			Tupo	Author	History	Literatura Cutoff Data						
			Full Evaluation	on Coral M. Baglin	NDS 111,275 (2010)	1-Oct-2009						
$Q(\beta^{-})=-3970$ Note: Curren For isotope s	0 25; So t evalua hift data	(n)=8201 ation has a, see 198	25; S(p)=1.8- used the follo 88Kr18, 1997	$4 \times 10^3 \ 3; \ Q(\alpha) = 5234 \ 5$ wing Q record -3970 Le22.	2012Wa38 24 8203 25 1835 27	7 5234 5 2003Au03,2009AuZZ.						
				1:	⁸⁴ Au Levels							
				Cross Ref	erence (XREF) Flags							
A 184 Hg ε decay B 184 Au IT decay C 165 Ho(24 Mg,5n γ) D 159 Tb(29 Si,4n γ)												
E(level) [†]	J ^{π‡}	T _{1/2}	XREF		Comm	nents						
0.0 ^e	(8-)	20.6 s 9	CD	%ε+%β ⁺ =100; %α≤0. μ=+2.07 2 (1997Le22, Q=+4.65 26 (1997Le2) Δ <r<sup>2>(197,184)=-0.06 <r<sup>2>^{1/2}(charge)=5.430 μ, Q: from LASER res (1992Ro21), time-res %α=0.013 3 (1995Bi0) whether the isomeric β=+0.264 14, deduced J^π: J=5 from hfs spectr level. Likely configu (1997Le22). T_{1/2}: weighted average 362γ(t)) and 19 s 2 (not known.</r<sup></r<sup>	016 1998Ro27,2000Sa58) 2,1998Ro27,2000Sa58) 54 <i>12</i> (1997Le22,1998Ro <i>4</i> (2004An14). onance ionization. Other solved on-line nuclear of 1). Other value: ≤0.022 : state or the g.s. (or bot by 1997Le22 from Q. rum in resonance ionization=(π 3/2[532])+(ν : of 21 s <i>1</i> (1997Za03; t (1992Ro21). Other: 12 s	b27), LASER spectroscopy. r μ : 2.0 to 4.0 from g=0.4-0.8 rientation. See also 1992St16. 3 (1970Ha18). However, it is unclear h) contribute to the observed α decay. tion spectroscopy; M3 68 γ from π =+ 68 7/2[514]), consistent with observed μ wo-component fit to 222 γ (t) and s 2 (1990Ed01); reason for discrepancy						
0.0+y ⁻ 0.0+z ^d 68.46 4	(5^+) 2 ⁺	47.6 s <i>I</i>	CD 4 AB	%ε+%β ⁺ =70 10; %IT= μ=+1.44 2 (1997Le22, Q=+1.90 16 (1997Le22, %α=0.013 3 (1995Bi0) whether the isomeric μ, Q: from LASER res (J/(J+1/2)), i.e., 1.45 time-resolved on-line β=+0.221 17, deduced J ^π : J=2 from hfs spectr M1(159γ)-M1(263γ) 3/2[532])+(v 1/2[521] T _{1/2} : weighted average I (1992Ro21; observ ce lines), 47 s 3 (192 6 (1969Ha03; observ data set. $\Delta < r^2 > (197, 184) = -0.10$ Others: -0.137 7 if L LASER induced desc	=30 <i>10</i> (1994RoZY); % 1998Ro27,2000Sa58) 2,1998Ro27,2000Sa58) 1). Other value: ≤0.022 ⇒ state or the g.s. (or bot onance ionization spectr 0 <i>15</i> (1988Kr18); 1.3 <i>3</i> e nuclear orientation. Se by 1997Le22 from Q. rum in resonance ionizat o cascade from π=+ 491 1), consistent with obset e of 48 s <i>1</i> (1997Za03; 6 //ed 363 <i>y</i> in Pt), 53.0 s <i>1</i> 70Ha18; α(t)). The unwor //oHa18; α(t)). The unwor //oHa18; α(t)). The unwor //oHa18; α(t)). The unwor //oHa18; α(t)). The unword //oHa18;	$\alpha \le 0.016$ (1995Bi01) 3 (1970Ha18). However, it is unclear h) contribute to the observed α decay. oscopy. Other μ : +1.813 <i>19</i> x (1992Ro21) from g=0.65 <i>14</i> , e also 1992St16. tion spectroscopy; π =+ based on level. Likely configuration=(π rved μ (1997Le22). 8γ (t)), 45.8 s <i>18</i> (1995Bi01; α (t)), 45 s 4 (1972Fi12; 163, 273, 362, 487 γ and eighted average is 47.8 s <i>14</i> . Other: 60 s 1^{84} Pt). See also the 1^{84} Au ε decay to 27), resonance ionization spectroscopy. ce ionization mass spectrometry and pulsed th datum from 1997Le22 after adjustment						

Continued on next page (footnotes at end of table)

¹⁸⁴Au Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				for adopted J=2; see also 1990Hi08.
				$\Delta < r^2 > (^{184} \text{Aug}, ^{184} \text{Au}^m) = -0.036 \ 3 \ (1997 \text{Le}22, 1998 \text{Ro}27).$
71.88 8	2+,3+		A	J^{n} : E1 156 γ from 3 ⁻ 228; M1 260 γ from 1 ⁺ ,2 ⁺ 331 level.
$80.6 + y^{\circ} 8$	(9^{-})		D	
86.51 8	(0) $(2.3)^+$		A	J^{π} : M1 18 γ to 2 ⁺ 68 level: (M1+E2) 42 γ from 3 ⁻ 228.
129.13 8	$(1,2)^+$		A	J^{π} : M1 61 γ to 2 ⁺ 68 level; (M1) 362 γ from 1 ⁺ 491 level.
146.48 11	4 ^{+#}		A	
156.8+y [@] 8	(10 ⁻)		D	
161.1+z ^d 10	(7 ⁺)		CD	
186.9 ^e 8	(7^+)		CD	
228.40 7	3-#	69 ns 6	A	Q≈0.75 from TDPAC but a $J^{\pi}=1^{-}$ state was assumed (1989Ra17). T _{1/2} : from 157γ-237γ(t) (1994Ib01) in ε decay. Other T _{1/2} : 67 ns 8 (H. Haas (1978), private communication to authors of 1994Ib01); 36 ns 6 (1978Ne10).
242.87 10	$(\leq 3)^+$		Α	J^{π} : M1 114 γ to (1,2) ⁺ 129 level.
254.25 7	2^{-}		A	J^{π} : E1 237 γ from 1 ⁺ 491; M1+E2 26 γ to 3 ⁻ 228 level.
301.807 10	(1,2,3) $(1)^+$		A A	J ^{**} : possible M1 487 to (2) 254. I^{π} : M1 238v to 2 ⁺ 68 level: log ft from 0 ⁺ probably ≈ 5.3
311.0 ^e 10	(8^+)		CD	
320.51 10	2 ^{+#}	<2 ns	A	T _{1/2} : from γ delayed coin (1978Ne10) in ε decay.
331.40 8	1+,2+		Α	J^{π} : M1 159 γ from 1 ⁺ 491 level; M1 263 γ to 2 ⁺ 68.
354.8+y ^{x} 8	(11^{-})		CD	
364.19 9	1'		A	J [*] : M1(+E2) 12/ γ from 1 [*] 491 level; M1 296 γ to 2 [*] 68; log f = 5.6 from 0 [*] in ε decay rules out 2 ⁺ .
381.49 9	$1^+, 2^+$		A	J^{π} : M1(+E0) 109 γ from 1 ⁺ 491 level; M1 313 γ to 2 ⁺ 68.
409.70 22			Α	J^{π} : 181 γ to (3 ⁻) 228 level.
$434.0+z^{a}$ 15	(9^+)		CD	
430.9° 11 477 34 19	(9^{+}) $(<3)^{+}$			I^{π} . M1 348v to (1.2) ⁺ 129 level
$478.3 + y^{(0)} 11$	$(\underline{3})$		CD	3 . WE STOP to (1,2) 125 lovel.
486.09 22	$\leq 3^+$		A	J^{π} : M1 105 γ to 1 ⁺ ,2 ⁺ 381 level.
490.91 7	1+	<2 ns	A	J^{π} : log <i>ft</i> =4.3 from 0 ⁺ in ε decay; allowed unhindered transition. T _{1/2} : from γ delayed coin in ε decay (1978Ne10).
600.60? 22	(10^{+})		A CD	J^{n} : possible 372γ to $(3)^{-}$ 228 level.
$742.7 \pm v^{\&} 10$	(10^{-})			
$799.6 + z^{d}$ 18	(13^{+})		CD	
810.7 ^e 12	(11^+)		CD	
848.4 ^{<i>f</i>} 12	(9 ⁺)		D	
869.1+y ^b 21	(11 ⁻)		D	
919.2+y [@] 11	(14 ⁻)		CD	
$1016.6 + y^a 18$	(12 ⁻)		D	
1016.9 ^J 13	(10^+) (12^+)		D	
$1017.1^{\circ} I2$ 1174.5f I2	(12^{+})			π (M1+E2) 551a to (10 ⁺) 624: 158a to (12 ⁺) 1017
$11/4.5^{1}$ 12 1180 5 1.5^{1} 10	(11^{-})		ע	J^{-} . (1011+E2) $JJ1\gamma$ 10 (101) 024; 158 γ 10 (121) 1017.
$1200.3 + y^2 - 10$ $1220.4 \pm y^2 - 12$	(15^{-})		U CD	
$1220.4 \pm y^{-1} 12$ $1231.0 \pm v^{-1} 12$	(13)		D	
$1240.4 + z^d 20$	(13 ⁺)		CD	
	. /			

¹⁸⁴Au Levels (continued)

E(level) [†]	J ^π ‡	XREF	Comments
1241.8 ^e 13	(13 ⁺)	CD	
1291.1 ^{<i>f</i>} 14	(12^{+})	CD	
1370.3+y ^a 16	(14^{-})	D	
1436.4 ^{<i>f</i>} 13	(13 ⁺)	CD	
1453.2+y [@] 13	(16 ⁻)	CD	
1483.6 ^e 13	(14^{+})	CD	
1571.8+y ⁰ 16	(15^{-})	D	
1588.3 ^J 14	(14^{+})	CD	
1740.9+z ^{<i>a</i>} 23	(15^+)	CD	
1742.5° 14	(15^{+})	CD	
$1730.1 \pm y^{\circ} 14$	(10)	CD CD	
$1794.2 + v^{a} 14$	(17) (16^{-})	D	
$1797.9^{f}.13$	(15^+)	CD	
$1979 0^{f} 14$	(15^{+})	CD	I^{π} : stretched O 495 γ to (14 ⁺) 1484
$2015.0 + v^{b} 15$	(10^{-})	D	
2018.4 ^e 17	(16^+)	CD	
2065.8+y [@] 16	(18 ⁻)	CD	
2205.7+y ^c 15		D	
2237.7 ^f 14	(17^{+})	CD	
2254.2+y ^a 15	(18-)	D	
$2287.9 + z^{a} 25$	(17^+)	CD	
2306.3 17	(17^{+})	CD	
$2382.2 + y \approx 16$	(19)	D	
2447.0^{3} 15	(18)	CD	
$2505.0+y^{\circ}$ 15	(19)	D	
2000.0 20	(10^+)	CD	
$2720.0^{\circ} 10$ $2732.2 \pm v^{\circ}$ 18	(19^{-})		
2752.2+y 10 2766.7+y ^a 15	(20^{-})	D	
$2875 + z^{d}$ 3	(19^+)	D	
2921.1 ^e 20	(19^+)	D	
2964.9 <i>f</i> 16	(20^{+})	CD	
3037.1+y ^b 18	(21-)	D	
3040.0+y ^{&} 19	(21^{-})	D	
3243.9 ^f 17	(21^{+})	CD	
3250.1 ^e 22	(20^{+})	D	
3320.4+y ^{<i>a</i>} 18	(22 ⁻)	D	
3396.3+y ^w 21	(22 ⁻)	D	
$3509 + z^{a} 3$	(21 ⁺)	D	
3525.5 ^J 18	(22^+)	CD	
$33/3.1^{\circ} 22$	(21^{+})	U	
3397.0+y ^o 21	(23)	D	
$3/32.7 + y^{2} 21$	(23)	D	
3811.0^{9} 18 $3915.6\pm v^{a}$ 21	(23^+) (24^-)	CD n	
5715.0TY 21	(2+)	U	

Adopted Levels,	Gammas	(continued)
-----------------	--------	-------------

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	J ^π ‡	XREF	E(level) [†]	Jπ‡	XREF
3939.1 ^e 24	(22+)	D	4818.0 ^{<i>f</i>} 20	(26 ⁺)	D	482.2+x ^g 13	(12 ⁻)	D
4078.3+y [@] 23	(24 ⁻)	D	4852.6+y ^b 25	(27 ⁻)	D	662.2+x ^h 13	(13 ⁻)	D
4140.4 ^{<i>f</i>} 19	(24 ⁺)	D	5172.5 ^f 22	(27^{+})	D	1005.7+x ^g 14	(14 ⁻)	D
4196.8+y ^b 23	(25 ⁻)	D	5247.8+y ^a 25	(28 ⁻)	D	1315.7+x ^h 15	(15 ⁻)	D
4205+z ^d 3	(23 ⁺)	D	5543+y [@] 3	(28 ⁻)	D	1635.5+x ^g 15	(16 ⁻)	D
4233.6 ^e 25	(23+)	D	5552.0 ^f 22	(28+)	D	1958.6+x ^h 16	(17 ⁻)	D
4453.6 ^f 19	(25+)	D	5576+y <mark>b</mark> 3	(29 ⁻)	D	2283.7+x ^g 17	(18 ⁻)	D
4494.7+y ^{&} 24	(25 ⁻)	D	5950.5 ^f 24	(29 ⁺)	D	2620.8+x ^h 17	(19 ⁻)	D
4556.1+y ^a 23	(26 ⁻)	D	6322.3 ^f 25	(30 ⁺)	D	2968.4+x ^g 18	(20 ⁻)	D
4656 ^e 3	(24+)	D	0.0+x ^g		D	3324.6+x ^h 19	(21-)	D
4795.1+y [@] 25	(26 ⁻)	D	176.5+x ^h 10	(11 ⁻)	D	3716.1+x ^g 19	(22 ⁻)	D

¹⁸⁴Au Levels (continued)

[†] From least-squares fit to adopted Ey; $\Delta E=1$ keV was assigned to Ey data for which authors did not state an uncertainty.

[‡] Values given without comment are from 165 Ho(24 Mg,5n γ) and/or 159 Tb(29 Si,4n γ). They are tentative values based on observed band properties (moments of inertia, alignments, in-band B(M1)/B(E2) ratios, etc.) compared with those for bands in nearby isotopes and isotones (e.g., ¹⁸²Ir, ¹⁸³Pt, ¹⁸⁶Au, ¹⁸⁸Au) and supported by cranking-model calculations.

[#] M1(170 γ)-E1(92 γ)-E1(82 γ)-M1(+E2)(147 γ) cascade from 1⁺ 491 level to 5⁺ g.s. establishes $J^{\pi}=2^+$ for 321 level, 3⁻ for 228 level and 4⁺ for 146 level.

[@] Band(A): $(\nu 9/2[624]) \otimes (\pi h_{9/2}), \alpha = 0$ band (2005Zh30). Exhibits staggering of D transition energies typical of the semidecoupled structures observed in 182 Ir and $i_{13/2}$ bands in 181 Os and 183 Pt. Alignment consistent with sum of alignments for $(v i_{13/2}, {}^{183}\text{Pt})$ and $(\pi h_{9/2}, {}^{183}\text{Au})$. The evaluator does not adopt the suggestion by 2004Ve10 that all J values in this band should Be 1 \hbar lower than those proposed in 1996Ib01 which are already 1 \hbar lower than the values adopted here based on 2005Zh30.

- & Band(a): $(\nu 9/2[624]) \otimes (\pi h_{9/2})$, $\alpha = 1$ band (2005Zh30). See comment on signature partner band.
- ^{*a*} Band(B): π =(-), α =0 band (2005Zh30).
- ^b Band(b): $\pi = (-), \alpha = 1$ band (2005Zh30).
- ^c Band(C): band fragment (2005Zh30).
- ^d Band(D): $(\gamma 1/2[521]) \otimes (\pi h_{9/2}), \alpha = 1$ band (1996Ib01). Doubly-decoupled band, closely resembling that in ¹⁸²Ir and in other neighboring nuclides.
- ^e Band(E): $v 7/2[514] + \pi 3/2[532]$ band (2004Zh38). Prolate $K^{\pi} = 5+?$ g.s. band; however, the high rigidity of the band favors K=4 instead. J values are based only on a comparison of high-J transition energies with those in the analogous band in ¹⁸²Ir; note, however, that the ¹⁸²Ir band exhibits much lower transition energies at low J.
- ^f Band(F): $(v i_{13/2}) \otimes (\pi i_{13/2})$ band (2004Zh38). Staggered band, suggesting coupling of the staggered ($v i_{13/2}$) excitation (known in this region) to a completely decoupled structure; in ¹⁸⁶Au, the latter structure is suggested to Be (π i_{13/2}), and the bands in ¹⁸⁴Au and ¹⁸⁶Au display similar structure.
- ^g Band(G): $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-1}$, $\alpha = 0$ band. $K^{\pi} = 11 ?$ oblate band; from 2004Zh16 only. Analogous to 11⁻ bands in odd-odd
- isotopes from ¹⁸⁶Au though ¹⁹⁴Au. ^h Band(g): $\pi h_{11/2}^{-1} \otimes \nu i_{13/2}^{-1}$, $K^{\pi} = 11 ?, \alpha = 1$ band. Oblate band; from 2004Zh16 and 2005Zh30. Analogous to 11⁻ bands in odd-odd isotopes from ¹⁸⁶Au though ¹⁹⁴Au.

						Adopted Le	evels, Gammas (con	ntinued)	
							$\gamma(^{184}\mathrm{Au})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α ^{&}	Comments
68.46	2+	68.46 4	100	0.0	5+	M3		3.19×10 ³	B(M3)(W.u.)=0.018 6
71.88	2+,3+	3.4 2	100	68.46	2+	(M1)			Mult.: from ce subshell ratios in IT decay. Mult.: N1 and O conversion lines observed in ε decay.
80.6+y	(9-)	80.6 [#]	100	0.0+y	(8-)				
83.5	(6 ⁺)	83.6 [#]	100	0.0	5+	(M1+E2)			Mult.: from unenumerated DCO data and intensity balance information in $({}^{29}Si,4n\gamma)$.
86.51	$(2,3)^+$	18.1 2	100	68.46	2+	M1		198 8	
129.13	$(1,2)^+$	42.7 1	7.3 15	86.51	$(2,3)^+$	M1(+E2)		1.4×10 ² 13	
		57.3 2	15 8	71.88	$2^+, 3^+$	E2+M1	≈1.2	≈40.9	
146 49	4+	60.6 I 74 59 2	$100\ 15$	68.46 71.88	2'	MI MI E21		5.60	
140.40	4	14.5 2	100 33	/1.00	2,3 5 ⁺	M1(+F2)		187	
156 8+v	(10^{-})	76.2 [#]	100 55	80.6+v	(9 ⁻)	1111(112)		1.0 /	
150.019	(10)	156.8 [#]		$0.0 \pm y$	(9^{-})				
161 1+7	(7^{+})	150.0	100	0.0+y	(5^+)				
186.9	(7^+)	101.1 103.6 [#]	100	83.5	(5^{+})				
100.9	(7)	186.8 [#]	100	0.0	(0) 5 ⁺	(F2)			Mult : Ω intrahand γ from (²⁹ Si 4n γ)
228.40	3-	81.9 1	5.9.8	146.48	4 ⁺	(E2) E1		0.670	$B(E1)(W.u.)=2.4\times10^{-7}$ 5
		141.8 <i>I</i>	3.1 4	86.51	$(2,3)^+$	(E1+M2)	0.39	2.42	$B(E1)(W.u.)=2.1\times10^{-8}$ 4; $B(M2)(W.u.)=0.73$ 13
		156.5 <i>1</i>	100 10	71.88	2+,3+	E1		0.1335	$B(E1)(W.u.)=5.8\times10^{-7} 9$
		160.0 <i>1</i>	2.3 5	68.46	2+	(E1)		0.1262	$B(E1)(W.u.)=1.2\times10^{-8}$ 3
242.87	$(\leq 3)^+$	113.7 <i>1</i>	100	129.13	$(1,2)^+$	M1		5.02	
254.25	2-	25.86 6	100 11	228.40	3^{-}	M1+E2	0.041 +11-15	74 4	
		182.5 Z 185 8 J	52 11 63 11	/1.88 68.46	2,3 2^+	E1 (F1)		0.0900	
301 86?	$(1^{-}2^{-}3^{-})$	$47.6^{b}2$	42 10	254.25	2-	(E1) M1		11 39 22	
501.00.	(1,2,5)	$59.0^{b}2$	100 20	23 1.23	$(<3)^+$	(F1)		0 346 6	
306.91	$(1)^{+}$	220.4 1	14.4 17	86.51	$(\underline{3})^+$	M1		0.775	
		238.4 2	100 17	68.46	2+	M1		0.624	
311.0	(8 ⁺)	124.0 [@]		186.9	(7^{+})				
		227.6 [#]		83.5	(6 ⁺)				
320.51	2+	92.0 1	100	228.40	3-	E1		0.511	$B(E1)(W.u.) > 8.7 \times 10^{-5}$
331.40	$1^+, 2^+$	244.8 2	10.5 23	86.51	$(2,3)^+$	[M1,E2]		0.39 20	
		259.5 1	100 12	71.88	$2^+, 3^+$	M1		0.494	
251 9	(11-)	202.9 I	129	156 9	(10^{-})	11/1 1		0.470	
334.8+Y	(11)	197.5		130.8+Y	(10)				

From ENSDF

 $^{184}_{79}\mathrm{Au}_{105}$ -5

γ (¹⁸⁴Au) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [†]	α &	Comments
354.8+v	(11^{-})	274.2 [#]		80.6+v	(9 ⁻)			
364.19	1+	277.7 2	15 <i>3</i>	86.51	$(2,3)^+$	M1	0.410	
		295.7 1	100 15	68.46	2+	M1	0.345	
381.49	$1^+, 2^+$	50.1 <i>1</i>	21 3	331.40	$1^+, 2^+$	M1	9.80	
		74.5 ^{<i>a</i>} 2	100 ^{<i>a</i>} 12	306.91	$(1)^+$	M1	3.07	
		127.3 2	82 12	254.25	$(<2)^{+}$	EI	0.225	
		138.5 2	18 0 61 <i>18</i>	242.87	$(\leq 3)^+$	(M1)	2.80	
		313 1 2	100 15	68 46	(2,3) 2 ⁺	M1	0.296	
409.70		181.3 2	100 10	228.40	3-	E1,E2	0.270	
434.0+z	(9^{+})	272.9 [@]	100	161.1+z	(7^{+})	,		
456.9	(9 ⁺)	145.9 [#]		311.0	(8 ⁺)			
		270.0 [#]		186.9	(7 ⁺)			
477.34	$(\leq 3)^+$	234.5 <i>3</i>	100 23	242.87	$(\leq 3)^+$	(M1+E2)	0.44 22	
		348.2 2	82 14	129.13	$(1,2)^+$	M1	0.222	
478.3+y	(12^{-})	123.4		354.8+y	(11 ⁻)			
		321.5 [#]		156.8+y	(10 ⁻)			
486.09	$\leq 3^+$	104.6 2	93 20	381.49	1+,2+	M1	6.38	
100.01		184.1 ⁰ 2	100 33	301.86?	$(1^-, 2^-, 3^-)$	M2	6.76	
490.91	1+	109.4 1	1.5 3	381.49	1+,2+	M1(+E0)	≈18	α : approximate value; from $\alpha(K) \exp x 1.3$.
		120.7 1	1.5 5	221 40	1+ 2+	$M1(\pm E2)$	2.8 9	$P(M1)(W_{11}) > 2.7 \times 10^{-5}$
		139.4 1	0.08	320.51	1,2 2+	M1	1.92	$B(M1)(Wu) > 3.7 \times 10^{-5}$
		236 7 1	100.10	254 25	2-	F1	0.0476	$B(F1)(Wu) > 1.2 \times 10^{-6}$
		248.0 2	0.9 3	242.87	$(<3)^+$	[M1.E2]	0.37 19	
		362.0 2	2.5 10	129.13	$(1,2)^+$	(M1)	0.200	$B(M1)(W.u.) > 1.3 \times 10^{-6}$
		404.7 2	2.2 3	86.51	$(2,3)^+$. ,		
		419.6 4	0.5 2	71.88	2+,3+			
		422.7 2	4.2 6	68.46	2+			
600.60?		372.2 ⁰ 2	100	228.40	3-			
623.6	(10^{+})	166.6#		456.9	(9+)			
		312.6#		311.0	(8 ⁺)			
742.7+y	(13-)	263.7 [@]		478.3+y	(12 ⁻)			
		387.8 [@]		354.8+y	(11 ⁻)			
799.6+z	(11^{+})	365.6 [#]	100	434.0+z	(9 ⁺)			
810.7	(11^{+})	187.1 [#]		623.6	(10 ⁺)	(M1+E2)		Mult.: D+Q from DCO ratio in $(^{29}Si, 4n\gamma)$ for intraband γ .
		353.8 [#]		456.9	(9 ⁺)			

$\gamma(^{184}Au)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [†]	Comments
848.4	(9^{+})	225.0 [#]		623.6	(10^{+})		
	(-)	537.3 [#]		311.0	(8+)		
919.2+v	(14^{-})	176.5 [#]		742.7+v	(13^{-})		
,		440.5 [#]		478.3+y	(12^{-})		
1016.9	(10^{+})	560.0 [#]	100	456.9	(9 ⁺)		
1017.1	(12^{+})	206.5 [#]		810.7	(11^{+})		
		393.5 [#]		623.6	(10 ⁺)		
1174.5	(11^{+})	157.0		1017.1	(12^{+})		
		157.7		1016.9	(10^+)		
		520.5		623.6	(9^{-})	(M1 + F2)	Mult δ : D+O from DCO in (²⁹ Si 4ny): $\delta < 0$. Significant mixing favors $\Delta \pi = n_0$
1180 5+v	(13^{-})	163.8 [#]		1016 6+v	(10^{-})	(1111122)	
1100.019	(15)	311.4 [#]		869.1+v	(12^{-})		
1220.4+v	(15^{-})	300 [@]		919.2+v	(14^{-})		
j.		476.9 [@]		742.7+y	(13 ⁻)		
1231.0+y	(14)	488.2 [#]	100	742.7+y	(13-)		
1240.4+z	(13 ⁺)	440.8 [@]	100	799.6+z	(11^{+})		
1241.8	(13 ⁺)	224.9 [#]		1017.1	(12^{+})		
		430.9 [#]		810.7	(11^{+})		
1291.1	(12^{+})	116.4 [#]	100	1174.5	(11^{+})		
1370.3+y	(14 ⁻)	353.7 <mark>#</mark>		1016.6+y	(12 ⁻)		
1436.4	(13^{+})	145.2 [#]		1291.1	(12^{+})		
		261.7 [#]		1174.5	(11^{+})		
1453.2+y	(16 ⁻)	232.8 [#]		1220.4+y	(15 ⁻)		
		534.1 [#]		919.2+y	(14-)		
1483.6	(14^{+})	242.6		1241.8	(13 ⁺)		
		466.7#		1017.1	(12+)		
1571.8+y	(15^{-})	201.5"		1370.3+y	(14 ⁻)		
1500.0	(1.4+)	391.3"		1180.5+y	(13^{-})		
1588.5	(14')	151.8" 207.1 #		1430.4	(13^{+})		
1740.0+-	(15^{+})	297.1" 500.5@	100	1291.1	(12^{+})		
1740.9+Z	(15)	260°	100	1240.4+Z	(13)		
1/42.3	(15)	200		1403.0	(14)		

From ENSDF

γ (¹⁸⁴Au) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [†]	Comments
1742.5	(15^{+})	499.9 [#]		1241.8	(13^{+})		
1756.1+y	(16)	525.0 [#]		1231.0+y	(14)		
		535.6 [#]		1220.4+y	(15 ⁻)		
1771.1+y	(17-)	317.9 [#]		1453.2+y	(16 ⁻)		
		550.7 [#]		1220.4+y	(15 ⁻)		
1794.2+y	(16 ⁻)	424.0 [#]		1370.3+y	(14 ⁻)		
		563.2 [#]		1231.0+y	(14)		
		573.8 [#]		1220.4+y	(15 ⁻)		
1797.9	(15 ⁺)	209.5 [#]		1588.3	(14^{+})		
		361.4 [#]		1436.4	(13+)		
		556.3 [#]		1241.8	(13 ⁺)		
1979.0	(16 ⁺)	181.2 [#]		1797.9	(15^{+})		
		390.6 [#]		1588.3	(14^{+})		
		495.1 [#]		1483.6	(14^{+})	Q	Mult.: from DCO in $({}^{29}Si,4n\gamma)$.
2015.0+y	(17 ⁻)	221#		1794.2+y	(16 ⁻)		
		259#		1756.1+y	(16)		
		443.1 [#]		1571.8+y	(15 ⁻)		
2018.4	(16 ⁺)	534.8 [#]	100	1483.6	(14^{+})		
2065.8+y	(18 ⁻)	611.6 [@]	100	1453.2+y	(16 ⁻)		
2205.7+y		449.3 "	100	1756.1+y	(16)		
2237.7	(17^{+})	258.7#		1979.0	(16 ⁺)		
		439.6"		1797.9	(15^+)		
2254 2 1 2	(18^{-})	493.0 460.1 <mark>#</mark>		1704.2 ± x	(15)		
223 4. 2+y	(10)	400.1 408.2 [#]		1756 1±v	(10)		
2287 9+7	(17^{+})	$547^{@}$	100	1730.1 + y 1740.9 + z	(10) (15^+)		
2306.3	(17^+)	563.8 [#]	100	1742.5	(15^+)		
2382 2+v	(17^{-})	316.7 [#]	100	2065 8+v	(13^{-})		
2302.219	(1))	611.1 [#]		1771 1+v	(10^{-})		
2447.0	(18^{+})	209.5 [#]		2237.7	(17^+)		
2	(10)	467.8 [#]		1979.0	(16^+)		
2505.0+v	(19^{-})	251 [#]		2254.2+v	(18^{-})		
	()	299 [#]		2205.7+v	(10)		
		~ ~					

γ (¹⁸⁴Au) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	
2505.0+y	(19 ⁻)	490.2 [#]		2015.0+y	(17^{-})	4196.8+y	(25^{-})	599.8 [#]	100	3597.0+y (23 ⁻)	
2608.0	(18+)	589.6 [#]	100	2018.4	(16 ⁺)	4205+z	(23+)	696.0 [#]	100	3509+z (21 ⁺)	
2726.6	(19 ⁺)	279.6 [#]		2447.0	(18^{+})	4233.6	(23^{+})	658.5 [#]	100	3575.1 (21 ⁺)	
		489.1 [#]		2237.7	(17^{+})	4453.6	(25 ⁺)	313.1 [#]		4140.4 (24+)	
2732.2+y	(20 ⁻)	666.7 [#]	100	2065.8+y	(18 ⁻)			642.6 [#]		3811.0 (23 ⁺)	
2766.7+y	(20 ⁻)	512.5 [#]		2254.2+y	(18 ⁻)	4494.7+y	(25 ⁻)	742 [#]	100	3752.7+y (23 ⁻)	
		561.0 [#]		2205.7+y		4556.1+y	(26 ⁻)	640.5 [#]	100	3915.6+y (24 ⁻)	
		701.2 [#]		2065.8+y	(18 ⁻)	4656	(24 ⁺)	717.0 [#]	100	3939.1 (22 ⁺)	
2875+z	(19 ⁺)	586.1 [#]	100	2287.9+z	(17^{+})	4795.1+y	(26 ⁻)	716.8 [#]	100	4078.3+y (24 ⁻)	
2921.1	(19 ⁺)	614.8 <mark>#</mark>	100	2306.3	(17^{+})	4818.0	(26^{+})	364.4 [#]		4453.6 (25 ⁺)	
2964.9	(20^{+})	238.3 [#]		2726.6	(19 ⁺)			677.7 [#]		4140.4 (24 ⁺)	
		517.8 [#]		2447.0	(18 ⁺)	4852.6+y	(27 ⁻)	655.8 [#]	100	4196.8+y (25 ⁻)	
3037.1+y	(21 ⁻)	532.1 [#]	100	2505.0+y	(19 ⁻)	5172.5	(27^{+})	718.9 [#]	100	4453.6 (25+)	
3040.0+y	(21 ⁻)	657.8 [#]	100	2382.2+y	(19 ⁻)	5247.8+y	(28 ⁻)	691.7 [#]	100	4556.1+y (26 ⁻)	
3243.9	(21^{+})	278.8 [#]		2964.9	(20^{+})	5543+y	(28 ⁻)	748 [#]	100	4795.1+y (26 ⁻)	
		517.4 [#]		2726.6	(19^{+})	5552.0	(28^{+})	734.0 [#]	100	4818.0 (26 ⁺)	
3250.1	(20^{+})	642.1 [#]	100	2608.0	(18 ⁺)	5576+y	(29 ⁻)	723 [#]	100	4852.6+y (27 ⁻)	
3320.4+y	(22 ⁻)	553.7 <mark>#</mark>	100	2766.7+y	(20^{-})	5950.5	(29^{+})	778.0 <mark>#</mark>	100	5172.5 (27 ⁺)	
3396.3+y	(22 ⁻)	664.1 [#]	100	2732.2+y	(20^{-})	6322.3	(30^{+})	770.3 [#]	100	5552.0 (28 ⁺)	
3509+z	(21^{+})	633.7 <mark>#</mark>	100	2875+z	(19 ⁺)	176.5+x	(11^{-})	176.5 [#]	100	0.0+x	
3525.5	(22^{+})	281.6 <mark>#</mark>		3243.9	(21^+)	482.2+x	(12^{-})	305.8 [#]	100	176.5+x (11 ⁻)	
		560.6 [#]		2964.9	(20^{+})	662.2+x	(13 ⁻)	180.1 [#]		482.2+x (12 ⁻)	
3575.1	(21^{+})	654.0 [#]	100	2921.1	(19 ⁺)			485.6 [#]		176.5+x (11 ⁻)	
3597.0+y	(23 ⁻)	559.9 <mark>#</mark>	100	3037.1+y	(21 ⁻)	1005.7+x	(14-)	343.6 [#]		662.2+x (13 ⁻)	
3752.7+y	(23 ⁻)	712.7 <mark>#</mark>	100	3040.0+y	(21 ⁻)			523.5 <mark>#</mark>		482.2+x (12 ⁻)	
3811.0	(23^{+})	285.7 <mark>#</mark>		3525.5	(22^{+})	1315.7+x	(15 ⁻)	310.2 [#]		1005.7+x (14 ⁻)	
		567.0 [#]		3243.9	(21^{+})			653.4 [#]		662.2+x (13 ⁻)	
3915.6+y	(24 ⁻)	595.2 [#]	100	3320.4+y	(22 ⁻)	1635.5+x	(16 ⁻)	319.8 [#]		1315.7+x (15 ⁻)	
3939.1	(22^{+})	689.0 [#]	100	3250.1	(20^{+})			629.8 <mark>#</mark>		1005.7+x (14 ⁻)	
4078.3+y	(24 ⁻)	682 [#]	100	3396.3+y	(22 ⁻)	1958.6+x	(17^{-})	323.2 [#]		1635.5+x (16 ⁻)	
4140.4	(24^{+})	329.5 [#]		3811.0	(23^{+})			642.8 [#]		1315.7+x (15 ⁻)	
		614.8 [#]		3525.5	(22 ⁺)	2283.7+x	(18 ⁻)	325.2 [#]		1958.6+x (17 ⁻)	

9

$\gamma(^{184}\text{Au})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
2283.7+x 2620.8+x	(18 ⁻) (19 ⁻)	648.3 [#] 337.2 [#] 662.0 [#]	1635.5+x 2283.7+x 1958.6+x	(16 ⁻) (18 ⁻) (17 ⁻)	2968.4+x 3324.6+x	(20 ⁻) (21 ⁻)	347.8 [#] 684.7 [#] 356.2 [#]	2620.8+x 2283.7+x 2968.4+x	(19 ⁻) (18 ⁻) (20 ⁻)	3324.6+x 3716.1+x	(21 ⁻) (22 ⁻)	703.5 [#] 391.3 [#] 748.0 [#]	2620.8+x 3324.6+x 2968.4+x	(19 ⁻) (21 ⁻) (20 ⁻)

[†] From ε decay, except as noted.
[‡] From ¹⁸⁴Hg ε decay.
[#] From ¹⁵⁹Tb(²⁹Si,4nγ); uncertainty unstated by authors.
[@] From (²⁴Mg,5nγ); uncertainty unstated by authors.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

(22-)		3716.1+x
(21-)		3324.6+x
(20 ⁻)		2968.4+x
(19-)		2620.8+x
(18 ⁻)		2283.7+x
(17 ⁻)		1958.6+x_
(16 ⁻)		1635.5+x
(15 ⁻)		1315.7+x
(14-)		1005.7+x
(13-)		662.2+x_
(12 ⁻)		482.2+x
(11 ⁻)		176.5+x
(30^+)	<i></i>	<u> </u>
(2.2.)		0322.5
(29+)		5950.5
(29 ⁻)		5576+y
$\frac{(28^+)}{(28^-)}$		5552.0
$\frac{(28)}{(28^{-})}$		5247 8+v
$\frac{(20^{\circ})}{(27^{+})}$	· · · · · · · · · · · · · · · · · · ·	5172.5
(27 ⁻)		4852.6+y
(26+)		4818.0
$\frac{(26^{-})}{(24^{+})}$		
$\frac{(24^{+})}{(26^{-})}$		4656
$\frac{(20^{-})}{(25^{-})}$		4330.1+ÿ 4494.7+v
$\frac{(25^{+})}{(25^{+})}$		4453.6
(25 ⁻)		4196.8+y
(24 ⁺)		
(24 ⁻)		4078.3+y
(22^+)		3939.1
$\frac{(24^{-})}{(22^{-})}$		<u> </u>
(23)	¥	5152.1+y
5+		0.0

.0 20.6 s 9

¹⁸⁴₇₉Au₁₀₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁴₇₉Au₁₀₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁸⁴₇₉Au₁₀₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{184}_{79}\rm{Au}_{105}$

¹⁸⁴₇₉Au₁₀₅

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁸⁴₇₉Au₁₀₅

¹⁸⁴₇₉Au₁₀₅