</mark> 14	2291.3	(16 ⁺)	1792.4	(14^+)			
500.5 <i>3</i>	5.3 ^a 8	1377.5	(14^{-})	877.2	$(12)^{-}$			
517.7 <mark>°</mark> 3	4 <mark>e&</mark> 1	1548.4	(13^{+})	1030.7	(11^{+})			
517.7 <mark>°</mark> 3	3 <mark>e&</mark> 1	2556.8	(17^{+})	2039.1	(15^{+})			
519.3 3	3.5 ^a 5	1550.0	(13^+)	1030.7	(11^+)			
520.5 3	14 2	1591.5	(15^{-})	1071.1	(13-)	0		Mult.: $A_2 = +0.6 3$, A_4 consistent with 0.
546.3 3	4.6 ^{<i>a</i>} 7	2837.6	(18^{+})	2291.3	(16^{+})			
$581.4^{f}.3$	2.8^{a} 7	3138.2?	(19^{+})	2556.8	(17^{+})			
599.2.3	$5.1^{a} 8$	1977.1	(16^{-})	1377.5	(14^{-})			
613.6.3	8.0 13	2204.5	(17^{-})	1591.5	(15^{-})			
629.7 3	1.1^{a} 3	2179.7	(15^+)	1550.0	(13^+)			
679 ∫	С	2655.5?	(18 ⁻)	1977.1	(16 ⁻)			
695 <mark>/</mark>	С	2899.0?	(19-)	2204.5	(17^{-})			

[†] From 1988Kr17 except As noted. The authors state that uncertainties range from 0.15 to 0.25 keV. since Ey is given to only the nearest tenth of a keV, the evaluator assigns 0.3 keV to all Ey data.

[‡] Relative I γ from ¹⁷²Yb(¹⁴N,4n γ) At E=73 MeV (1988Kr17).

[#] From $\gamma\gamma(\theta)$ In (HI,xn γ), except As noted.

[@] From Adopted Gammas.

[&] The 517.7-keV transition is placed twice in the level scheme. I γ =6.8 7 for doublet has been divided between placements on the basis of intensity balance at the 2039 and 1030 levels. The component from the 2557 level cannot exceed Ti(491 γ)=3.5 5, leaving I(γ +ce) \geq 3.3 9 to feed the 1030 level. however, the latter cannot exceed Ti(397 γ)-Ti(519 γ)=4.8 14 so the evaluator estimates 4 1 for this component and 3 1 for the other component.

^{*a*} From coincidence data.

^b Re K α_1 x ray contaminant.

^c Transition not shown in authors' table, only in level scheme.

^{*d*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with intensity suitably divided.

^f Placement of transition in the level scheme is uncertain.

(HI,xnγ) 1988Kr17

 $^{184}_{77} \mathrm{Ir}_{107}$

(13-)

 (11^{+})

 $\frac{(12)^{-}}{(10)^{+}}$

 $\frac{(9)^+}{(11)^-}$

 (9^+)

 $\frac{(10)^{-}}{(8)^{+}}$

 $(7)^+$

(7)+

(9)

 $\frac{(5^+)}{3^+}$

(7)-

4-

(6)-

5-

1988Kr17 (HI,xnγ)

470 µs 30

207.8

111.0

70.9

41.80

0.0

+ 69,2 M1 25

Т

014 - 18 H 6.

5

(HI,xnγ) 1988Kr17

 $^{184}_{77}\mathrm{Ir}_{107}$