¹⁸⁴Hg ε decay 2005Sa40,1994Ib01,1978Ne10

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009

Parent: ¹⁸⁴Hg: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=30.87$ s 26; $Q(\varepsilon)=3970$ 24; $\%\varepsilon+\%\beta^+$ decay=98.89 6

Additional information 1.

Others: 1975Ho03, 1971Hu02, 1969Ha03 (observed 157γ and 237γ).

- 2005Sa40: mass-separated ¹⁸⁴Hg source from fragmentation of molten Pb target by 600 MeV or 1 GeV protons; Ge(Li) and Si(Li) detectors, high resolution 180° magnetic spectrograph; measured E γ , I γ , E(ce), I(ce). additional sources from ¹⁴⁸Sm(⁴⁰Ar,X); planar Ge (FWHM =0.9 keV At 122 keV) for E $\gamma \le 1$ MeV; two HPGe detectors (FWHM ≈ 2.3 keV At 1.3 MeV) for E $\gamma \le 1.3$ MeV; measured x- γ -t and γ - γ -t events which were sorted to provide prompt-, total- and delayed- coincidence bidimensional matrices (60 ns or 100 ns time windows). Supersedes 2003IbZZ; see also 1994Ib01.
- 1994Ib01: mass separated source from bombardment of ¹⁴⁸Sm by 185 MeV ⁴⁰Ar ions; He-jet transport, iodine aerosol; two HPGe coaxial detectors, one HPGe x-ray detector; measured singles γ and x-ray spectra, $\gamma\gamma(t)$, x- $\gamma(t)$. See also 1994RoZY.

1975Ho03: β strength function deduced from total-absorption γ measurement.

1978Ne10: Mass-separated source; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, $\gamma\gamma(t)$ (time resolution 6 ns *1*).

The decay scheme is adopted from 2005Sa40. it differs greatly from that proposed by 1978Ne10. although $E\gamma$ and $I\gamma$ data from 2005Sa40 and 1978Ne10 are In satisfactory agreement, there exist a number of transitions with $E\gamma$ <90 keV which 1978Ne10 could not detect. also, the lowest energy state reported In 1978Ne10 is actually a 68-keV 2⁺ isomer, not a 3⁺ g.s., and the presence of a state just 3.4 keV above the isomer was not recognized by 1978Ne10.

¹⁸⁴Au Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	5+	20.6 s 9	$T_{1/2}$: from Adopted Levels.
68.46 <i>4</i>	2+	47.6 s <i>14</i>	$T_{1/2}$: from Adopted Levels.
71.87 9	2+,3+		, -
86.50 8	$(2,3)^+$		
129.13 8	$(1,2)^+$		
146.50 12	4+		
228.40 7	3-	69 ns <i>6</i>	$T_{1/2}$: from 157 γ -237 γ (t) (1994Ib01). other $T_{1/2}$: 67 ns 8 (H. Haas (1978), private communication to authors of 1994Ib01); 36 ns 6 (1978Ne10).
242.87 10	$(\leq 3)^+$		
254.26 7	2-		the intensity imbalance of 12% 7 At this level May arise from an incomplete decay scheme and/or the acute dependence of I(γ +ce) from this level on $\delta(26\gamma)$. $\%\varepsilon+\%\beta^+<0.25$ is expected for the possible 1U branch to this level, based on log $f^{lu}t>8.5$. Additional information 2.
301.86? 16	$(1^{-}, 2^{-}, 3^{-})$		
306.90 12	$(1)^{+}$		
320.50 10	2+	<2 ns	$T_{1/2}$: from γ delayed coin (1978Ne10).
331.40 8	$1^+, 2^+$		
364.19 9	1+		
381.50 9	$1^+, 2^+$		
409.70 22			
477.34 19	(≤3)+		
486.10 22	$\leq 3^+$		
490.91 7 600.60? 22	1+	<2 ns	$T_{1/2}$: from γ delayed coin (1978Ne10).

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

[#] From $\gamma\gamma$ (t) (1978Ne10), except where noted.

$^{184}\mathrm{Hg}\,\varepsilon$ decay 2005Sa40,1994Ib01,1978Ne10 (continued)

ε, β^+ radiations

 $I(\gamma+ce),\log ft I(\gamma+ce)$ is from intensity imbalance At each level. $I(\gamma+ce)$ values<10% May not Be reliable due to existence of unplaced transitions, several of which are highly converted (Ti(30.3 γ)≈6%).

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(3369 [‡] 24)	600.60?	0.03 3	0.13 13	6.9 5	0.16 16	av Eβ=1060 11; εK=0.681 4; εL=0.1189 7; εM+=0.03807 21
(3479 24)	490.91	11 <i>I</i>	47 6	4.33 6	58 7	av E β =1109 11; ϵ K=0.666 4; ϵ L=0.1160 7; ϵ M+=0.03713 21
(3484 24)	486.10	0.20 9	0.9 4	6.06 20	1.1 5	av $E\beta$ =1111 11; εK =0.665 4; εL =0.1158 7; εM +=0.03709 21
(3493 24)	477.34	0.33 7	1.5 3	5.85 10	1.8 4	av $E\beta$ =1115 <i>11</i> ; ε K=0.664 <i>4</i> ; ε L=0.1156 <i>7</i> ; ε M+=0.03701 <i>21</i>
(3560 24)	409.70	0.051 22	0.21 9	6.71 <i>19</i>	0.26 11	av $E\beta$ =1145 <i>11</i> ; ε K=0.654 <i>4</i> ; ε L=0.1138 7; ε M+=0.03642 22
(3606 24)	364.19	0.74 21	2.9 8	5.58 12	3.6 10	av $E\beta$ =1166 <i>11</i> ; ε K=0.647 <i>4</i> ; ε L=0.1125 <i>7</i> ; ε M+=0.03601 <i>22</i>
(3663 24)	306.90	1.5 4	5.4 15	5.32 12	6.9 19	av $E\beta$ =1191 <i>11</i> ; ϵ K=0.638 <i>4</i> ; ϵ L=0.1109 7; ϵ M+=0.03550 22
(3841 24)	129.13	3.8 25	11 7	5.0 3	15 10	av $E\beta$ =1271 <i>11</i> ; ε K=0.610 <i>4</i> ; ε L=0.1059 7; ε M+=0.03387 <i>23</i>

 † Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

Iγ normalization: from Σ (I(γ+ce) to g.s.)=100, assuming No $\varepsilon + \beta^+$ feeding to the g.s. (ΔJ=5) or to the 68 or 72 levels (ΔJ=2 or 3, Δπ=No).

 $\boldsymbol{\omega}$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^π	$E_f J_f^{\pi}$	Mult. [‡]	δ#	α^{a}	$I_{(\gamma+ce)}^{\&}$	Comments
3.4 2		71.87	2+,3+	68.46 2+	(M1)			1.55×10 ³ 16	$I_{(\gamma+ce)}$: from Σ ($I(\gamma+ce)$ to 72 level); No $\varepsilon+\beta^+$ expected to level. Mult.: N1 and O conversion lines observed (2005Sa40)
18.1 2	2.3 7	86.50	(2,3) ⁺	68.46 2+	M1		198 8		$\alpha(L)=152\ 6;\ \alpha(M)=35.6\ 13;\ \alpha(N+)=10.6\ 4$ $\alpha(N)=8.9\ 4;\ \alpha(O)=1.63\ 6;\ \alpha(P)=0.110\ 4$ Mult.: $\alpha(L1)\exp=130\ 25,\ L1:L2=1.00:0.11$ $I\ (2005Sa40).$
25.86 6	19 2	254.26	2-	228.40 3-	M1+E2	0.041 +11-15	74 4		$\alpha(L)=57 \ 3; \ \alpha(M)=13.4 \ 7; \ \alpha(N+)=3.96 \ 19$ $\alpha(N)=3.32 \ 16; \ \alpha(O)=0.60 \ 3; \ \alpha(P)=0.0380 \ 6$ Mult.: $\alpha(L1)\exp=52 \ 10, \ \alpha(L2)\exp=6.3 \ 10, \ L2:L3=1.00:0.36 \ 10, \ (M1+M2):M3=1\ 00:0.04 \ 1 \ (2005Sa40)$
^x 29.4 1	1.5 3				M1		47.2 9		$\alpha(L)=36.3 7; \alpha(M)=8.43 15; \alpha(N+)=2.51 5 \alpha(N)=2.10 4; \alpha(O)=0.386 7; \alpha(P)=0.0260 5 Mult.: \alpha(L1)exp=38 18, L1:L2=1.0:0.4, \alpha(M1)exp=87 2 (2005Sa40)$
^x 30.3 1	1.7 4				M1+E2	≈0.20	≈98.1		$\alpha(L) \approx 74.5; \ \alpha(M) \approx 18.4; \ \alpha(N+) \approx 5.31$ $\alpha(N) \approx 4.53; \ \alpha(O) \approx 0.764; \ \alpha(P) \approx 0.0233$ Mult: $\alpha(L1) \exp = 35 \ 10, \ \alpha(L3) \exp = 21 \ 8$ (2005Sa40).
42.7 1	1.9 4	129.13	(1,2)+	86.50 (2,3)+	M1(+E2)		1.4×10 ² 13		$\alpha(L)=1.1\times10^{2} \ 10; \ \alpha(M)=28 \ 25; \ \alpha(N+)=8$ 7 $\alpha(N)=7 \ 7; \ \alpha(O)=1.1 \ 10; \ \alpha(P)=0.005 \ 4$ Mult.: $\alpha(L1)\exp\leq22, \ \alpha(L3)\exp<1.8$ (2005 S a 40) allows E1 or M1
^x 43.3 <i>3</i>	4.3 6								(2005Sa40) allows E1 of W1. only weak, mixed electron lines observed (2005Sa40)
^x 45.8 1	2.0 3				M1(+E2)	≈0.10	≈14.54		$\alpha(L) \approx 11.14; \ \alpha(M) \approx 2.62; \ \alpha(N+) \approx 0.777 \ \alpha(N) \approx 0.652; \ \alpha(O) \approx 0.1176; \ \alpha(P) \approx 0.00698 \ Mult.: \ \alpha(L1) exp = 13 \ 3, \ L1:L3 \approx 1.00:0.12 \ (2005 Sa40).$
47.6 ^{<i>c</i>} 2	2.1 5	301.86?	(1 ⁻ ,2 ⁻ ,3 ⁻)	254.26 2-	M1		11.39 22		$ \begin{aligned} &\alpha(L) = 8.75 \ 17; \ \alpha(M) = 2.03 \ 4; \ \alpha(N+) = 0.605 \\ I2 \\ &\alpha(N) = 0.506 \ 10; \ \alpha(O) = 0.0930 \ 18; \\ &\alpha(P) = 0.00628 \ I2 \\ &\text{Mult:} \ \alpha(L1) \exp = 8 \ 2, \ \alpha(M1) \exp = 1.9 \ 10 \\ &(2005 \text{Sa40}). \end{aligned} $

 $^{184}_{79}\mathrm{Au}_{105}$ -3

					¹⁸⁴ Hg	¹ Hg ε decay 2005Sa40,1994Ib01			Ne10 (continued)	-
							$\gamma(^{184}A)$	Au) (continued)		
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	J_i^π	E_f	J_f^π	Mult. [‡]	δ [#]	α^{a}	$I_{(\gamma+ce)}^{\&}$	Comments
50.1 <i>1</i>	71	381.50	1+,2+	331.40	1+,2+	M1		9.80		$ \begin{array}{l} \alpha(L)=7.53 \ 12; \ \alpha(M)=1.75 \ 3; \ \alpha(N+)=0.521 \ 8 \\ \alpha(N)=0.435 \ 7; \ \alpha(O)=0.0800 \ 13; \ \alpha(P)=0.00540 \ 9 \\ \text{Mult:} \ \alpha(L1)\exp=8.5 \ 15, \\ \alpha(L1)\exp=8.5 \ 15$
57.3 2	4 2	129.13	(1,2)+	71.87	2+,3+	E2+M1	≈1.2	≈40.9		$\alpha(L1)\exp(\alpha(L2)\exp=1.00:0.15\ 2\ (2005Sa40)).$ $\alpha(L)\approx 30.7;\ \alpha(M)\approx 7.91;\ \alpha(N+)\approx 2.26$ $\alpha(N)\approx 1.94;\ \alpha(O)\approx 0.312;\ \alpha(P)\approx 0.00181$ Mult.: $\alpha(L2)\exp\approx\alpha(L3)\exp=12\ 6,$
59.0 ^c 2	5 1	301.86?	(1 ⁻ ,2 ⁻ ,3 ⁻)	242.87	(≤3)+	(E1)		0.346 6		L1:L2:L3=1.0:7.2 <i>15</i> :6.9 <i>15</i> (2005Sa40). α (L)=0.266 <i>5</i> ; α (M)=0.0625 <i>11</i> ; α (N+)=0.0178 <i>3</i> α (N)=0.0152 <i>3</i> ; α (O)=0.00252 <i>5</i> ; α (D)=0.26(\pm 10 ⁻⁵ <i>15</i>
60.6 <i>1</i>	26 4	129.13	(1,2)+	68.46	2+	M1		5.60		$\alpha(P)=9.26\times10^{-5}15$ Mult.: L1 and L3 conversion electrons not observed (2005Sa40). $\alpha(L)=4.31\ 7;\ \alpha(M)=1.000\ 15;\ \alpha(N+)=0.298\ 5$ $\alpha(N)=0.249\ 4;\ \alpha(O)=0.0458\ 7;\ \alpha(P)=0.00309\ 5$ Mult.: $\alpha(L1)\exp=4\ 1,\ L1:L2:L3=1.00:0.13$ $3:<0.04\ \alpha(M1)\exp=0.04\ 0.05Se40)$
68.46 <i>4</i>	0.90 7	68.46	2+	0.0	5+	M3		3.19×10 ³	2.87×10 ³ 23	$\begin{aligned} &\alpha(L) = 2.29 \times 10^3 \ 4; \ \alpha(M) = 694 \ 10; \ \alpha(N+) = 208 \ 3\\ &\alpha(N) = 178 \ 3; \ \alpha(O) = 29.4 \ 5; \ \alpha(P) = 0.774 \ 11\\ I_{(\gamma+ce)}: \ from \ \Sigma \ (I(\gamma+ce) \ to \ 68 \ level) = 2870 \ 230.\\ I_{\gamma}: \ from \ I(\gamma+ce) \ and \ \alpha.\\ &Mult.: \ L3/(L1+L2) = 1.6 \ 4, \ L2 < < L1 \ (1990Ed01);\\ &(L1+L2): L3: M:N:O = 232 \ 35:397 \ 60:197 \ 30:45\\ 7:18 \ 6 \ (2005Sa40).\\ &\%I_{\gamma} = 0.0303 \ 10 \ assuming \ recommended \ decay \ scheme \ normalization. \end{aligned}$
74.5 ^b 2	7 ^b 4	146.50	4+	71.87	2+,3+	[M1,E2]		11 8		$\begin{aligned} &\alpha(L)=8\ 6;\ \alpha(M)=2.1\ 15;\ \alpha(N+)=0.6\ 5\\ &\alpha(N)=0.5\ 4;\ \alpha(O)=0.08\ 6;\ \alpha(P)=0.0010\ 8\\ &I_{\gamma}:\ from\ \gamma\gamma\ coin;\ I_{\gamma}=40\ 4\ for\ doublet\\ &(2005Sa40).\\ &Mult.:\ \alpha(L1)exp=2.4\ 4,\\ &M1:M2:M3=1.00:0.21:0.09\ (2005Sa40)\ for\\ &doublet \end{aligned}$
74.5 ^b 2	33 ^b 4	381.50	1+,2+	306.90	(1)+	M1		3.07		$\begin{aligned} &\alpha(L)=2.36 \ 4; \ \alpha(M)=0.547 \ 9; \ \alpha(N+)=0.163 \ 3\\ &\alpha(N)=0.1362 \ 22; \ \alpha(O)=0.0250 \ 4; \ \alpha(P)=0.00169 \ 3\\ &I_{\gamma}: \ from \ \gamma\gamma \ coin; \ I\gamma=40 \ 4 \ for \ doublet\\ &(2005Sa40). \end{aligned}$ Mult.: $\alpha(L1)exp=2.4 \ 4,$
81.9 <i>I</i>	60 8	228.40	3-	146.50	4+	E1		0.670		M1:M2:M3=1.00:0.21:0.09 (2005Sa40) for doublet dominated by this transition. α(K)=0.529 8; α(L)=0.1089 16; α(M)=0.0254 4;

4

From ENSDF

Ŧ

 $^{184}_{79}\mathrm{Au}_{105}\text{--}4$

L

					184 Hg ε decay	200	5Sa40,1994	Ib01,1978Ne10 (continued)
						γ	(¹⁸⁴ Au) (con	ntinued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	δ#	α^{a}	Comments
92.0 1	53 6	320.50	2+	228.40 3-	E1		0.511	$\alpha(N+)=0.00731 \ 11$ $\alpha(N)=0.00621 \ 9; \ \alpha(O)=0.001054 \ 16; \ \alpha(P)=4.37\times10^{-5} \ 7$ Mult.: $(\alpha(L1)\exp+\alpha(L2)\exp)\leq 0.3 \ (2005Sa40).$ $\alpha(K)=0.407 \ 6; \ \alpha(L)=0.0794 \ 12; \ \alpha(M)=0.0185 \ 3; \ \alpha(N+)=0.00533 \ 8$ $\alpha(N)=0.00453 \ 7; \ \alpha(O)=0.000774 \ 11; \ \alpha(P)=3.33\times10^{-5} \ 5$ $E_{\gamma}=91.5 \ 5, \ I_{\gamma}=47 \ 8 \ (1978Ne10).$
104.6 2	2.8 6	486.10	≤3+	381.50 1+,2	+ M1		6.38	Mult.: $\alpha(L1)\exp \le 0.1$, $\alpha(L3)\exp \le 0.05$ (2005Sa40). $\alpha(K)=5.23 \ 8$; $\alpha(L)=0.880 \ 14$; $\alpha(M)=0.204 \ 3$; $\alpha(N+)=0.0609 \ 10 \ \alpha(N)=0.0509 \ 8$; $\alpha(O)=0.00936 \ 14$; $\alpha(P)=0.000632 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$
109.4 <i>1</i>	15 <i>3</i>	490.91	1 ⁺	381.50 1+,2	+ M1(+E0)		≈18	Mult.: $\alpha(K)\exp=6.8\ 20,\ \alpha(L1)\exp=1.3\ 6\ (2005Sa40).$ Mult.: $\alpha(K)\exp=14\ 4,\ \alpha(L1)\exp=2.3\ 5\ (2005Sa40).\ \alpha(K)=4.78$ $15\alpha(L)=0.802\ 248\alpha(M)=0.186\ 68\alpha(N+)=0.0593\ 18$ if pure M1.
^x 110.8 2	5 1				(M1)		5.41	α : approximate value; from α (K)exp x 1.3. α (K)=4.44 7; α (L)=0.746 12; α (M)=0.173 3; α (N+)=0.0516 8 α (N)=0.0431 7; α (O)=0.00793 12; α (P)=0.000535 8
^x 112.6 2	4 1				(M1)		5.17	Mult: $\alpha(K) \exp [7.3] (2005Sa40)$. $\alpha(K) = 4.24$ 7; $\alpha(L) = 0.712$ 11; $\alpha(M) = 0.1652$ 25; $\alpha(N+) = 0.0492$ 8 $\alpha(N) = 0.0412$ 7; $\alpha(O) = 0.00757$ 12; $\alpha(P) = 0.000511$ 8 M bit $\alpha(K) = 2.6$ 10 (20055 40)
113.7 <i>1</i>	16 <i>3</i>	242.87	(≤3)+	129.13 (1,2)	+ M1		5.02	Mult.: $\alpha(K) \exp=3.6$ 10 (2005Sa40). $\alpha(K)=4.12$ 6; $\alpha(L)=0.692$ 10; $\alpha(M)=0.1607$ 23; $\alpha(N+)=0.0479$ 7 $\alpha(N)=0.0400$ 6; $\alpha(O)=0.00736$ 11; $\alpha(P)=0.000497$ 7 Mult.: $\alpha(K) \exp=4.6$ 6 $\alpha(L) \exp=1.0$ 4 (2005Sa40)
126.7 <i>1</i>	13 3	490.91	1+	364.19 1+	M1(+E2)		2.8 9	Mult.: α (K)exp=4.0 6, α (L1)exp=1.0 4 (2005840). α (K)=1.8 13; α (L)=0.8 4; α (M)=0.21 9; α (N+)=0.060 25 α (N)=0.051 22; α (O)=0.009 4; α (P)=0.00021 16 Mult.: α (K)exp=2.0 6, (α (L1)exp+ α (L2)exp)=0.62 15, α (L3)exp≤0.15 (20058440).
127.3 2	27 4	381.50	1+,2+	254.26 2-	E1		0.225	$E\gamma = 126.5 \ 3, \ 1\gamma = 14 \ 4 \ (1978\text{Ne10}).$ $\alpha(\text{K}) = 0.182 \ 3; \ \alpha(\text{L}) = 0.0330 \ 5; \ \alpha(\text{M}) = 0.00768 \ 12; \ \alpha(\text{N}+) = 0.00223 \ 4$ $\alpha(\text{N}) = 0.00188 \ 3; \ \alpha(\text{O}) = 0.000327 \ 5; \ \alpha(\text{P}) = 1.552 \times 10^{-5} \ 23$
138.5 2	62	381.50	1+,2+	242.87 (≤3)*	+ M1		2.86	Mult: $\alpha(K)\exp \le 0.4$, $\alpha(L3)\exp \le 0.1$ (2005Sa40). $\alpha(K)=2.35$ 4; $\alpha(L)=0.393$ 6; $\alpha(M)=0.0912$ 14; $\alpha(N+)=0.0272$ 4 $\alpha(N)=0.0227$ 4; $\alpha(O)=0.00418$ 7; $\alpha(P)=0.000282$ 5 Mult: $\alpha(K)\exp = 2.0.8$ (2005Sa40)
141.8 <i>1</i>	32 4	228.40	3-	86.50 (2,3)	+ (E1+M2)	0.39	2.42	Mult.: $\alpha(\mathbf{K})\exp[-2.9] \otimes (20033440)$. $\alpha(\mathbf{K})=1.725\ 25;\ \alpha(\mathbf{L})=0.526\ 8;\ \alpha(\mathbf{M})=0.1314\ 19;\ \alpha(\mathbf{N}+)=0.0394\ 6$ $\alpha(\mathbf{N})=0.0331\ 5;\ \alpha(\mathbf{O})=0.00595\ 9;\ \alpha(\mathbf{P})=0.000346\ 5$ Mult.: $\alpha(\mathbf{K})\exp[=1.8\ 5;\ \alpha(\mathbf{L}1)\exp+\alpha(\mathbf{L}2)\exp)=0.45\ 9;\ \alpha(\mathbf{L}3)\exp=0.09\ 4$ (2005Sa40) Mult. E2 ($S=0.50$) also provide but Approximation from level
146.5 <i>4</i>	24 8	146.50	4+	0.0 5+	M1(+E2)		1.8 7	scheme. $E\gamma=141.6 \ 3, \ I\gamma=19 \ 3 \ (1978\text{Ne}10).$ $\alpha(\text{K})=1.2 \ 9; \ \alpha(\text{L})=0.46 \ 13; \ \alpha(\text{M})=0.12 \ 4; \ \alpha(\text{N}+)=0.034 \ 11$ $\alpha(\text{N})=0.029 \ 10; \ \alpha(\text{O})=0.0048 \ 13; \ \alpha(\text{P})=0.00014 \ 11$ Mult.: $\alpha(\text{K})\exp\leq3.5, \ (\alpha(\text{L}1)\exp+\alpha(\text{L}2)\exp)=0.26 \ 10, \ \alpha(\text{L}3)\exp\leq0.08$ (2005Sa40). $E\gamma=146.0 \ 3, \ I\gamma=48 \ 4, \ unplaced \ \gamma \ In \ 1978\text{Ne}10.$

 $^{184}_{79}\mathrm{Au}_{105}$ -5

From ENSDF

 $^{184}_{79}\mathrm{Au}_{105}$ -5

L

				184	Hg ε decay	2005Sa40	,1994Ib01 ,	1978Ne10 (continued)
						γ (¹⁸⁴ Au	ı) (continue	<u>d)</u>
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α^{a}	Comments
156.5 <i>1</i>	1.02×10 ³ 10	228.40	3-	71.87	2+,3+	E1	0.1335	$\alpha(K)=0.1087$ 16; $\alpha(L)=0.0191$ 3; $\alpha(M)=0.00442$ 7; $\alpha(N+)=0.001288$ 19
159.4 <i>1</i>	60 8	490.91	1+	331.40	1+,2+	M1	1.92	$\alpha(N)=0.001088 \ I6; \ \alpha(O)=0.000190 \ 3; \ \alpha(P)=9.53\times10^{-6} \ I4$ Mult.: $\alpha(K)\exp=0.10 \ 2, \ (\alpha(L1)\exp+\alpha(L2)\exp)=0.012 \ 4 \ (2005Sa40); \ \alpha(K)\exp\approx0.10 \ (1970FiZZ).$ $E\gamma=156.2 \ 2, \ I\gamma=910 \ 90 \ In \ 1978Ne10.$ $\alpha(K)=1.579 \ 23; \ \alpha(L)=0.264 \ 4; \ \alpha(M)=0.0611 \ 9; \ \alpha(N+)=0.0182 \ 3$ $\alpha(N)=0.01524 \ 22; \ \alpha(D)=0.00280 \ 4; \ \alpha(M)=0.000180 \ 3$
								$\alpha(N)=0.01324$ 22, $\alpha(O)=0.00280$ 4, $\alpha(\Gamma)=0.000189$ 5 Mult.: $\alpha(K)\exp=1.4$ 4, $(\alpha(L1)\exp+\alpha(L2)\exp)=0.27$ 6 (2005Sa40). Ey=159.1 4, Iy=60 10 (1978Ne10).
160.0 <i>1</i>	23 5	228.40	3-	68.46	2+	(E1)	0.1262	$\alpha(K)=0.1028$ 15; $\alpha(L)=0.0180$ 3; $\alpha(M)=0.00417$ 6; $\alpha(N+)=0.001215$ 18
170.3 <i>1</i>	24 4	490.91	1+	320.50	2+	M1	1.595	$\alpha(N)=0.001026 \ I5; \ \alpha(O)=0.000180 \ 3; \ \alpha(P)=9.04\times10^{-6} \ I3$ Mult.: $\alpha(K)\exp=0.3 \ 2 \ (2005Sa40).$ $E\gamma=159.2 \ 4, \ I\gamma=10 \ 3 \ (1978Ne10).$ $\alpha(K)=1.310 \ I9; \ \alpha(L)=0.219 \ 3; \ \alpha(M)=0.0507 \ 8; \ \alpha(N+)=0.01511 \ 22$ $\alpha(N)=0.01263 \ I8; \ \alpha(O)=0.00232 \ 4; \ \alpha(P)=0.0001569 \ 23$ Mult.: $\alpha(K)\exp=1.3 \ 3 \ (2005Sa40).$ $E\gamma=170 \ 1 \ 2 \ I\gamma=21 \ 3 \ (1978Ne10).$
^x 176.9 [@] 3	12 5							
^x 177.3 2	26 4					E1,E2	0.34 24	α (K)=0.16 8; α (L)=0.14 13; α (M)=0.04 4; α (N+)=0.011 10 Mult.: α (K)exp<0.3 (2005Sa40).
^x 178.1 2	62					E1,E2	0.33 24	$\alpha(K)=0.15 \ 8; \ \alpha(L)=0.13 \ 12; \ \alpha(M)=0.03 \ 4; \ \alpha(N+)=0.011 \ 10$ Mult : $\alpha(K)\exp\{0.4 \ (2005Sa40)$
181.3 2	62	409.70		228.40	3-	E1,E2	0.31 22	$\alpha(K)=0.15 \ 8; \ \alpha(L)=0.12 \ 12; \ \alpha(M)=0.03 \ 3; \ \alpha(N+)=0.010 \ 9$
182.5 2	6 2	254.26	2-	71.87	2+,3+	E1	0.0906	$\alpha(K)=0.0741 \ 11; \ \alpha(L)=0.01273 \ 19; \ \alpha(M)=0.00295 \ 5; \ \alpha(N+)=0.000861 \ 13$
								$\alpha(N)=0.000726 \ 11; \ \alpha(O)=0.0001279 \ 19; \ \alpha(P)=6.63\times10^{-6} \ 10$ Mult: $\alpha(K)\exp<0.15 \ (20058\pm0)$
184.1 ^c 2	3 1	486.10	≤3+	301.86?	(1 ⁻ ,2 ⁻ ,3 ⁻)	M2	6.76	$\alpha(K)=4.94 \ 8; \ \alpha(L)=1.373 \ 20; \ \alpha(M)=0.340 \ 5; \ \alpha(N+)=0.1019 \ 15 \ \alpha(N)=0.0855 \ 13; \ \alpha(O)=0.01546 \ 23; \ \alpha(P)=0.000925 \ 14$
185.8 <i>1</i>	12 2	254.26	2-	68.46	2+	(E1)	0.0866	Mult.: $\alpha(K)\exp=6\ 2$, $(\alpha(L1)\exp+\alpha(L2)\exp)=1.7\ 8\ (2005Sa40)$. $\alpha(K)=0.0709\ 10$; $\alpha(L)=0.01215\ 17$; $\alpha(M)=0.00282\ 4$; $\alpha(N+)=0.000822\ 12$
220.4 1	26 3	306.90	(1)+	86.50	(2,3)+	M1	0.775	$\alpha(N)=0.000693 \ 10; \ \alpha(O)=0.0001221 \ 18; \ \alpha(P)=6.36\times10^{-6} \ 9$ Mult.: $\alpha(K)\exp<0.17 \ (2005Sa40).$ $\alpha(K)=0.638 \ 9; \ \alpha(L)=0.1059 \ 15; \ \alpha(M)=0.0245 \ 4; \ \alpha(N+)=0.00732 \ 11$ $\alpha(N)=0.00612 \ 9; \ \alpha(O)=0.001125 \ 16; \ \alpha(P)=7.61\times10^{-5} \ 11$
234.5 3	22 5	477.34	(≤3) ⁺	242.87	(≤3) ⁺	(M1+E2)	0.44 22	Mult.: $\alpha(K)\exp=0.54$ 12, $(\alpha(L1)\exp+\alpha(L2)\exp)=0.11$ 3 (2005Sa40). $\alpha(K)=0.33$ 22; $\alpha(L)=0.084$ 5; $\alpha(M)=0.0205$ 4; $\alpha(N+)=0.00600$ 18 $\alpha(N)=0.00508$ 10; $\alpha(O)=0.00089$ 7; $\alpha(P)=4.E-5$ 3 Mult.: $\alpha(K)\exp=0.3$ 2, $\alpha(L)\exp<0.1$ (2005Sa40).

From ENSDF

6

 $^{184}_{79}\mathrm{Au}_{105}\text{--}6$

					184 Hg ε	decay 2	005Sa40,1	994Ib01,1978Ne10 (continued)
							$\gamma(^{184}\text{Au})$ ((continued)
E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α^{a}	Comments
236.7 1	1.00×10 ³ 10	490.91	1+	254.26	2-	E1	0.0476	$\begin{aligned} &\alpha(\text{K}) = 0.0391 \ 6; \ \alpha(\text{L}) = 0.00652 \ 10; \ \alpha(\text{M}) = 0.001509 \ 22; \ \alpha(\text{N}+) = 0.000442 \ 7 \\ &\alpha(\text{N}) = 0.000372 \ 6; \ \alpha(\text{O}) = 6.61 \times 10^{-5} \ 10; \ \alpha(\text{P}) = 3.62 \times 10^{-6} \ 5 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.04 \ 1, \ \alpha(\text{L}) \text{exp} = 0.05 \ 2 \ (2005\text{Sa40}); \ \alpha(\text{K}) \text{exp} = 0.07 \ 3 \\ &(1970\text{FiZZ}). \end{aligned}$
238.4 2	180 <i>30</i>	306.90	$(1)^{+}$	68.46	2+	M1	0.624	$E\gamma=236.2 2, I\gamma=1000 (1978 \text{Ne}10).$ $\alpha(\text{K})=0.513 8; \alpha(\text{L})=0.0851 12; \alpha(\text{M})=0.0197 3; \alpha(\text{N}+)=0.00588 9$ $\alpha(\text{N})=0.00491 7; \alpha(\text{O})=0.000904 13; \alpha(\text{P})=6.11\times10^{-5} 9$ Mult: $\alpha(\text{K})=0.046 11, \alpha(\text{L})=0.08 2, \alpha(\text{M})=0.02 1 (20058 40)$
244.8 2	92	331.40	1+,2+	86.50	(2,3)+	[M1,E2]	0.39 20	$\alpha(K)=0.29 \ 19; \ \alpha(L)=0.073 \ 6; \ \alpha(M)=0.0177 \ 7; \ \alpha(N+)=0.0052 \ 3 \\ \alpha(N)=0.00439 \ 19; \ \alpha(Q)=0.00077 \ 8; \ \alpha(P)=3.4\times10^{-5} \ 23$
248.0 2	93	490.91	1+	242.87	$(\le 3)^+$	[M1,E2]	0.37 19	$\alpha(K) = 0.28 \ 18; \ \alpha(L) = 0.070 \ 7; \ \alpha(M) = 0.0169 \ 8; \ \alpha(N+) = 0.0050 \ 3 \ \alpha(N) = 0.00420 \ 22; \ \alpha(\Omega) = 0.00073 \ 8; \ \alpha(P) = 3.3 \times 10^{-5} \ 23$
259.5 1	86 10	331.40	1+,2+	71.87	2+,3+	M1	0.494	$\alpha(K)=0.406\ 6;\ \alpha(L)=0.0672\ 10;\ \alpha(M)=0.01558\ 22;\ \alpha(N+)=0.00465\ 7$ $\alpha(N)=0.00388\ 6;\ \alpha(O)=0.000714\ 10;\ \alpha(P)=4.83\times10^{-5}\ 7$ Mult.: $\alpha(K)\exp=0.39\ 7,\ (\alpha(L1)\exp+\alpha(L2)\exp)=0.06\ 7\ (2005Sa40);\ \alpha(K)\exp=0.25\ (1970FiZZ).$
262.9 1	62 8	331.40	1+,2+	68.46	2+	M1	0.476	Ey=259.0 1, 1y=84 10 (1978Ne10). $\alpha(K)=0.392 6; \alpha(L)=0.0649 10; \alpha(M)=0.01503 22; \alpha(N+)=0.00448 7$ $\alpha(N)=0.00375 6; \alpha(O)=0.000689 10; \alpha(P)=4.66\times10^{-5} 7$ Mult.: $\alpha(K)\exp=0.38 7, (\alpha(L1)\exp+\alpha(L2)\exp)=0.07 2$ (2005Sa40); $\alpha(K)\exp\approx0.25$ (1970FiZZ). Ey=262 3 L u=67 8 (1972Ne10)
277.7 2	15 <i>3</i>	364.19	1+	86.50	(2,3)+	M1	0.410	$\alpha(\mathbf{K})=0.337\ 5;\ \alpha(\mathbf{L})=0.0558\ 8;\ \alpha(\mathbf{M})=0.01292\ 19;\ \alpha(\mathbf{N}+)=0.00385\ 6$ $\alpha(\mathbf{N})=0.00322\ 5;\ \alpha(\mathbf{O})=0.000592\ 9;\ \alpha(\mathbf{P})=4.01\times10^{-5}\ 6$ $\mathbf{M}_{\mathbf{K}}\mathbf{h}_{\mathbf{V}} = (\mathbf{M}) = 0.256\ (\alpha(\mathbf{M})=0.000592\ 9;\ \alpha(\mathbf{P})=4.01\times10^{-5}\ 6$
^x 291.5 2	17 3					M1	0.359	$\alpha(\mathbf{K}) = 0.2965; \ \alpha(\mathbf{L}) = 0.04887; \ \alpha(\mathbf{M}) = 0.01131 \ 16; \ \alpha(\mathbf{N}+) = 0.003375 $ $\alpha(\mathbf{N}) = 0.002824; \ \alpha(\mathbf{O}) = 0.0005188; \ \alpha(\mathbf{P}) = 3.51 \times 10^{-5}5 $
294.8 <i>3</i>	20 6	381.50	1+,2+	86.50	(2,3)+	(M1)	0.348	Mult.: $\alpha(K)\exp=0.30$ 9, $(\alpha(L1)\exp+\alpha(L2)\exp)=0.05$ 2 (2005Sa40). $\alpha(K)=0.287$ 4; $\alpha(L)=0.0473$ 7; $\alpha(M)=0.01096$ 16; $\alpha(N+)=0.00327$ 5 $\alpha(N)=0.00273$ 4; $\alpha(O)=0.000502$ 8; $\alpha(P)=3.40\times10^{-5}$ 5 Mult.: $\alpha(K)\exp=0.30$ 15 (2005Sa40). see commant on 205 7 α
295.7 1	100 <i>15</i>	364.19	1+	68.46	2+	M1	0.345	a(K)=0.284 4; α(L)=0.0469 7; α(M)=0.01087 16; α(N+)=0.00324 5 α(N)=0.00271 4; α(O)=0.000498 7; α(P)=3.38×10 ⁻⁵ 5 Mult.: α(K)exp=0.28 8, (α(L1)exp+α(L2)exp)=0.08 3 (2005Sa40). Ey=295.1 1, Iy=160 20 (1978Ne10), α(K)exp=0.04 2 (1970FiZZ) for line which May Be a 294 8x+295 7x doublet
313.1 2	33 5	381.50	1+,2+	68.46	2+	M1	0.296	$\alpha(\mathbf{K})=0.243 \ 4; \ \alpha(\mathbf{L})=0.0401 \ 6; \ \alpha(\mathbf{M})=0.00929 \ 14; \ \alpha(\mathbf{N}+)=0.00277 \ 4 \\ \alpha(\mathbf{N})=0.00231 \ 4; \ \alpha(\mathbf{O})=0.000426 \ 6; \ \alpha(\mathbf{P})=2.89\times10^{-5} \ 4 \\ \mathbf{M}_{\mathbf{M}}\mathbf{h}_{\mathbf{M}} \ \alpha(\mathbf{K})=0.00231 \ (\alpha(\mathbf{M})=0.000426 \ (\alpha(\mathbf{M})=0.00929 \ \mathbf{M}_{\mathbf{M}}) \\ \alpha(\mathbf{M})=0.00231 \ \mathbf{M}_{\mathbf{M}} \ \alpha(\mathbf{M})=0.000426 \ \mathbf{M}_{\mathbf{M}} \ \mathbf{M}_{$
^x 331.5 2	10 2					(M1)	0.253	

 \neg

From ENSDF

I

					184 H	g ε decay	20058	Sa40,1994Ib01,1978Ne10 (continued)
							$\gamma(^{12}$	⁸⁴ Au) (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	Comments
348.2 2	18 <i>3</i>	477.34	(≤3) ⁺	129.13	(1,2)+	M1	0.222	$\alpha(K)=0.183 \ 3; \ \alpha(L)=0.0300 \ 5; \ \alpha(M)=0.00695 \ 10; \ \alpha(N+)=0.00207 \ 3$ $\alpha(N)=0.001732 \ 25; \ \alpha(O)=0.000319 \ 5; \ \alpha(P)=2.16\times10^{-5} \ 3$ Mult: $\alpha(K)\exp=0.17 \ 5, \ K/L \approx 5.6 \ (20058a40)$
362.0 2	25 10	490.91	1+	129.13	(1,2)+	(M1)	0.200	$\alpha(K)=0.1645\ 24;\ \alpha(L)=0.0270\ 4;\ \alpha(M)=0.00626\ 9;\ \alpha(N+)=0.00186\ 3$ $\alpha(N)=0.001559\ 22;\ \alpha(O)=0.000287\ 4;\ \alpha(P)=1.95\times10^{-5}\ 3$ Mult : $\alpha(K)$ exp=0.16 & (2005Sa40)
372.2 [°] 2	92	600.60?		228.40	3-			
^x 392.4 [@] 2	110 20							
404.7 2	22 3	490.91	1^{+}	86.50	$(2,3)^+$			
419.6 4	52	490.91	1^{+}	71.87	$2^+, 3^+$			
422.7 2	42 6	490.91	1+	68.46	2+			$E\gamma = 421.8 \ 2, I\gamma = 59 \ 7 \ (1978 \text{Ne10}); \text{ May Be } 419.6\gamma + 422.7\gamma \text{ doublet.}$
[†] From 20)05Sa40, e	except As no	oted.					
[‡] From α	(K)exp val	ues given b	y 2005Sa	40, excep	ot as note	ed.		

 ∞

^{*} From α(K)exp values given by 2005Sa40, except as noted.
[#] From analysis of ce data by 2005Sa40.
[@] From 1978Ne10.
[&] For absolute intensity per 100 decays, multiply by 0.034 *3*.
^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{184}_{79}\mathrm{Au}_{105}\text{-}9$

9