¹⁸⁴Hf IT decay 2001Ch10,1995Kr04,1989Ry04

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009

Parent: ¹⁸⁴Hf: E=1272.2; $J^{\pi}=(8^{-})$; $T_{1/2}=48 \text{ s } 10$; %IT decay=100.0

2001Ch10: source from ¹⁸⁰Hf(²³⁸U,X), E=1.6 GeV; GAMMASPHERE detector array (98 HPGe and 3 LEPS detectors); measured $E\gamma$, $\gamma\gamma$ coin (2 transitions).

1989Ry04: sources produced using ¹³⁶Xe, ¹⁸⁶W and ²³⁸U beams on natural W + ¹⁸¹Ta stacked targets. Sources were mass separated on-line, and activity was assigned to Lu decay on the basis of low efficiency for Hf in the separator. However, 48 s 184 Hf(8⁻) was also present In these sources.

1995Kr04: ¹³⁶Xe (11.4 MeV/nucleon) bombardment of ^{nat}W; on-line mass separation; β detector, two Ge detectors; measured E γ , I γ , $\gamma\gamma$ coin, $\beta^{-}\gamma$ coin for mixed ¹⁸⁴Lu and isomeric ¹⁸⁴Hf source.

¹⁸⁴Hf Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0^{+}		
107.1 [#] 1	(2^{+})		
349.60 [#] 23	(4^{+})		
717.2 [#] 3	(6 ⁺)		
1199.5 [#] 4	(8^+)		
1272.2 4	(8 ⁻)	48 s 10	%IT=100
			J^{π} : by analogy with isomeric states In neighboring Hf isotopes. Probably a $K^{\pi}=8^{-}$ configuration (1995Kr04).
			$T_{1/2}$: from I(555 γ +482 γ +368 γ)(t) (1995Kr04).

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels, except As noted.

[#] Band(A): $K^{\pi}=0^+$ g.s. band.

$\gamma(^{184}{\rm Hf})$

I γ normalization: from Ti(368 γ)=100%.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α@	Comments
72.7 2	0.28 6	1272.2	(8 ⁻)	1199.5 (8+)	[E1]	0.814 13	α (K)=0.659 <i>11</i> ; α (L)=0.1204 <i>20</i> ; α (M)=0.0273 <i>5</i> ; α (N+)=0.00724 <i>12</i>
							α (N)=0.00633 <i>10</i> ; α (O)=0.000877 <i>14</i> ; α (P)=3.85×10 ⁻⁵ 6 E _y : reported only by 1995Kr04.
							I_{γ} : from $I(\gamma+ce)=0.5 \ l$ and authors' assumed α of 0.820 (1995Kr04).
107.1 <i>1</i>	0.27 2	107.1	(2+)	0.0 0+	[E2]	2.70	$\alpha(K)=0.828$ <i>12</i> ; $\alpha(L)=1.426$ <i>21</i> ; $\alpha(M)=0.356$ <i>6</i> ; $\alpha(N+)=0.0929$ <i>14</i>
							$\alpha(N)=0.0824$ 12; $\alpha(O)=0.01045$ 16; $\alpha(P)=5.08\times10^{-5}$ 8
							2.724 (1995Kr04), $Iy=0.62.5$; however, this includes
							contribution from ¹⁰⁴ Lu β decay, so evaluator deduces $I\gamma(IT \text{ decay})$ assuming
							Ti(107 γ)=Ti(243 γ)=Ti(368 γ). Then I γ (from β^- decay)=0.35 6.
242.5 2	0.87 5	349.60	(4+)	107.1 (2+)	[E2]	0.1531	$\alpha(K)=0.0981$ 14; $\alpha(L)=0.0420$ 6; $\alpha(M)=0.01023$ 15;

Continued on next page (footnotes at end of table)

¹⁸⁴Hf IT decay 2001Ch10,1995Kr04,1989Ry04 (continued)

γ (¹⁸⁴Hf) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α [@]	Comments
2/7 ()	0.07		(((+)	240.00	(4+)		0.0420	
367.62	0.96	/1/.2	(6')	349.60	(4 ')	[E2]	0.0439	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0321 \ \text{5;} \ \alpha(\mathrm{L}) = 0.00903 \ \text{13;} \ \alpha(\mathrm{M}) = 0.00215 \ \text{3;} \\ \alpha(\mathrm{N}) = 0.000576 \ \text{9} \\ \alpha(\mathrm{N}) = 0.000504 \ \text{8;} \ \alpha(\mathrm{O}) = 6.99 \times 10^{-5} \ \text{10;} \ \alpha(\mathrm{P}) = 2.37 \times 10^{-6} \\ 4 \end{array}$
								I _{γ} : from I(γ +ce)=1.00 and authors' assumed α of 0.0443 (1995Kr04).
482.3 2	0.59 10	1199.5	(8 ⁺)	717.2	(6 ⁺)	[E2]	0.0212	$\alpha(\mathbf{K})=0.01635\ 23;\ \alpha(\mathbf{L})=0.00373\ 6;\ \alpha(\mathbf{M})=0.000876\ 13;\alpha(\mathbf{N}+)=0.000236\ 4\alpha(\mathbf{N})=0.000206\ 3;\ \alpha(\mathbf{O})=2.93\times10^{-5}\ 5;\ \alpha(\mathbf{P})=1.247\times10^{-6}$
								I_{γ} : from I(γ +ce)=0.6 <i>l</i> and authors' assumed α of 0.0214 (1995Kr04)
555.0 2	0.36 9	1272.2	(8 ⁻)	717.2	(6 ⁺)	[M2]	0.1092	$\begin{array}{l} \alpha(\mathrm{K})=0.0889 \ I3; \ \alpha(\mathrm{L})=0.01570 \ 22; \ \alpha(\mathrm{M})=0.00361 \ 5; \\ \alpha(\mathrm{N}+)=0.001000 \ I4 \\ \alpha(\mathrm{N})=0.000861 \ I2; \ \alpha(\mathrm{O})=0.0001312 \ I9; \ \alpha(\mathrm{P})=8.43\times10^{-6} \\ I2 \\ \mathrm{E}_{\gamma}: \ \mathrm{reported \ only \ by \ 1995Kr04.} \\ \mathrm{I}_{\gamma}: \ \mathrm{from \ I}(\gamma+\mathrm{ce})=0.4 \ I \ \mathrm{and \ authors' \ assumed \ \alpha \ of \ 0.108} \\ (1995Kr04). \end{array}$

[†] From 1995Kr04. data from 1989Ry04 are less precise, but In excellent agreement with those from 1995Kr04.

[‡] Deduced by evaluator from I(γ +ce) given In 1995Kr04; authors report I(γ +ce) deduced from I γ assuming α from Rosel. Data from 1989Ry04 are much less precise.

[#] For absolute intensity per 100 decays, multiply by 100.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁸⁴Hf IT decay 2001Ch10,1995Kr04,1989Ry04

 $^{184}_{72}\mathrm{Hf}_{112}$

¹⁸⁴Hf IT decay 2001Ch10,1995Kr04,1989Ry04

 $^{184}_{72}\mathrm{Hf}_{112}$