¹⁸⁴Lu β⁻ decay (19 s) 1989Ry04,1995Kr04

		History	ry		
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009		

Parent: ¹⁸⁴Lu: E=0.0; $J^{\pi}=(3^+)$; $T_{1/2}=19$ s 2; $Q(\beta^-)=5090$ SY; $\%\beta^-$ decay=100.0

1989Ry04: sources produced using ¹³⁶Xe, ¹⁸⁶W and ²³⁸U beams on natural W + ¹⁸¹Ta stacked targets. The cross section for ¹³⁶Xe(8.5 MeV/nucleon)+W to produce ¹⁸⁴Lu was measured to Be 0.53 mb. Sources were mass separated on-line, and activity was assigned to Lu decay on the basis of low efficiency for Hf in the separator. However, 48 s ¹⁸⁴Hf(8⁻) was also present In sources (see 1995Kr04). Measured Eγ, Iγ, Eβ, γγ coin, βγ coin, βγγ(t); plastic scin, two Ge detectors.

1995Kr04: ¹³⁶Xe (11.4 MeV/nucleon) bombardment of ^{nat}W; on-line mass separation; β detector, two Ge detectors; measured E γ , I γ , $\gamma\gamma$ coin, $\beta^-\gamma$ coin, $\gamma(t)$ for mixed ¹⁸⁴Lu and isomeric ¹⁸⁴Hf source.

¹⁸⁴Hf Levels

E(level) [†]	Jπ‡
0.0	0+
107.1 <i>1</i>	(2^{+})
349.60 23	(4^{+})

[†] From E γ .

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-‡}	$\log ft^{\dagger}$	Comments
(4740 <i>SY</i>)	349.60	13 9	6.7 4	av $E\beta = 1.97 \times 10^3 \ I8$ Additional information 1.
(4982 <i>SY</i>)	107.1	86 21	5.97 20	av $E\beta = 2.08 \times 10^3 \ I8$

[†] Calculated from intensity imbalance assuming an uncertainty of 400 keV In $Q(\beta^{-})$.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{184}\text{Hf})$

Iy normalization: normalized assuming Σ (I(y+ce) to g.s.)=100, i.e., No β^- branch to 0⁺ g.s. (because $\Delta J=(3)$).

E_{γ}^{\dagger}	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α@	Comments
107.1 <i>1</i>	0.35 5	107.1	(2+)	0.0 0+	[E2]	2.70	$\alpha(K)=0.828 \ I2; \ \alpha(L)=1.426 \ 21; \ \alpha(M)=0.356 \ 6; \ \alpha(N+)=0.0929 \ I4$ $\alpha(N)=0.0824 \ I2; \ \alpha(O)=0.01045 \ I6; \ \alpha(P)=5.08\times10^{-5} \ 8$ other E γ : 107.3 3 (1989Ry04). I _{\gamma} : The authors' value of I γ =120 30 includes the contribution from ¹⁸⁴ Hf isomer also present In the source. coincident with Hf(K x ray) and E β >450 keV (1989Ry04).
242.5 2	0.15 9	349.60	(4+)	107.1 (2 ⁺)	[E2]	0.1531	$\alpha(K)=0.0981 \ 14; \ \alpha(L)=0.0420 \ 6; \ \alpha(M)=0.01023 \ 15; \ \alpha(N+)=0.00271 \ 4 \ \alpha(N)=0.00239 \ 4; \ \alpha(O)=0.000318 \ 5; \ \alpha(P)=6.71\times10^{-6} \ 10 \ other \ E\gamma: \ 242.5 \ 3 \ (1989Ry04).$

 184 Lu β^- decay (19 s) 1989Ry04,1995Kr04 (continued)

$\gamma(^{184}\text{Hf})$ (continued)

[†] From 1995Kr04. Data from 1989Ry04 are In excellent agreement. [‡] Based on I(γ +ce) (1995Kr04) for mixed ¹⁸⁴Lu and ¹⁸⁴Hf(48 s) source. absence of $\beta^-368\gamma$ coin from that source (1995Kr04) implies No β^- decay branch to levels above the 350 level. the observed relative intensities for the 107 γ and 243 γ have been corrected for contributions from IT decay As detailed In comments on those gammas In the ¹⁸⁴Hf IT decay data set.

[#] For absolute intensity per 100 decays, multiply by 77 11.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁸⁴Lu β⁻ decay (19 s) 1989Ry04,1995Kr04

