¹⁸⁸Pb α decay **1993Wa03**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009

Parent: ¹⁸⁸Pb: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=25.1$ s *1*; $Q(\alpha)=6109$ *3*; $\%\alpha$ decay=9.3 8

1993Wa03: mass-separated ¹⁸⁸Pb source from ¹⁵⁵Gd(⁴⁰Ar,⁷n), E=240 MeV; PIPS-type α detectors (FWHM=23 keV At 5486), plastic scin (for ce), low-energy Ge detector (FWHM=0.67 At 122 keV); measured E α , I α , E γ , α -X(t), α -ce(t).

The measured half-lives are $T_{1/2}$ =23.6 s 45 (1972Ga27), 24.5 s 15 (1973Ho01), 26 s 2 (1974Le02), 22 s 2 (1984To09), 25.5 s 1 (1992Wa14). The weighted average of these values is 25.1 s 1. $T_{1/2}$ (188PB)=24 s 2 was adopted by 1998Ak04 (unweighted average covering all measured values), and used for that calculation of r_0 (=1.491 14).

 $\%\alpha(^{188}\text{Pb})=9.3\ 8\ \text{from 1999An22}$ is adopted here. 1998Ak04 adopted 8.5 *13* from 1996Bi17. Previously, α branchings of 15% and 22% 7 were deduced by 1981To02 from x-ray/ α and γ/α counts, respectively; $\%\alpha=3-10$ is listed in 1992Wa14.

 $Q(\alpha)(^{188}Pb)=6109 \ 3 \ (2003Au03, \ 2009AuZZ). \ E\alpha$ (to g.s.)=5983 4 (1991Ry01) gives $Q(\alpha)=6113 \ 4.$

¹⁸⁴Hg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		Comments
0.0 367 375	$0^+ 2^+ 0^+$	≤0.70 ns	T _{1/2} : limit from α -ce(t) (1993Wa03).	

[†] From $E\gamma$.

[‡] From Adopted Levels.

α radiations

$E\alpha^{\dagger}$	E(level)	Ια ^{‡@}	HF [#]	Comments
5614 10	375	≈1	≈2.1	Iα: ≈1 from I(5614α)/I(5983α)=(0.029 to 0.095)/(3 to 10), listed by 1994Wa13. However, they listed its hindrance (Rasmussen calculation) as 21 <i>3</i> ; if that hindrance is correct, then Iα is an order of magnitude smaller than given here and comparable to that for ¹⁸⁶ Pb α decay to the second 0 ⁺ state In ¹⁸² Hg.
5633 10	367	0.095	23.9 22	I α : measured by 1993WaZI.
5083 1	0.0	00.1	1.0	5620 α doublet coincident with 367 γ and K x ray(Hg) (1993Wa03).
5705 4	0.0	77 I	1.0	2000By02 and 1998Ba88. the adopted Eα implies $Q(\alpha)$ =6113 4 cf. 6109 3 from 2009AuZZ.

[†] α energies to excited states were measured by 1993Wa03.

[‡] α intensity per 100 α decays.

[#] $r_0(^{184}\text{Hg})=1.494$ 4 is calculated by requiring the hindrance factor for the 5983 α to be 1.0.

[@] For absolute intensity per 100 decays, multiply by 0.093 8.

					¹⁸⁸ Pb	α decay	1993Wa03 (continued)		
						<u>γ(</u>	(¹⁸⁴ Hg)		
Eγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α^{\ddagger}			Comments	
367	367	2+	0.0 0+	E2	0.0599	$\alpha(K)=0.03$ $\alpha(N)=0.00$ E : from 1	91 6; α (L)=0.01571 23; 0981 14; α (O)=0.00017	; $\alpha(M)=0.00394$ 6; $\alpha(N+)=0.001158$ 114 25; $\alpha(P)=5.12\times10^{-6}$ 8	17
375	375	0^+	$0.0 \ 0^+$	E0		E_{γ} . Holli I E_{γ} ,Mult.: o	only ce observed. $E\gamma$ is	rounded value from Adopted Gammas	

 † From Adopted Gammas.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

	¹⁸⁸ Pb α decay 1993Wa03	
Legend	Decay Scheme	
• Coincidence		$\begin{array}{c ccccc} 0^+ & 0.0 & 25.1 \text{ s } I \\ \hline Q_{\alpha} = 6109 \text{ 3} & & & & & & \\ & & & & & & \\ & & & & & $
	0 ⁺ 8 375 2 ⁺ 367	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0.0 0.0 184 80 Hg ₁₀₄	9 5983 9.2 1.0