¹⁴⁴Sm(⁴²Ca,p2nγ):E=195,200 MeV 2004Ra28

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 134, 149 (2016)	15-Apr-2015				

2004Ra28: E=195, 200 MeV; 95% enriched ¹⁴⁴Sm stacked-foil target; JUROSPHERE II array (seven TESSA-type, 5 NORDBALL, 15 EUROGAM Phase I detectors); gas-filled recoil ion separator (RITU) used to separate fusion-evaporation nuclides from unwanted beamlike and fission nuclei; fusion evaporation residues implanted into Si strip detector covering 70% of recoil distribution at the focal plane; measured E γ , I γ , $\gamma\gamma$ coin, α , α -(recoil) coin. Statistics inadequate to unambiguously assign mult from angular correlation data.

¹⁸³Tl Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
628.7 ^{&}	9/2-	53.3 ms <i>3</i>	 %IT=? E(level): level energy fixed At adopted value for least-squares fit. T_{1/2}: From exponential fit to time difference between pairs of recoils and α decays, assuming exponential background (2004Ra28). Three α groups observed by 2004Ra28 from the decay of 9/2⁻ isomer with Eα (relative Iα): 6330 10 (78 9); 6384 16 (16 4); 6456 15 (4 2).
905.4 ^{&} 3	$(11/2^{-})$		
927.70 [@] 25	(9/2 ⁻)		
975.3 [#] 3	$(13/2^+)$		
1027.70 [@] 25	$(13/2^{-})$		
1095.7 ^{<i>a</i>} 5	$(11/2^{-})$		
1135.1 [#] 5	$(17/2^+)$		
1159.7 ^{&} 5	$(13/2^{-})$		
1332.7 4	$(17/2^{-})$		
1395.1# 6	$(21/2^+)$		
1442.4 ^a 6	$(15/2^{-})$		
1467.2°C 6 1597.3 6 1669.6 7	(15/2 ⁻)		
$1713.7^{@}5$	$(21/2^{-})$		
$1749.9^{\#}$ 6	$(25/2^+)$		
1855.3 ^{<i>a</i>} 8	$(19/2^{-})$		
2168.8 [@] 7	$(25/2^{-})$		
2188.8 [#] 8 2268.3 8	(29/2 ⁺)		
2337.1 ^{<i>a</i>} 10 2344.9 8	(23/2 ⁻)		
2688.7 [@] 9	$(29/2^{-})$		
2703.3 [#] 9	$(33/2^+)$		
2882.8^{a} 11	$(27/2^{-})$		
3284.6# 11	$(37/2^+)$		
3315.8 ^w 10	$(33/2^{-})$		
3925.4 [#] 12	$(41/2^+)$		
0+x ⁰			E(level): level energy held fixed In least-squares fit. Possible γ to 902 level.
$257.2 + x^{D}$ 3			
$406.5 + x^{b} 5$			Possible γ to 1156 level.
579.1+x ^b 6			

¹⁴⁴Sm(⁴²Ca,p2nγ):E=195,200 MeV 2004Ra28 (continued)

¹⁸³Tl Levels (continued)

E(level)[†]

807.5+x^b 6

1035.9+x^b 7

[†] From least-squares fit to $E\gamma$ assuming adopted E(level)=628.7 for the 9/2⁻ isomer.

[‡] Authors' suggested values.

[#] Band(A): $\pi i_{13/2}$ yrast band.

^(a) Band(B): π h_{9/2} prolate band (?). Band assignment based on systematics, e.g., in ^{185,187}Tl.

& Band(C): π h_{9/2} oblate band.

^{*a*} Band(D): π f_{7/2} prolate band (?). Band assignment based on systematics, for example in ^{185,187}Tl.

^b Band(E): Tentative γ sequence. The ordering of the transitions within this cascade is uncertain, so level energies may differ from those shown here.

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	α^{\ddagger}	Comments
69.2 [#] 2		975.3	$(13/2^+)$	905.4	$(11/2^{-})$	[E1]	0.239	
100.0 3	0.4 2	1027.70	$(13/2^{-})$	927.70	$(9/2^{-})$	[E2]	5.92 12	
149.3 <i>3</i>	<1	406.5+x		257.2+x				
159.8 <i>3</i>	8.4 8	1135.1	$(17/2^+)$	975.3	$(13/2^+)$	[E2]	0.914 15	
172.6 3	<1	579.1+x		406.5+x	,			
228.4 <i>3</i>	< 0.2	807.5+x		579.1+x				
228.4 <i>3</i>	< 0.2	1035.9+x		807.5+x				
254.3 <i>3</i>	5.7 18	1159.7	$(13/2^{-})$	905.4	$(11/2^{-})$	[M1]	0.617	
257.2 3	<1	257.2+x		0+x				
260.0 3	100	1395.1	$(21/2^+)$	1135.1	$(17/2^+)$	[E2]	0.1718	
276.7 3	8.4 8	905.4	$(11/2^{-})$	628.7	9/2-	[M1]	0.489	E_{γ} : also reported as 277.0 (table III of
								2004Ra28) in delayed spectrum.
299.0 <i>3</i>	8.4 8	927.70	$(9/2^{-})$	628.7	9/2-	[E2+M1]	0.25 15	
305.0 <i>3</i>	9.8 <i>23</i>	1332.7	$(17/2^{-})$	1027.70	$(13/2^{-})$			
307.5 <i>3</i>	1.9 12	1467.2	$(15/2^{-})$	1159.7	$(13/2^{-})$			
346.6 <i>3</i>		975.3	$(13/2^+)$	628.7	9/2-	[M2]	0.923	
346.7 <i>3</i>	6.9 20	1442.4	$(15/2^{-})$	1095.7	$(11/2^{-})$			
354.8 <i>3</i>	78 4	1749.9	$(25/2^+)$	1395.1	$(21/2^+)$			
381.0 <i>3</i>	8.0 14	1713.7	$(21/2^{-})$	1332.7	$(17/2^{-})$			
399.0 <i>3</i>	4.0 20	1027.70	$(13/2^{-})$	628.7	9/2-			
412.9 5	3.7 13	1855.3	$(19/2^{-})$	1442.4	$(15/2^{-})$			
438.9 5	21.4 20	2188.8	$(29/2^+)$	1749.9	$(25/2^+)$			
455.1 5	5.3 12	2168.8	$(25/2^{-})$	1713.7	$(21/2^{-})$			
467.0 5	8.4 8	1095.7	$(11/2^{-})$	628.7	9/2-			
481.8 5	2.2 10	2337.1	$(23/2^{-})$	1855.3	$(19/2^{-})$			
514.5 5	7.0 12	2703.3	$(33/2^+)$	2188.8	$(29/2^+)$			
518.4 5	<0.2	2268.3	(0.0 /0 -)	1749.9	$(25/2^+)$			
519.9 5	<0.2	2688.7	$(29/2^{-})$	2168.8	$(25/2^{-})$			
534.5 5	53	1669.6		1135.1	$(17/2^+)$			E_{γ} : from table III of 2004Ra28; 534.6 in authors' figure 6.
545.7 5	1.6 9	2882.8	$(27/2^{-})$	2337.1	$(23/2^{-})$			
581.3 5	<1	3284.6	$(37/2^+)$	2703.3	$(33/2^+)$			
595.0 5	< 0.2	2344.9		1749.9	(25/2 ⁺)			E_{γ} : from table III of 2004Ra28; 595.4 in authors' figure 6.
622.0 [#] 5	<1	1597.3		975.3	$(13/2^+)$			-

 $\gamma(^{183}\text{Tl})$

¹⁴⁴Sm(⁴²Ca,p2nγ):E=195,200 MeV 2004Ra28 (continued)

$\gamma(^{183}\text{Tl})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
627.1 <i>5</i>	<0.2	3315.8	$(33/2^{-})$	2688.7	(29/2 ⁻)
640.8 <i>5</i>	<1	3925.4	$(41/2^{+})$	3284.6	(37/2 ⁺)

[†] Based on authors' estimate of 0.3 keV for low E γ , rising to 0.5 keV at high energy, the evaluator assigns 0.3 keV if E γ <400 keV and 0.5 keV otherwise.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

 $^{183}_{81}{\rm Tl}_{102}$

4

 $^{183}_{81}{\rm Tl}_{102}$

¹⁴⁴Sm(⁴²Ca,p2nγ):E=195,200 MeV 2004Ra28

 $^{183}_{81}{\rm Tl}_{102}$