		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 134, 149 (2016)	15-Apr-2015

Parent: ¹⁸³Au: E=0.0; $J^{\pi}=(5/2)^-$; $T_{1/2}=42.8$ s *10*; $Q(\varepsilon)=5583$ *18*; $\%\varepsilon+\%\beta^+$ decay=99.45 *25*

The decay scheme was derived by 1989Ro21 on the basis of $\gamma\gamma$ -coincidence data and conversion electron data. Significant unplaced transition intensity and the lack of level data above 2 MeV, suggest that the decay scheme may be incomplete. Total energy release for this decay scheme is 6621 *320* cf. QxBR=5552 *23*.

¹⁸³Pt Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	Comments
0.0 ^e	1/2-	6.5 min 10	$T_{1/2}$: from Adopted Levels.
34.57 ^{&} 9	7/2-	43 s 5	$\%\epsilon + \%\beta^+ = 96.9 \ \delta; \ \%\alpha < 3 \times 10^{-4}; \ \% IT = 3.1 \ \delta \ (1998Ro32)$ T _{1/2} : from Adopted Levels.
84.66 ^e 7	3/2-		
96.11 ^e 7	5/2-		
149.77 ^{&} 10	(9/2)-		
195.76 [@] 11	$(9/2)^+$	>50 ns	$T_{1/2}$: in $\gamma\gamma(t)$, the 161 γ is strongly attenuated (1984Ma41).
243.54 [@] 14	$(11/2)^+$		
289.60 ^{&} 12	$(11/2)^{-}$		
298.82 ^e 8	7/2-		
314.25 ^e 10	9/2-		
347.62 ⁰ 8	(5/2)-		
373.16 ^{<i>a</i>} 9	(7/2)-		
375.30 [#] 12	$(7/2)^+$		
471.56 ⁰ 10	$(7/2)^{-}$		
531.50 [#] 13	$(9/2)^+$		
535.82 ^{<i>a</i>} 12	$(9/2^{-})$		
556.55° 13	3/2		
568.70° 11	(1/2)		
613 16 15	$(3/2 5/2)^{-}$		
617.40° 12	$(5/2)^{-}$		
636.29 15	$(7/2^+, 9/2, 11/2^-)$		
650.17 ^d 11	$(3/2)^{-}$		
678.46 <i>13</i>	$(3/2, 5/2)^{-}$		
693.02 11	$(3/2,5/2)^{-}$		
702.37 14	$(1/2)^{-}$		
750.78 10	$(\geq 3/2)$		
/62.05 11	(3/2) $(3/2 5/2 7/2)^{-}$		
819.89 16	$(7/2,9/2)^{-}$		
824.82 16	(5/2,7/2,9/2)-		
835.38 13	$(3/2, 5/2)^{-}$		
847.35 23	$(7/2,9/2,11/2)^{-}$		
8/9.66 14	(1/2, 9/2)		
930.53 15	-		
931.94 15	$(7/2, 9/2)^{-}$		
963.79 16	(7/2,9/2,11/2)-		
978.43 17	$(7/2)^{-}$		
989.81 24	()		

¹⁸³Au ε decay 2000Ro41,1989Ro21,1984Ma41 (continued)

¹⁸³Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
998.42 16	$(\geq 7/2)$	1844.3 3	-	1940.49 15	$(3/2, 5/2)^{-}$
1024.57 17	$(5/2,7/2,9/2)^{-}$	1847.53 23		1948.69 19	$(5/2^{-},7/2)$
1035.04 15	$(7/2, 9/2)^{-}$	1884.2 <i>3</i>	$(3/2, 5/2, 7/2)^+$	1956.63 <i>13</i>	$(7/2)^{-}$
1057.97 22		1892.3 <i>3</i>	$(\leq 7/2)$	1968.60 23	$(3/2, 5/2, 7/2)^{-}$
1071.28 17	$(5/2,7/2)^{-}$	1907.5 4	$(5/2,7/2)^{-}$	1970.71 <i>15</i>	$(7/2)^{-}$
1126.38 16		1912.81 <i>19</i>	$(5/2^{-},7/2^{-})$	1979.90 <i>23</i>	
1810.7 <i>3</i>		1914.68 <i>19</i>	$(3/2, 5/2)^{-}$		
1814.4 <i>3</i>	$(3/2, 5/2, 7/2)^{-}$	1938.56 16	$(7/2)^{-}$		

[†] From least-squares fit to $E\gamma$, including uncertainly-placed transitions (note that their exclusion would change E(level) by at most 0.2 keV).

[‡] From Adopted Levels.

- # Band(A): 7/2[633] band.
- [@] Band(B): 9/2[624] band.
- [&] Band(C): 7/2[514] band.
- ^a Band(D): 7/2[503] band.
- ^b Band(E): 5/2[512] band.
- ^c Band(F): 3/2[512] band.
- ^d Band(G): 1/2[510] band.
- ^e Band(H): 1/2[521] g.s. band.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ ‡	Ie [‡]	Log ft	$\mathrm{I}(\varepsilon \! + \! \beta^+)^{\dagger \ddagger}$	Comments
(3603 18)	1979.90	0.080 17	0.29 6	6.69 10	0.37 8	av Eβ=1164.8 81; εK=0.639 3; εL=0.1097 6; εM+=0.03485 17
(3612 18)	1970.71	0.61 9	2.2 3	5.81 7	2.8 4	av Eβ=1169.0 81; εK=0.637 3; εL=0.1094 6; εM+=0.03476 17
(3614 18)	1968.60	0.77 15	2.7 5	5.72 9	3.5 7	av Eβ=1169.9 81; εK=0.637 3; εL=0.1094 6; εM+=0.03474 17
(3626 18)	1956.63	2.1 2	7.3 9	5.29 6	9.4 11	av E β =1175.3 81; ε K=0.635 3; ε L=0.1090 6; ε M+=0.03464 17
(3634 18)	1948.69	0.38 7	1.3 2	6.04 8	1.7 3	av $E\beta$ =1178.9 81; ε K=0.634 3; ε L=0.1088 6; ε M+=0.03456 17
(3643 18)	1940.49	0.83 11	2.9 4	5.70 6	3.7 5	av Eβ=1182.5 81; εK=0.632 3; εL=0.1086 6; εM+=0.03449 17
(3644 18)	1938.56	0.72 11	2.5 4	5.77 7	3.2 5	av Eβ=1183.4 81; εK=0.632 3; εL=0.1085 6; εM+=0.03447 17
(3668 18)	1914.68	0.76 12	2.5 4	5.76 7	3.3 5	av Eβ=1194.1 81; εK=0.628 3; εL=0.1078 6; εM+=0.03425 17
(3670 18)	1912.81	0.23 9	0.8 3	6.28 18	1.0 4	av Eβ=1194.9 81; εK=0.628 3; εL=0.1078 6; εM+=0.03423 17
(3676 18)	1907.5	1.1 2	3.8 7	5.59 8	4.9 9	av Eβ=1197.3 81; εK=0.627 3; εL=0.1076 6; εM+=0.03418 17
(3691 18)	1892.3	0.14 3	0.47 8	6.50 8	0.61 11	av E β =1204.1 81; ε K=0.625 3; ε L=0.1072 6; ε M+=0.03404 17
(3699 18)	1884.2	0.64 12	2.1 4	5.86 9	2.7 5	av Eβ=1207.8 81; εK=0.623 3; εL=0.1069 6; εM+=0.03397 17
(3735 18)	1847.53	0.16 4	0.51 11	6.48 10	0.67 15	av E β =1224.2 81; ε K=0.617 3; ε L=0.1059 6; ε M+=0.03363 17

¹⁸³Au ε decay 2000Ro41,1989Ro21,1984Ma41 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(3739 18)	1844.3	0.21 4	0.65 11	6.37 8	0.86 15	av Eβ=1225.7 81; εK=0.617 3; εL=0.1058 6;
(3769 18)	1814.4	0.16 3	0.50 9	6.49 8	0.66 12	εM +=0.03360 <i>17</i> av E β =1239.1 <i>81</i> ; εK =0.612 <i>3</i> ; εL =0.1049 <i>6</i> ; εM +=0.03332 <i>17</i>
(3772 18)	1810.7	0.075 15	0.22 4	6.84 9	0.30 6	av $E\beta$ =1240.8 81; ε K=0.611 3; ε L=0.1048 6; ε M ₁ =0.0328 17
(4457 18)	1126.38	0.16 5	0.25 7	6.94 13	0.41 12	av $E\beta$ =1550.2 82; ε K=0.497 3; ε L=0.0847 6; ε M+=0.02689 17
(4512 18)	1071.28	0.51 9	0.75 13	6.47 8	1.26 22	av $E\beta$ =1575.3 82; ε K=0.488 3; ε L=0.0832 6; ε M+=0.02639 17
(4525 18)	1057.97	0.10 2	0.15 2	7.18 7	0.25 4	av $E\beta$ =1581.4 82; ε K=0.486 3; ε L=0.0828 5;
(4548 18)	1035.04	0.21	0.31 <i>1</i>	6.868 15	0.52 15	av $E\beta$ =1591.8 82; ε K=0.482 3; ε L=0.0821 5; ε M+=0.02607 17
(4558 18)	1024.57	0.25 6	0.36 8	6.80 10	0.61 14	av $E\beta$ =1596.6 82; ε K=0.480 3; ε L=0.0818 5; ε M+-0.02597 17
(4585 18)	998.42	0.17 2	0.23 6	6.99 11	0.40 10	av E β =1608.5 82; ϵ K=0.476 3; ϵ L=0.0811 5; ϵ M+=0.02574 16
(4593 18)	989.81	0.11 2	0.15 3	7.18 9	0.26 5	av E β =1612.4 82; ϵ K=0.475 3; ϵ L=0.0809 5; ϵ M+=0.02566 16
(4605 18)	978.43	0.20 6	0.27 8	6.93 13	0.47 14	av $E\beta$ =1617.6 82; ε K=0.473 3; ε L=0.0806 5; ε M+=0.02556 16
(4619 18)	963.79	0.24 4	0.32 5	6.86 7	0.56 9	av $E\beta$ =1624.3 82; ϵ K=0.470 3; ϵ L=0.0801 5;
(4651 18)	931.94	0.49 6	0.65 7	6.56 5	1.14 13	av $E\beta$ =1638.9 83; ϵ K=0.465 3; ϵ L=0.0793 5;
(4652 18)	930.53	0.05 3	0.07 5	7.5 3	0.12 8	$\epsilon_{\text{M}} = 0.02515 \ 10^{-10}$ av E $\beta = 1639.4 \ 83; \ \epsilon_{\text{K}} = 0.465 \ 3; \ \epsilon_{\text{L}} = 0.0792 \ 5;$ $\epsilon_{\text{M}} = 0.02514 \ 16^{-10}$
(4664 18)	919.00	0.23 10	0.29 13	6.91 20	0.52 23	av $E\beta = 1644.7$ 83; $\epsilon K = 0.463$ 3; $\epsilon L = 0.0789$ 5;
(4703 18)	879.66	0.52 9	0.66 12	6.56 8	1.18 21	av $E\beta$ =1662.6 83; ϵ K=0.457 3; ϵ L=0.0778 5;
(4736 18)	847.35	0.16 2	0.20 2	7.09 5	0.36 4	$\epsilon_{M+=0.02409}$ 16 av E β =1677.4 83; $\epsilon_{K=0.452}$ 3; $\epsilon_{L=0.0770}$ 5; $\epsilon_{M+=0.02441}$ 16
(4748 18)	835.38	0.63 10	0.77 13	6.51 8	1.40 23	av E β =1682.9 83; ϵ K=0.450 3; ϵ L=0.0766 5;
(4758 18)	824.82	0.32 5	0.38 6	6.81 7	0.70 11	av $E\beta = 1687.7 \ 83; \ \varepsilon K = 0.449 \ 3; \ \varepsilon L = 0.0763 \ 5;$
(4763 18)	819.89	0.38 6	0.46 7	6.73 7	0.84 13	av $E\beta$ =1689.9 83; ε K=0.448 3; ε L=0.0762 5;
(4781 18)	801.85	0.50 6	0.59 8	6.63 6	1.09 14	ϵ M+=0.02418 <i>To</i> av E β =1698.2 83; ϵ K=0.445 3; ϵ L=0.0757 5;
(4821 18)	762.05	0.83 19	0.97 22	6.42 10	1.8 4	ϵ M+=0.02402 16 av E β =1716.4 83; ϵ K=0.439 3; ϵ L=0.0747 5;
(4852 18)	730.78	0.61 9	0.69 10	6.57 7	1.30 19	ϵ M+=0.02369 16 av E β =1730.7 83; ϵ K=0.434 3; ϵ L=0.0738 5;
(4881 18)	702.37	1.2 2	1.3 2	6.30 7	2.5 4	$\varepsilon M += 0.02342$ 16 av E $\beta = 1743.7$ 83; $\varepsilon K = 0.430$ 3; $\varepsilon L = 0.0731$ 5; $\varepsilon M += 0.02210$ 15
(4890 18)	693.02	1.5 4	1.6 4	6.21 12	3.1 8	$ε_{M+=0.02319}$ rs av Eβ=1747.9 83; εK=0.428 3; εL=0.0728 5; $ε_{M+=0.02311}$ s
(4905 18)	678.46	0.81 14	0.89 16	6.47 8	1.7 3	$\epsilon_{\text{M}+=0.02511}$ av $\epsilon_{\beta}=1754.6$ 83; $\epsilon_{\text{K}}=0.426$ 3; $\epsilon_{\text{L}}=0.0725$ 5;
(4933 18)	650.17	0.73 15	0.77 16	6.54 9	1.5 3	av E β =1767.6 83; ε K=0.422 3; ε L=0.0717 5; ε M=-0.02275 15
(4947 18)	636.29	0.20 5	0.21 5	7.11 11	0.41 10	av E β =1773.9 83; ϵ K=0.420 3; ϵ L=0.0714 5; ϵ M=-0.02264 15
(4966 18)	617.40	1.0 4	1.0 5	6.42 20	2.0 9	av $E\beta$ =1782.6 83; ε K=0.417 3; ε L=0.0709 5;

Continued on next page (footnotes at end of table)

			183 Au ε	decay 20	00Ro41,1989	Ro21,1984Ma41 (continued)
				ϵ_{ij}	β^+ radiations ((continued)
E(decay)	E(level)	Ιβ ⁺ ‡	Iɛ‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(4970 18)	613.16	0.38 9	0.40 9	6.83 10	0.78 18	ε M+=0.02249 <i>15</i> av E β =1784.6 <i>83</i> ; ε K=0.416 <i>3</i> ; ε L=0.0708 <i>5</i> ; ε M+=0.02245 <i>15</i>
(4972 18)	611.39	0.19 3	0.20 4	7.14 8	0.39 7	av E β =1785.3 83; ε K=0.416 3; ε L=0.0707 5; ε M+-0.02244 15
(5014 18)	568.70	0.29 9	0.28 10	6.98 15	0.58 19	av $E\beta$ =1804.9 83; ε K=0.410 3; ε L=0.0696 5; ε M+=0.02209 15
(5026 18)	556.55	0.50 15	0.50 15	6.74 13	1.0 3	av E β =1810.5 83; ε K=0.408 3; ε L=0.0693 5; ε M+=0.02199 15
(5047 18)	535.82	0.52 8	0.52 8	6.73 7	1.04 16	av E β =1820.0 83; ε K=0.405 3; ε L=0.0688 5; ε M+=0.02183 15
(5111 18)	471.56	2.0 4	1.8 3	6.19 8	3.8 7	av E β =1849.4 83; ε K=0.396 3; ε L=0.0672 5; ε M+=0.02132 15
(5208 18)	375.30	2.0 11	1.7 10	6.24 25	3.7 21	av $E\beta$ =1893.7 83; ε K=0.382 3; ε L=0.0649 5; ε M+=0.02058 14
(5210 18)	373.16	1.4 4	1.3 4	6.37 13	2.7 8	av $E\beta$ =1894.6 83; ε K=0.382 3; ε L=0.0648 5; ε M+=0.02056 14
(5269 18)	314.25	0.7 5	0.6 4	6.7 3	1.3 9	av $E\beta$ =1921.7 83; ε K=0.3738 25; ε L=0.0634 5; ε M+=0.02012 14
(5284 18)	298.82	2.5 8	2.1 7	6.17 15	4.6 15	av $E\beta$ =1928.9 83; ε K=0.3717 25; ε L=0.0631 5; ε M+=0.02001 14
(5293 18)	289.60	0.71 16	0.59 14	6.72 10	1.3 3	av E β =1933.1 83; ε K=0.3704 25; ε L=0.0629 5; ε M+=0.01994 14
(5433 18)	149.77	2.6 13	2.0 9	6.21 21	4.6 22	av E β =1997.5 83; ε K=0.3519 24; ε L=0.0597 4; ε M+=0.01893 /3
(5487 18)	96.11	52	32	5.99 22	84	av E β =2022.3 83; ε K=0.3450 23; ε L=0.0585 4; ε M+=0.01855 /3
(5498 18)	84.66	54	4 3	5.9 4	97	av E β =2027.5 83; ε K=0.3436 23; ε L=0.0583 4; ε M+=0.01847 13
(5548 18)	34.57	<5.9	<4.1	>5.9	<10	av E β =2050.7 84; ε K=0.3373 23; ε L=0.0572 4; ε M+=0.01813 13

[†] Calculated from intensity balance, assigning $1/2I\gamma \pm 1/2I\gamma$ to transitions with uncertain placements. Significant unplaced intensity casts doubt on the weaker branchings and their derived log *ft* values.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{183}{\rm Pt})$

Iγ normalization: calculated assuming Σ (I(γ+ce) to g.s.+34.5)=95% 5, based on expectation of negligible β feeding to g.s. (Δ J=2, $\Delta\pi$ =No) and <10% feeding to 34.5 level; the latter assumes comparable feeding to the 7/2⁻, 5/2⁻ and 3/2⁻ members of the 1/2[521] band in ¹⁸³Pt. 0.5Iγ±0.5Iγ was assumed for tentatively-placed transitions feeding the g.s. and 35 level. Note that the unplaced intensity is consistent with no net feeding to the lower-lying levels.

Eγ [‡]	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	$I_{(\gamma+ce)}^{a}$	Comments
11.4 2	&	96.11	5/2-	84.66	3/2-	[E2]		4.3×10 ⁴ 4	≈150	ce(M)/(γ +ce)=0.78 5 ce(N)/(γ +ce)=0.189 23; ce(O)/(γ +ce)=0.029 4; ce(P)/(γ +ce)=1.91×10 ⁻⁵ 25 α (M)=3.4×10 ⁴ 4; α (N)=8.1×10 ³ 8; α (O)=1.24×10 ³ 12; α (P)=0.82 7
35.0		34.57	7/2-	0.0	1/2-	M3		1.713×10 ⁵		$\alpha(L)=1.212\times10^5 \ 17; \ \alpha(M)=3.86\times10^4 \ 6$ $\alpha(N)=9.87\times10^3 \ 14; \ \alpha(O)=1555 \ 22; \ \alpha(P)=27.3 \ 4$ $E_{\gamma}: from 2000Ro41 conversion electron data. Mult : from Adopted Gammas$
46.1 2	1.20 18	195.76	(9/2)+	149.77	(9/2)-	[E1]		0.659 13		$\alpha(L)=0.507 \ 10; \ \alpha(M)=0.1191 \ 22$ $\alpha(N)=0.0286 \ 6; \ \alpha(O)=0.00455 \ 9; \ \alpha(P)=0.000153$
48.0 2	2.2 3	243.54	(11/2)+	195.76	(9/2)+	M1(+E2)	0.27 8	19 <i>6</i>		$\alpha(L)=14 4$; $\alpha(M)=3.5 11$ $\alpha(N)=0.9 3$; $\alpha(O)=0.14 4$; $\alpha(P)=0.00508 21$ Mult., δ : from L1:L2:L3=240 50:180 40:130 30 (2000Ro41). α : consistent with $\alpha \approx 15$ from I(γ +ce)=35 5 assuming intensity balance through the 243 level (for which the $\Delta J=3$, $\Delta \pi$ =yes ε feeding is presumed to be negligible) and measured I γ =2.2 3.
84.6 <i>1</i>	51 8	84.66	3/2-	0.0	1/2-	E2		9.93		$\begin{aligned} &\alpha(\mathbf{K}) = 0.738 \ 11; \ \alpha(\mathbf{L}) = 6.90 \ 11; \ \alpha(\mathbf{M}) = 1.79 \ 3 \\ &\alpha(\mathbf{N}) = 0.435 \ 7; \ \alpha(\mathbf{O}) = 0.0676 \ 11; \ \alpha(\mathbf{P}) = 0.0001343 \\ &20 \\ &\% \mathbf{I}\gamma = 3.5 \ 4 \ \text{assuming recommended normalization.} \\ &\text{Mult.: } \mathbf{L}12:\mathbf{L}3 = 70:71, \ \alpha(\mathbf{L}3)\exp=3.0 \\ &(\mathbf{1984Ma41}); \ \mathbf{L}1:\mathbf{L}2:\mathbf{L}3 = 100 \ 30:1600 \ 300:1500 \\ &300 \ \text{so} \ \delta(\mathbf{M}1,\mathbf{E}2) > 3 \ (2000 \text{Ro}41). \end{aligned}$
-87.2 2 96.0 1	1.50 <i>23</i> 44 7	96.11	5/2-	0.0	1/2-	E2		5.80		$\begin{split} &\alpha(\mathrm{K}){=}0.736 \ 11; \ \alpha(\mathrm{L}){=}3.81 \ 6; \ \alpha(\mathrm{M}){=}0.984 \ 15 \\ &\alpha(\mathrm{N}){=}0.240 \ 4; \ \alpha(\mathrm{O}){=}0.0373 \ 6; \ \alpha(\mathrm{P}){=}9.65{\times}10^{-5} \\ &14 \\ &\%\mathrm{I}\gamma{=}3.0 \ 5 \ \mathrm{assuming} \ \mathrm{recommended} \ \mathrm{normalization}. \\ &\mathrm{Mult.:} \ \alpha(\mathrm{L}3)\mathrm{exp}{=}2.3 \ (1984\mathrm{Ma41}); \ \mathrm{K:L3}{=}390 \\ &80{:}900 \ 250 \ (2000\mathrm{Ro41}). \ \delta(\mathrm{E2,M1}){>}4.0 \\ &(2000\mathrm{Ro41}). \end{split}$

 $\boldsymbol{\nabla}$

 $^{183}_{78}$ Pt $_{105}$ -5

				¹⁸³ Au ε	decay	2000Ro41,1	989Ro21	,1984Ma41	(continued)
						γ (¹⁸³ Pt)	(continue	d)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
98.5 2	0.61 9	471.56	(7/2)-	373.16	(7/2)-	[M1,E2]		6.1 9	$\alpha(K)=3 \ 3; \ \alpha(L)=2.2 \ 13; \ \alpha(M)=0.5 \ 4$
115.2 <i>I</i>	27 4	149.77	(9/2)-	34.57	7/2-	M1+E2		3.6 9	$\alpha(N)=0.13 \ 8; \ \alpha(O)=0.021 \ 12; \ \alpha(P)=0.0004 \ 3$ $\alpha(K)=2.1 \ 16; \ \alpha(L)=1.1 \ 6; \ \alpha(M)=0.28 \ 14$ $\alpha(N)=0.07 \ 4; \ \alpha(O)=0.011 \ 5; \ \alpha(P)=0.00024 \ 18$ %Iy=1.9 3 assuming recommended normalization. Mult.: from Adopted Gammas. E2+M1, $\delta=3 +7-1$ from $\alpha(L3)\exp=0.63 \ (1984Ma41)$ and $\alpha(K)\exp=0.9 \ 3$ (2000Ro41); δ is inconsistent with that from (HI,xny) but $\alpha(K)\exp$ and $\alpha(L)\exp$ do extehlish $A\pi=N_0$
123.9 <i>1</i>	11.0 <i>17</i>	471.56	(7/2)-	347.62	(5/2)-	M1(+E2)	< 0.65	3.38 24	$\alpha(K) \approx \lambda \alpha(L) \approx \lambda \alpha(L) \approx \lambda \alpha(M) \propto \lambda \alpha$
140 <i>I</i>	3.8 6	289.60	(11/2) ⁻	149.77	(9/2)-	(M1+E2)		1.9 7	$\alpha(K)=1.2 \ 9; \ \alpha(L)=0.51 \ 17; \ \alpha(M)=0.13 \ 5 \\ \alpha(N)=0.031 \ 12; \ \alpha(O)=0.0051 \ 16; \ \alpha(P)=0.00014 \ 11 \\ \text{Mult: from Adopted Gammas}$
155.9 2	7.3 11	531.50	$(9/2)^+$	375.30	$(7/2)^+$	[M1,E2]		1.4 5	$\alpha(K) = 0.97; \ \alpha(L) = 0.34 \ 8; \ \alpha(M) = 0.083 \ 25$
161.2 <i>I</i>	160 24	195.76	(9/2)+	34.57	7/2-	E1		0.1208	α(N)=0.020 6; α(O)=0.0034 8; α(P)=0.00010 8 α(K)=0.0987 14; α(L)=0.01700 24; α(M)=0.00393 6 α(N)=0.000960 14; α(O)=0.0001645 24; α(P)=8.36×10-6 12 Additional information 1. %Iγ=11.0 17 assuming recommended normalization. Mult.: α(K)exp=0.69 (1984Ma41) for anomalous E1 transition, λ=58 9. α(theory)=0.1208.
162.6 <i>1</i> 164.7 2	12.0 <i>18</i> 3.5 5	535.82 636.29	(9/2) $(7/2^+, 9/2, 11/2^-)$	373.16 471.56	(7/2) $(7/2)^{-}$				
179.5 <i>1</i>	79 12	375.30	(7/2)+	195.76	(9/2)+	M1		1.264	α (K)=1.041 <i>15</i> ; α (L)=0.1715 <i>25</i> ; α (M)=0.0396 <i>6</i> α (N)=0.00981 <i>14</i> ; α (O)=0.001765 <i>25</i> ; α (P)=0.0001190 <i>17</i> Mult.: α (K)exp \approx 1.4 (1984Ma41).
x^{x} 191.1 2	0.86 13	208 82	7/2-	06.11	5/2-	[M1 E2]		063	$\alpha(K) = 0.5 2; \alpha(L) = 0.120 7; \alpha(M) = 0.021 4$
202.0 1	15.0 20	290.02	1/2	90.11	5/2	[1011,122]		0.0 5	$\alpha(R)=0.057, \alpha(L)=0.1257, \alpha(R)=0.0514$ $\alpha(R)=0.0077 \ 8; \alpha(O)=0.00130 \ 5; \alpha(P)=5.E-54$
214.1 <i>I</i>	100 15	298.82	7/2-	84.66	3/2-	E2		0.286	$\alpha(K)=0.1431\ 21;\ \alpha(L)=0.1074\ 16;\ \alpha(M)=0.0273\ 4$ $\alpha(N)=0.00668\ 10;\ \alpha(O)=0.001067\ 15;\ \alpha(P)=1.377\times10^{-5}\ 20$ Mult.: $\alpha(K)$ exp=0.14 (1984Ma41).
218.1 <i>I</i>	58 9	314.25	9/2-	96.11	5/2-	E2		0.268	$\alpha(K)=0.1365\ 20;\ \alpha(L)=0.0995\ 14;\ \alpha(M)=0.0253\ 4$ $\alpha(N)=0.00619\ 9;\ \alpha(O)=0.000989\ 14;\ \alpha(P)=1.317\times10^{-5}\ 19$ Mult.: $\alpha(K)\exp\approx 0.22\ (1984Ma41).$
221 <i>I</i>	≈1.1 <mark>&</mark>	535.82	(9/2 ⁻)	314.25	9/2-				
223 1	≈1.9 ^{&}	373.16	(7/2)-	149.77	(9/2)-	[M1,E2]		0.47 22	α (K)=0.35 22; α (L)=0.0921 23; α (M)=0.0223 9 α (N)=0.00549 20; α (O)=0.00093 4; α (P)=4.E-5 3
246.2 2 251.4 <i>I</i>	1.30 <i>20</i> 21 <i>3</i>	535.82 347.62	(9/2 ⁻) (5/2) ⁻	289.60 96.11	(11/2) ⁻ 5/2 ⁻	[M1,E2]		0.33 17	$\alpha(K)=0.25 \ 16; \ \alpha(L)=0.061 \ 6; \ \alpha(M)=0.0148 \ 7 \ \alpha(N)=0.00364 \ 19; \ \alpha(O)=0.00062 \ 7; \ \alpha(P)=2.8\times10^{-5} \ 19$

 $^{183}_{78}\text{Pt}_{105}\text{-}6$

				183 Au ε	decay	2000Ro41,19	989Ro21,19	84Ma41 (co	ontinued)
						$\gamma(^{183}\text{Pt})$ ((continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
255.0 1	10.5 16	289.60	(11/2)-	34.57	7/2-	(E2)		0.1620	α (K)=0.0919 <i>13</i> ; α (L)=0.0529 <i>8</i> ; α (M)=0.01337 <i>19</i> α (N)=0.00327 <i>5</i> ; α (O)=0.000528 <i>8</i> ; α (P)=9.05×10 ⁻⁶ <i>13</i> Mult.: from Adopted Gammas.
262.8 <i>1</i> 269.8 <i>2</i> <i>x</i> 273.0 <i>2</i> <i>x</i> 275.6 <i>2</i>	16.0 24 6.5 10 1.7 3 5.4 8	347.62 617.40	(5/2) ⁻ (5/2) ⁻	84.66 347.62	3/2 ⁻ (5/2) ⁻				·
277.0 1	13.0 20	373.16	(7/2)-	96.11	5/2-	[M1+E2]	0.25 13	0.365 18	$\alpha(K)=0.299$ 17; $\alpha(L)=0.0504$ 12; $\alpha(M)=0.01169$ 22
288.1 <i>I</i>	25 4	531.50	(9/2)+	243.54	$(11/2)^+$	[M1,E2]		0.23 12	$\begin{array}{l} \alpha(\mathrm{N})=0.00289\ 6;\ \alpha(\mathrm{O})=0.000518\ 13;\ \alpha(\mathrm{P})=3.39\times10^{-5}\ 20\\ \alpha(\mathrm{K})=0.17\ 11;\ \alpha(\mathrm{L})=0.039\ 7;\ \alpha(\mathrm{M})=0.0094\ 12\\ \alpha(\mathrm{N})=0.0023\ 3;\ \alpha(\mathrm{O})=0.00040\ 8;\ \alpha(\mathrm{P})=1.9\times10^{-5}\ 13 \end{array}$
x289.7 2 297.1 ^c 2 x299.2 2	2.3 <i>3</i> 0.83 <i>12</i> 1.8 <i>3</i>	611.39		314.25	9/2-				
302.8° 2 312.6.2	0.41 6 5 3 8	617.40 611 39	(5/2)-	314.25 298.82	9/2 ⁻ 7/2 ⁻				
313.1 1	85 13	347.62	(5/2) ⁻	34.57	7/2-	M1+E2	0.5 3	0.23 4	α (K)=0.19 4; α (L)=0.0341 25; α (M)=0.0080 5 α (N)=0.00197 12; α (O)=0.00035 3; α (P)=2.1×10 ⁻⁵ 4 Mult.: I(ce(K))(312.6+313.1)=17.0 so α (K)exp=0.20 4 for doublet dominated by this transition.
321.5 2	8.2 12	471.56	$(7/2)^{-}$	149.77	$(9/2)^{-}$				
329.3 2	$\approx 3.7^{\circ}$	702.37	$(7/2)^{-}$	373.16	$(7/2)^{-}$ $(9/2)^{+}$				
338.5 <i>1</i>	50 8	373.16	$(7/2)^{-}$	34.57	(9/2) 7/2 ⁻	E2+M1	1.2 3	0.131 22	α (K)=0.101 20; α (L)=0.0228 17; α (M)=0.0055 4 α (N)=0.00134 9; α (O)=0.000232 18; α (P)=1.12×10 ⁻⁵ 23 %I γ =3.4 6 assuming recommended normalization. Mult.: I(ce(K))=5.3 so α (K)exp=0.106 22.
354.4 2	2.9 4	702.37	(7/2)-	347.62	$(5/2)^{-}$				· · · · · ·
355.4 2 362.0 2 ^x 366.1 2	5.1 8 1.60 24 1.10 <i>17</i>	730.78 930.53	(≥5/2) ⁺ -	375.30 568.70	$(1/2)^+$ $(1/2)^-$				
375.6 2	1.7 3	471.56	$(7/2)^{-}$	96.11	5/2-				
379.5 2 ^x 381.7 2	≈3.6 [∞] 1.00 <i>15</i>	678.46	$(3/2, 5/2)^{-}$	298.82	7/2-				
386.3 2 388.5 ^c 2 x389.9 2	0.75 <i>11</i> 2.2 <i>3</i> 0.65 <i>10</i>	535.82 762.05	(9/2 ⁻) (5/2) ⁻	149.77 373.16	(9/2) ⁻ (7/2) ⁻				
392.8 2 394.0 2 x401.9 2	1.40 <i>21</i> 2.2 <i>3</i> 1.9 <i>3</i>	636.29 693.02	$(7/2^+, 9/2, 11/2^-)$ $(3/2, 5/2)^-$	243.54 298.82	(11/2) ⁺ 7/2 ⁻				
424.2 2 428.8 2	1.60 <i>24</i> 3.8 <i>6</i>	801.85	(3/2,5/2,7/2)-	373.16	(7/2)-				

 $^{183}_{78}\text{Pt}_{105}\text{-}7$

				¹⁸³ Au	ε decay	2000Ro41	,1989Ro21,19	984Ma41 (con	tinued)
						γ (¹⁸³ P	t) (continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	J_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
x429.5 2 437.1 2	2.7 <i>4</i> 7.6 <i>11</i>	471.56	(7/2)-	34.57	7/2-	E2+M1	1.2 6	0.066 25	α (K)=0.052 22; α (L)=0.0105 24; α (M)=0.0025 6 α (N)=0.00062 13; α (O)=0.000107 25; α (P)=6.E-6 3
463.1 2	4.3 6	762.05	(5/2)-	298.82	7/2-	M1+E2	0.9 3	0.066 12	Mult.: I(ce(K))=0.4 so α (K)exp=0.053 <i>11</i> . α (K)=0.053 <i>11</i> ; α (L)=0.0098 <i>12</i> ; α (M)=0.0023 <i>3</i> α (N)=0.00057 7; α (O)=0.000100 <i>13</i> ; α (P)=5.9×10 ⁻⁶ <i>12</i> Mult : I(ce(K))=0.24 so α (K)exp=0.056 <i>12</i>
467.3 2 471.8 2	1.30 <i>20</i> 6.6 <i>10</i>	998.42 556.55	(≥7/2) 3/2 ⁻	531.50 84.66	(9/2) ⁺ 3/2 ⁻	M1		0.0908	$\alpha(K)=0.0751 \ 11; \ \alpha(L)=0.01210 \ 17; \ \alpha(M)=0.00279 \ 4$ $\alpha(N)=0.000690 \ 10; \ \alpha(O)=0.0001243 \ 18; \ \alpha(P)=8.45\times10^{-6}$ 12
477.1 2 484.1 <i>1</i>	2.3 <i>3</i> 15.0 <i>23</i>	824.82 568.70	(5/2,7/2,9/2) ⁻ (1/2) ⁻	347.62 84.66	(5/2) ⁻ 3/2 ⁻	M1+E2	0.8 3	0.062 11	Mult.: I(ce(K))=0.55 so α (K)exp=0.083 17. α (K)=0.050 10; α (L)=0.0090 12; α (M)=0.00211 25 α (N)=0.00052 6; α (O)=9.2×10 ⁻⁵ 12; α (P)=5.6×10 ⁻⁶ 12 Mult.: I(ce(K))=0.78 so α (K)exp=0.052 11.
x486.0 2 505.7 2	1.7 <i>3</i> 2.4 <i>4</i>	819.89	(7/2,9/2) ⁻	314.25	9/2-	M1+E2	0.7 3	0.059 10	$\alpha(K)=0.048 \ 9; \ \alpha(L)=0.0083 \ 11; \ \alpha(M)=0.00194 \ 23 \ \alpha(N)=0.00048 \ 6; \ \alpha(O)=8.5\times10^{-5} \ 11; \ \alpha(P)=5.3\times10^{-6} \ 10$
517.0 2	8.7 13	613.16	(3/2,5/2)-	96.11	5/2-	M1+E2	0.4 +3-4	0.065 10	Mult.: I(ce(K))=0.12 so α (K)exp=0.050 11. α (K)=0.053 8; α (L)=0.0088 10; α (M)=0.00203 22 α (N)=0.00050 6; α (O)=9.0×10 ⁻⁵ 10; α (P)=6.0×10 ⁻⁶ 10
521.0 2	9.3 14	819.89	(7/2,9/2)-	298.82	7/2-	M1+E2	0.9 3	0.049 9	Mult.: $I(ce(K))=0.5$ so $\alpha(K)exp=0.05772$. $\alpha(K)=0.039$ 8; $\alpha(L)=0.0071$ 9; $\alpha(M)=0.00166$ 20 $\alpha(N)=0.00041$ 5; $\alpha(O)=7.2\times10^{-5}$ 10; $\alpha(P)=4.4\times10^{-6}$ 9 Mult.: $I(ce(K))=0.37$ so $\alpha(K)exp=0.040$ 8.
x524.1 2 526.1 2	1.8 <i>3</i> 7.5 <i>11</i>	824.82	(5/2,7/2,9/2) ⁻	298.82	7/2-	M1+E2	≈0.4	≈0.0618	$\alpha(K) \approx 0.0509; \ \alpha(L) \approx 0.00840; \ \alpha(M) \approx 0.00194$ $\alpha(N) \approx 0.000480; \ \alpha(O) \approx 8.61 \times 10^{-5}; \ \alpha(P) \approx 5.70 \times 10^{-6}$ Mult : I(ce(K)) \approx 0.4 so $\alpha(K) \exp = 0.053 \ 11$
x528.5 2 533.1 ^b 2	4.3 6 ≈9.4 ^b &	617.40	(5/2)-	84.66	3/2-	E2(+M1)		0.044 23	$\alpha(K)=0.035\ 20;\ \alpha(L)=0.0064\ 24;\ \alpha(M)=0.0015\ 6$ $\alpha(N)=0.00037\ 13;\ \alpha(O)=6.5\times10^{-5}\ 25;\ \alpha(P)=3.9\times10^{-6}\ 23$ Mult.: I(ce(K))=0.34 so $\alpha(K)$ exp \approx 0.036, consistent with significant E2 admixture in both members of doubly placed line.
533.1 ^b 2	≈5.0 ^{b&}	847.35	(7/2,9/2,11/2)-	314.25	9/2-	E2+M1		0.044 23	α (K)=0.035 20; α (L)=0.0064 24; α (M)=0.0015 6 α (N)=0.00037 13; α (O)=6.5×10 ⁻⁵ 25; α (P)=3.9×10 ⁻⁶ 23 Mult : see comment on 533 γ from 617 level
535.1 2	13.5 20	730.78	(≥5/2) ⁺	195.76	(9/2)+	E2		0.0210	$\alpha(K)=0.01574\ 22;\ \alpha(L)=0.00403\ 6;\ \alpha(M)=0.000974\ 14$ $\alpha(N)=0.000239\ 4;\ \alpha(O)=4.07\times10^{-5}\ 6;\ \alpha(P)=1.661\times10^{-6}$ 24 Mult.: I(ce(K))=0.2 so $\alpha(K)$ exp=0.015 3.

 ∞

 $^{183}_{78}$ Pt $_{105}$ -8

				¹⁸³ Au ε decay	2000Ro41,1	989Ro21,198	84Ma41 (cor	ntinued)
					$\gamma(^{183}\text{Pt})$	(continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	${ m J}^{\pi}_i$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
536.2 2	3.6 5	835.38	(3/2,5/2)-	298.82 7/2-	·			
553.7 2	4.1 6	650.17	$(3/2)^{-}$	96.11 5/2-				
556.7 ^b 2	≈39 ^{b&}	556.55	3/2-	0.0 1/2-	M1+E2	1.3 4	0.034 8	α(K)=0.027 7; α(L)=0.0052 8; α(M)=0.00121 17 α(N)=0.00030 5; α(O)=5.3×10-5 8; α(P)=3.0×10-6 8 Mult.,δ: I(ce(K))≈1.6 so α(K)exp≈0.041 9 for doublet. δ calculated assuming other member of doublet is E1.
556.7 ^b 2	≈10 ^{b&}	931.94	(7/2,9/2) ⁻	375.30 (7/2)+	[E1]		0.00660	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.00551 \ \&; \ \alpha(\mathbf{L}) = 0.000842 \ 12; \ \alpha(\mathbf{M}) = 0.000193 \ 3 \\ &\alpha(\mathbf{N}) = 4.74 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) = 8.40 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{P}) = 5.28 \times 10^{-7} \ \& \end{aligned} $
$x_{558.4.2}$	5.7 9							
565.6 1	17 3	650.17	$(3/2)^{-}$	84.66 3/2-	E2+M1	1.3 +4-3	0.033 5	$\alpha(K)=0.026\ 5;\ \alpha(L)=0.0049\ 6;\ \alpha(M)=0.00116\ 12$
								α (N)=0.00029 3; α (O)=5.0×10 ⁻⁵ 6; α (P)=2.9×10 ⁻⁶ 5 Mult.: I(ce(K))=0.46 so α (K)exp=0.027 6.
571.3 2	4.1 6	919.00	(3/2,5/2,7/2)-	347.62 (5/2)-	E2+M1	1.5 +6-3	0.029 5	$\alpha(K)=0.023$ 4; $\alpha(L)=0.0045$ 5; $\alpha(M)=0.00107$ 11 $\alpha(N)=0.00026$ 3; $\alpha(O)=4.6\times10^{-5}$ 6; $\alpha(P)=2.6\times10^{-6}$ 5 Mult.: I(ce(K))=0.1 so $\alpha(K)$ exp=0.024 5.
581.1 2	9.0 14	879.66	$(7/2^{-}, 9/2^{-})$	298.82 7/2-				
582.8 ^{bc} 2	≈24 ^{b&}	617.40	(5/2)-	34.57 7/2-	E2+M1	2 1	0.024 11	α (K)=0.019 9; α (L)=0.0039 12; α (M)=0.0009 3 α (N)=0.00023 7; α (O)=4.0×10 ⁻⁵ 12; α (P)=2.1×10 ⁻⁶ 11 Mult.: I(ce(K))=0.73 so α (K)exp=0.078 16 (cf. α =0.024 11) for doubly-placed line.
582.8 <mark>6</mark> 2	≈7.0 ^{6&}	930.53	-	347.62 (5/2)-				
593.8 2	20 3	678.46	(3/2,5/2)-	84.66 3/2-	E2		0.01648	$\alpha(K)=0.01258 \ ls; \ \alpha(L)=0.00298 \ 5; \ \alpha(M)=0.000716 \ l0$ $\alpha(N)=0.0001761 \ 25; \ \alpha(O)=3.01\times10^{-5} \ 5;$ $\alpha(P)=1.331\times10^{-6} \ l9$ Mult.: I(ce(K))=0.24 so \alpha(K)exp=0.0120 \ 25.
595.1 2	2.1 3	1126.38	(2/2 5/2)=	$531.50 (9/2)^+$	E2 . 1 (1	2 . 2 1	0.000 (
596.9 2	24 4	693.02	(3/2,5/2)	96.11 5/2	E2+M1	3 +2-1	0.020 4	$\alpha(K)=0.015 \ 3; \ \alpha(L)=0.0033 \ 4; \ \alpha(M)=0.00078 \ 8$ $\alpha(N)=0.000193 \ 20; \ \alpha(O)=3.3\times10^{-5} \ 4; \ \alpha(P)=1.6\times10^{-6} \ 4$ Mult.: I(ce(K))=0.38 so $\alpha(K)$ exp=0.016 3.
601.7 [°] 2	2.2 3	636.29	(7/2 ⁺ ,9/2,11/2 ⁻)	34.57 7/2-				
606.5 2	29 4	702.37	(7/2)-	96.11 5/2-	E2+M1	1.5 +5-3	0.025 4	$\alpha(K)=0.020 \ 3; \ \alpha(L)=0.0039 \ 4; \ \alpha(M)=0.00091 \ 9$ $\alpha(N)=0.000224 \ 21; \ \alpha(O)=3.9\times10^{-5} \ 4; \ \alpha(P)=2.2\times10^{-6} \ 4$ Mult : I(ce(K))=0.6 so $\alpha(K)\exp=0.021 \ 4$
608.3 2	7.6 11	693.02	$(3/2, 5/2)^{-}$	84.66 3/2-				
612.5 2	5.2 8	762.05	(5/2)-	149.77 (9/2) ⁻	(E2)		0.01536	$\begin{aligned} &\alpha(K) = 0.01178 \ 17; \ \alpha(L) = 0.00273 \ 4; \ \alpha(M) = 0.000655 \ 10 \\ &\alpha(N) = 0.0001611 \ 23; \ \alpha(O) = 2.76 \times 10^{-5} \ 4; \\ &\alpha(P) = 1.247 \times 10^{-6} \ 18 \\ &\text{Mult.: I(ce(K))(612.5 + 613.2 + 614.5) = 0.15 so} \\ &\alpha(K) \exp(\text{triplet}) = 0.029 \ 6, \text{ consistent with all three} \\ &\text{triplet partners being E2.} \end{aligned}$

From ENSDF

				¹⁸³ Au	ı ∈ decay	2000Ro4	41,1989Ro21,1	984Ma41 (continued)
						$\gamma(^{183}$	Pt) (continued	<u>)</u>	
E _γ ‡	$I_{\gamma}^{\ddagger a}$	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
613.2 ^c 2	7.7 12	613.16	(3/2,5/2) ⁻	0.0	1/2-	(E2)		0.01532	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.01176 \ 17; \ \alpha(\mathrm{L}) = 0.00272 \ 4; \ \alpha(\mathrm{M}) = 0.000653 \ 10 \\ \alpha(\mathrm{N}) = 0.0001606 \ 23; \ \alpha(\mathrm{O}) = 2.75 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 1.244 \times 10^{-6} \\ 18 \end{array} $
614.5 2	3.8 6	989.81	(*)	375.30	(7/2)+	(E2)		0.01525	Mult.: see comment on 612.5 γ . α (K)=0.01170 <i>17</i> ; α (L)=0.00271 <i>4</i> ; α (M)=0.000649 <i>10</i> α (N)=0.0001596 <i>23</i> ; α (O)=2.74×10 ⁻⁵ <i>4</i> ; α (P)=1.239×10 ⁻⁶ <i>18</i>
617.4 2	5.8 9	931.94	(7/2,9/2) ⁻	314.25	9/2-	M1+E2	0.8 +4-3	0.033 6	Mult.: see comment on 612.5 γ . $\alpha(K)=0.027\ 6;\ \alpha(L)=0.0047\ 7;\ \alpha(M)=0.00109\ 15$ $\alpha(N)=0.00027\ 4;\ \alpha(O)=4.8\times10^{-5}\ 7;\ \alpha(P)=3.0\times10^{-6}\ 6$ Mult : I(ce(K))=0.17 so $\alpha(K)$ exp=0.029 6
623.1 <i>2</i> 631 <i>1</i>	3.4 5 ≈1.0	998.42 978.43	(≥7/2) (7/2) [−]	375.30 347.62	$(7/2)^+$ $(5/2)^-$				Mult.: $I(Ce(K)) = 0.17$ so $u(K)exp = 0.029$ 0.
649.9 2	5.8 9	963.79	(7/2,9/2,11/2)-	314.25	9/2-	M1(+E2)	<1	0.033 7	$\alpha(K)=0.027 \ 6; \ \alpha(L)=0.0045 \ 8; \ \alpha(M)=0.00104 \ 17$ $\alpha(N)=0.00026 \ 4; \ \alpha(O)=4.6\times10^{-5} \ 8; \ \alpha(P)=3.0\times10^{-6} \ 7$ Mult.: I(ce(K))(649.9+651.3)=0.42 so $\alpha(K)$ exp=0.072 15 ; consistent with mostly M1 in both components of doublet
651.3 2	7.3 11	1024.57	(5/2,7/2,9/2)-	373.16	(7/2)-	M1(+E2)	<1	0.033 7	$\alpha(K)=0.027 \ 6; \ \alpha(L)=0.0045 \ 8; \ \alpha(M)=0.00103 \ 16 \ \alpha(N)=0.00025 \ 4; \ \alpha(O)=4.6\times10^{-5} \ 8; \ \alpha(P)=3.0\times10^{-6} \ 7 \ Mult : see comment on 649 9 \ \gamma$
664.6 2 666.1 2 ^x 667.7 2	2.2 <i>3</i> 2.2 <i>3</i> 4.5 <i>7</i>	963.79 762.05	(7/2,9/2,11/2) ⁻ (5/2) ⁻	298.82 96.11	7/2 ⁻ 5/2 ⁻				
677.5 2 678.6 ^c 2 684.8 2	8.1 <i>12</i> 3.0 <i>5</i> 3.6 <i>5</i>	762.05 678.46 1057.97	(5/2) ⁻ (3/2,5/2) ⁻	84.66 0.0 373.16	3/2 ⁻ 1/2 ⁻ (7/2) ⁻				
693.3 ^c 2 696.1 2	2.1 <i>3</i> 10.0 <i>15</i>	693.02 1071.28	$(3/2,5/2)^-$ $(5/2,7/2)^-$	0.0 375.30	$1/2^{-}$ (7/2) ⁺	D			Mult.: I(ce(K)) \approx 0.3, but includes an Ir contaminant line, so α (K)exp<0.03, consistent with E1 or M1; level scheme requires E1.
x700.1 2 x702.1 ^c 2	3.2 5 7.0 <i>11</i>								E_{γ} : placed by 1989Ro21 from the 702 level. However, that placement is inconsistent with the level's adopted assignment as the J=7/2 member of the 3/2[512] rotational band.
705.8 2 717.0 2	7.1 <i>11</i> 4.9 7	801.85 801.85	(3/2,5/2,7/2) ⁻ (3/2,5/2,7/2) ⁻	96.11 84.66	5/2 ⁻ 3/2 ⁻	E2		0.01085	 α(K)=0.00851 12; α(L)=0.00179 3; α(M)=0.000425 6 α(N)=0.0001046 15; α(O)=1.81×10⁻⁵ 3; α(P)=9.01×10⁻⁷ 13 Mult.: I(ce(K))≈0.03 so α(K)exp=0.0061 13; a little low for E2, but an E1 assignment would be inconsistent with level scheme.

¹⁸³₇₈Pt₁₀₅-10

γ ⁽¹⁸³ Pt) (continued)											
E _γ ‡	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments		
^x 723.2 2 727.5 ^c 2	5.4 8 9.1 <i>14</i>	762.05	(5/2)-	34.57	7/2-	M1(+E2)	<2	0.022 8	$\alpha(K)=0.018$ 7; $\alpha(L)=0.0030$ 9; $\alpha(M)=0.00070$ 20 $\alpha(N)=0.00017$ 5; $\alpha(O)=3.1\times10^{-5}$ 9; $\alpha(P)=2.0\times10^{-6}$ 8 Mult.: I(ce(K))(727.5+729.6)=0.26 so $\alpha(K)\exp=0.029$ 6 for doublet, consistent with M1 component in this, the more intense member of doublet.		
729.6 2	6.0 9	879.66	(7/2 ⁻ ,9/2 ⁻)	149.77	(9/2)-	(E2+M1)		0.020 10	$\alpha(K)=0.016 \ 8; \ \alpha(L)=0.0028 \ 11; \ \alpha(M)=0.00065 \ 24 \ \alpha(N)=0.00016 \ 6; \ \alpha(O)=2.8 \times 10^{-5} \ 12; \ \alpha(P)=1.8 \times 10^{-6} \ 10 \ Mult : see comment on 727 5 \ 27 \ 27 \ 57 \ 27 \ 57 \ 27 \ 57 \ 5$		
736.1 2	4.3 6	1035.04	(7/2,9/2) ⁻	298.82	7/2-	M1+E2	0.7 +5-4	0.023 5	$\alpha(K) = 0.019 4; \ \alpha(L) = 0.0031 6; \ \alpha(M) = 0.00071 13$ $\alpha(N) = 0.00018 3; \ \alpha(O) = 3.1 \times 10^{-5} 6; \ \alpha(P) = 2.1 \times 10^{-6} 5$ Mult: $1 (ce(K)) = 0.08 \text{ so } \alpha(K) \text{exp} = 0.019 4$		
739.4 2	15.0 23	835.38	(3/2,5/2) ⁻	96.11	5/2-	M1+E2	0.7 +5-4	0.022 5	$\begin{array}{l} \alpha(K) = 0.018 \ 4; \ \alpha(L) = 0.0030 \ 6; \ \alpha(M) = 0.00070 \ 13 \\ \alpha(N) = 0.00017 \ 3; \ \alpha(O) = 3.1 \times 10^{-5} \ 6; \ \alpha(P) = 2.0 \times 10^{-6} \ 5 \\ \end{array}$		
745.5 2 ^x 749.9 2	1.20 <i>18</i> 9.3 <i>14</i>	1035.04	(7/2,9/2) ⁻	289.60	(11/2)-	E2		0.00986	Mult.: $I(ce(K))=0.28$ so $\alpha(K)exp=0.019$ 4. $\alpha(K)=0.00778$ 11; $\alpha(L)=0.001593$ 23; $\alpha(M)=0.000378$ 6 $\alpha(N)=9.30\times10^{-5}$ 13; $\alpha(O)=1.614\times10^{-5}$ 23; $\alpha(P)=8.23\times10^{-7}$ 12 Mult.: $I(ce(K))(749.9+751.0)=0.08$, $\alpha(K)exp=0.0086$ 18 consistent with pure E2 and pure E1 for the respective transitions		
^x 751.0 2	5.5 8					E1		0.00362	$\alpha(K)=0.00304\ 5;\ \alpha(L)=0.000454\ 7;\ \alpha(M)=0.0001036\ 15\ \alpha(N)=2.55\times10^{-5}\ 4;\ \alpha(O)=4.55\times10^{-6}\ 7;\ \alpha(P)=2.95\times10^{-7}\ 5\ Mult: see comment on 749 9y$		
753.0 2 754.5 ^c 2 ^x 756.5 2 ^x 784.6 2 ^x 798.6 2 ^x 802.8 2	2.3 <i>3</i> 2.3 <i>3</i> 2.3 <i>3</i> 4.3 6 2.6 <i>4</i> 4.3 6	1126.38 998.42	(≥7/2)	373.16 243.54	$(7/2)^{-}$ $(11/2)^{+}$				Murt. see comment on 149.99.		
828.7 2	4.1 6	978.43	(7/2)-	149.77	(9/2)-	M1+E2	1.0 +8-4	0.015 4	α (K)=0.012 3; α (L)=0.0020 4; α (M)=0.00046 10 α (N)=0.000115 23; α (O)=2.0×10 ⁻⁵ 5; α (P)=1.3×10 ⁻⁶ 4 Mult.: I(ce(K))=0.05 so α (K)exp=0.012 3.		
835.6 ^c 2 845.1 ^c 2	2.7 <i>4</i> 4.1 <i>6</i>	835.38 879.66	(3/2,5/2) ⁻ (7/2 ⁻ ,9/2 ⁻)	0.0 34.57	1/2 ⁻ 7/2 ⁻	E2(+M1)	>2	0.0089 13	$\alpha(K)=0.0072 \ 11; \ \alpha(L)=0.00133 \ 15; \ \alpha(M)=0.00031 \ 4$ $\alpha(N)=7.7\times10^{-5} \ 9; \ \alpha(O)=1.35\times10^{-5} \ 16; \ \alpha(P)=7.7\times10^{-7} \ 12$		
^x 852.4 2 ^x 857.5 2 ^x 876.4 2	2.7 <i>4</i> 2.5 <i>4</i> 2 8 <i>4</i>								Mult.: $I(ce(K))=0.03$ so $\alpha(K)exp=0.00/3$ 15.		

 $^{183}_{78}\text{Pt}_{105}\text{--}11$

1					¹⁸³ Au	ε decay	2000Ro41,19	89Ro21,1984M	a41 (continue	ed)
							$\gamma(^{183}\text{Pt})$ (continued)		
	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	J_i^π	E_{f}	J_f^π	Mult. [#]	$\delta^{@}$	$lpha^{\dagger}$	Comments
	884.5 ^c 2	6.5 10	919.00	(3/2,5/2,7/2)-	34.57	7/2-	E2(+M1)	>2	0.0081 11	$\alpha(K)=0.0065 \ 10; \ \alpha(L)=0.00119 \ 13; \ \alpha(M)=0.00028 \ 3$ $\alpha(N)=6.9\times10^{-5} \ 8; \ \alpha(O)=1.21\times10^{-5} \ 14; \ \alpha(P)=7.0\times10^{-7} \ 11$ Mult.: I(ce(K))=0.04 so $\alpha(K)$ exp=0.0062 13.
	897.6 ^c 2 899.6 ^c 2	1.10 <i>17</i> 3.4 <i>5</i>	931.94 1970.71	(7/2,9/2) ⁻ (7/2) ⁻	34.57 1071.28	7/2 ⁻ (5/2,7/2) ⁻				
	^x 904.1 2	4.1 6					M1(+E2)	<2	0.013 4	α (K)=0.011 4; α (L)=0.0017 5; α (M)=0.00040 11 α (N)=0.00010 3; α (O)=1.8×10 ⁻⁵ 5; α (P)=1.2×10 ⁻⁶ 4
	^x 909.6 2	5.0 8					M1		0.01664	Mult.: I(ce(K))=0.05 so α (K)exp=0.0120 25. α (K)=0.01381 20; α (L)=0.00218 3; α (M)=0.000501
										α (N)=0.0001240 <i>18</i> ; α (O)=2.24×10 ⁻⁵ <i>4</i> ; α (P)=1.533×10 ⁻⁶ <i>22</i> Mult : I(ce(K))=0.1 so α (K)exp=0.020 <i>4</i>
	^x 913.7 2 ^x 915.6 2 ^x 919.3 2	1.50 <i>23</i> 4.2 <i>6</i> 2.4 <i>4</i>								
	x928.9 2	6.3 9					E2+M1	1.5 +18-6	0.0092 24	α (K)=0.0076 20; α (L)=0.0013 3; α (M)=0.00030 7 α (N)=7.4×10 ⁻⁵ 16; α (O)=1.3×10 ⁻⁵ 3; α (P)=8.2×10 ⁻⁷ 23 Mult.: I(ce(K))=0.05 so α (K)exp=0.0079 17.
	^x 933.7 2 944.0 ^c 2	4.7 7 3.4 5	978.43	(7/2)-	34.57	7/2-	M1		0.01515	$\alpha(K)=0.01257 \ 18; \ \alpha(L)=0.00198 \ 3; \ \alpha(M)=0.000456$
										α (N)=0.0001127 <i>16</i> ; α (O)=2.03×10 ⁻⁵ <i>3</i> ; α (P)=1.394×10 ⁻⁶ <i>20</i> Mult.: I(ce(K))=0.07 so α (K)exp=0.021 <i>4</i> .
	^x 978.7 2 ^x 985.2 2	3.3 <i>5</i> 2.6 <i>4</i>					M1		0.01359	$\alpha(K)=0.01129 \ 16; \ \alpha(L)=0.001776 \ 25;$
										α (M)=0.000408 6 α (N)=0.0001010 15; α (O)=1.82×10 ⁻⁵ 3; α (P)=1.251×10 ⁻⁶ 18
	990.1 ^c 2	2.8 4	1024.57	(5/2,7/2,9/2)-	34.57	7/2-				Mult.: I(ce(K))=0.04 so α (K)exp=0.015 3.
	^x 996.3 2 1000.6 ^c 3	5.0 8 3.9 6	1035.04	(7/2,9/2)-	34.57	7/2-				
	1008.0 <i>3</i> 1010.1 <i>3</i>	3.4 5 6.8 10	1940.49	(3/2,5/2) ⁻	930.53	-	E2+M1	1.1 +13-5	0.0087 23	$\alpha(K)=0.0072 \ 19; \ \alpha(L)=0.0012 \ 3; \ \alpha(M)=0.00027 \ 7 \ \alpha(N)=6.8\times10^{-5} \ 16; \ \alpha(O)=1.2\times10^{-5} \ 3; \ \alpha(P)=7.8\times10^{-7} \ 22 \ Mult.: \ I(ce(K))=0.05 \ so \ \alpha(K)exp=0.0074 \ 15.$

 $^{183}_{78} Pt_{105}\text{--}12$

From ENSDF

 $^{183}_{78}\text{Pt}_{105}\text{-}12$

				18	³ Au ε	decay 20	00Ro41,	1989Ro21,19	84Ma41 (continued)
							$\gamma(^{183}\text{Pt})$) (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
1036.8 <i>3</i>	10.0 15	1071.28	(5/2,7/2)-	34.57	7/2-	E2(+M1)	>2	0.0058 7	α (K)=0.0047 6; α (L)=0.00082 9; α (M)=0.000190 19 α (N)=4.7×10 ⁻⁵ 5; α (O)=8.3×10 ⁻⁶ 9; α (P)=5.0×10 ⁻⁷ 7 Mult.: I(ce(K))=0.05 so α (K)exp=0.0050 11.
(1082.5 <i>3</i>) 1091.8 ^{<i>c</i>} <i>3</i>	4.0 <i>6</i> 3.2 <i>5</i>	1126.38		34.57	7/2-				
^x 1093.0 3 ^x 1128.5 3	3.0 5 5.3 8					M1(+E2)	<1.2	0.0081 16	$\alpha(K)=0.0067 \ 14; \ \alpha(L)=0.00107 \ 20; \ \alpha(M)=0.00025 \ 5$ $\alpha(N)=6.1\times10^{-5} \ 11; \ \alpha(O)=1.09\times10^{-5} \ 20; \ \alpha(P)=7.3\times10^{-7} \ 16; \ \alpha(IPF)=7.7\times10^{-7} \ 10$ Mult.: I(ce(K))=0.04 so $\alpha(K)$ exp=0.0075 16.
x1138.0 3	3.5 5								
x1141.0 3	3.80 7.1 <i>11</i>					E2		0.00413	$\alpha(K)=0.00337\ 5;\ \alpha(L)=0.000579\ 9;\ \alpha(M)=0.0001347\ 19$ $\alpha(N)=3.32\times10^{-5}\ 5;\ \alpha(O)=5.88\times10^{-6}\ 9;\ \alpha(P)=3.55\times10^{-7}\ 5;$ $\alpha(IPF)=1.365\times10^{-6}\ 23$ Mult.: I(ce(K))=0.02 so $\alpha(K)$ exp=0.0028 6.
x1195.1 3	3.5 5								
^x 1221.2 3 ^x 1231.7 3	3.5 5 3.6 5								
^x 1236.6 3	3.2 5								
^x 1246.7 3 ^x 1251.7 3	3.2 <i>5</i> 3.1 <i>5</i>					M1(+E2)	<1	0.0065 10	$\alpha(K)=0.0054 \ 9; \ \alpha(L)=0.00085 \ 12; \ \alpha(M)=0.00019 \ 3$ $\alpha(N)=4.8\times10^{-5} \ 7; \ \alpha(O)=8.7\times10^{-6} \ 13; \ \alpha(P)=5.9\times10^{-7} \ 10;$ $\alpha(IPF)=1.39\times10^{-5} \ 14$
^x 1254.1 <i>3</i>	3.6 5					M1(+E2)	<2	0.0059 16	Mult.: $I(ce(K))=0.02$ so $\alpha(K)exp=0.0065$ 14. $\alpha(K)=0.0049$ 13; $\alpha(L)=0.00077$ 19; $\alpha(M)=0.00018$ 5 $\alpha(N)=4.4\times10^{-5}$ 11; $\alpha(O)=7.9\times10^{-6}$ 20; $\alpha(P)=5.3\times10^{-7}$ 15; $\alpha(IPF)=1.35\times10^{-5}$ 23
^x 1262.4 3	3.6.5								Mult.: $I(ce(K))=0.02$ so $\alpha(K)exp=0.0056$ 12.
x1264.4 3	4.8 7								
⁴ 1266.5 <i>3</i> ^x 1270 5 3	3.8 6 4 3 6								
x1275.9 3	5.9 9								
^x 1290.3 <i>3</i>	7.7 12					E2		0.00336	$\alpha(K)=0.00275 \ 4; \ \alpha(L)=0.000458 \ 7; \ \alpha(M)=0.0001062 \ 15$ $\alpha(N)=2.62\times10^{-5} \ 4; \ \alpha(O)=4.65\times10^{-6} \ 7; \ \alpha(P)=2.88\times10^{-7} \ 4;$ $\alpha(IPF)=1.507\times10^{-5} \ 22$ Mult : I(ce(K))=0.02 so $\alpha(K)$ exp=0.0026 5
^x 1297.4 3	5.8 9								
*1345.7 <i>3</i> 1358.2 <i>3</i>	4.2 6 18 <i>3</i>	1914.68	(3/2,5/2)-	556.55	3/2-	M1		0.00610	α (K)=0.00504 7; α (L)=0.000786 11; α (M)=0.000180 3 α (N)=4.46×10 ⁻⁵ 7; α (O)=8.05×10 ⁻⁶ 12; α (P)=5.56×10 ⁻⁷ 8;

 $^{183}_{78}\text{Pt}_{105}\text{--}13$

From ENSDF

 $^{183}_{78}\text{Pt}_{105}\text{--}13$

	¹⁸³ Au ε decay 2000Ro41,1989Ro21,1984Ma41 (continued)											
	γ ⁽¹⁸³ Pt) (continued)											
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments			
^x 1360.4.3	3.5.5				<u> </u>				α (IPF)=4.29×10 ⁻⁵ 6 Mult.: I(ce(K))=0.1 so α (K)exp=0.0056 12.			
1371.9 <i>3</i> 1384.0 <i>3</i>	5.9 9 15.0 <i>23</i>	1940.49 1940.49	(3/2,5/2) ⁻ (3/2,5/2) ⁻	568.70 556.55	(1/2) ⁻ 3/2 ⁻	E2(+M1)	>0.6	0.0040 11	$\alpha(K)=0.0033 \ 9; \ \alpha(L)=0.00053 \ 13; \ \alpha(M)=0.00012 \ 3 \ \alpha(N)=3.0\times10^{-5} \ 8; \ \alpha(O)=5.4\times10^{-6} \ 14; \ \alpha(P)=3.5\times10^{-7} \ 11; \ \alpha(IPF)=4.0\times10^{-5} \ 7 \ Multiple \ 4.0\times10^{-5} \ 4.0\times10^{-5} \ Multiple \ 4.0\times10^{-5} \ Multiple \ 4.0\times10^{-5} \ Multiple \ 4.0\times10^{-5} \ Multiple \ 4.0\times10^{-5} \ 4.0\times10^{-5} \ Multiple \ 4.0\times10^{-5$			
1406.9 <i>3</i>	12.5 19	1938.56	(7/2)-	531.50	(9/2)+	E1		1.28×10 ⁻³	Mult.: $1(ce(K))=0.05$ so $\alpha(K)exp=0.0035$ 7. $\alpha(K)=0.000977$ 14; $\alpha(L)=0.0001411$ 20; $\alpha(M)=3.21\times10^{-5}$ 5 $\alpha(N)=7.90\times10^{-6}$ 11; $\alpha(O)=1.420\times10^{-6}$ 20; $\alpha(P)=9.67\times10^{-8}$ 14; $\alpha(IPF)=0.0001165$ 17 Mult.: $1(ce(K))=0.015$ so $\alpha(K)exp=0.00120$ 25.			
x1412.3 3 x1416.5 3 x1420.4 3 1425.0 3	5.3 8 5.1 8 4.5 7 28 4	1956.63	(7/2)-	531.50	(9/2)+	E1		1.26×10 ⁻³	$\alpha(K)=0.000956\ 14;\ \alpha(L)=0.0001380\ 20;$			
1420 0 2	0712	1070 71	(7))-	521 50	(0/2)+				$\alpha(M)=3.14\times10^{-5} 5$ $\alpha(N)=7.73\times10^{-6} 11; \alpha(O)=1.389\times10^{-6} 20;$ $\alpha(P)=9.46\times10^{-8} 14; \alpha(IPF)=0.0001280 18$ Mult.: I(ce(K))=0.04 so $\alpha(K)$ exp=0.0014 3.			
1438.8 3 x1442.1 3	8.713 8.012	1970.71	(7/2)	551.50	(9/2)*							
1466.8 <i>3</i>	9.6 14	1814.4	(3/2,5/2,7/2) ⁻	347.62	(5/2)-	M1(+E2)	<1.6	0.0042 9	$\alpha(K)=0.0034 \ 8; \ \alpha(L)=0.00054 \ 11; \ \alpha(M)=0.000124 \ 25 \ \alpha(N)=3.1\times10^{-5} \ 6; \ \alpha(O)=5.5\times10^{-6} \ 11; \ \alpha(P)=3.8\times10^{-7} \ 9; \ \alpha(IPF)=7.5\times10^{-5} \ 11 \ Mult: \ I(ce(K))=0.04 \ so \ \alpha(K)exp=0.0042 \ 9$			
1484.9 <i>3</i>	12.0 18	1956.63	(7/2)-	471.56	(7/2)-	E2(+M1)	>1	0.0032 6	$\alpha(K) = 0.0026 \ 5; \ \alpha(L) = 0.00041 \ 8; \ \alpha(M) = 9.5 \times 10^{-5} \ 17$ $\alpha(N) = 2.4 \times 10^{-5} \ 4; \ \alpha(O) = 4.2 \times 10^{-6} \ 8; \ \alpha(P) = 2.8 \times 10^{-7} \ 6; \ \alpha(IPF) = 7.0 \times 10^{-5} \ 9$			
1496.7 <i>3</i>	12.5 <i>19</i>	1844.3	_	347.62	(5/2)-	E2(+M1)	>1	0.0032 6	Mult.: $I(ce(K))=0.03$ so $\alpha(K)exp=0.0025$ 5. $\alpha(K)=0.0026$ 5; $\alpha(L)=0.00041$ 7; $\alpha(M)=9.4\times10^{-5}$ 16 $\alpha(N)=2.3\times10^{-5}$ 4; $\alpha(O)=4.1\times10^{-6}$ 8; $\alpha(P)=2.7\times10^{-7}$ 6; $\alpha(IPF)=7.4\times10^{-5}$ 9 Mult : $I(ce(K))=0.03$ so $\alpha(K)exp=0.0024$ 5			
^x 1508.1 3	5.8 9											
1511.9 <i>3</i> <i>x</i> 1527 3 <i>3</i>	4.4 7 9 4 14	1810.7		298.82	7/2-							
1532.2 3	71 11	1907.5	(5/2,7/2) ⁻	375.30	(7/2)+	E1		1.20×10 ⁻³	α (K)=0.000846 <i>12</i> ; α (L)=0.0001218 <i>17</i> ; α (M)=2.77×10 ⁻⁵ <i>4</i> α (N)=6.82×10 ⁻⁶ <i>10</i> ; α (O)=1.226×10 ⁻⁶ <i>18</i> ;			

From ENSDF

 $^{183}_{78}\mathrm{Pt}_{105}$ -14

				183 _A	Au ε decay	y 2000	Ro41,1989Ro2	21,1984Ma41 (continued)
						<u> </u>	¹⁸³ Pt) (continu	ued)
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^π	Mult. [#]	$lpha^{\dagger}$	Comments
1536.6 <i>3</i>	39 6	1884.2	(3/2,5/2,7/2)+	347.62	(5/2)-	E1	1.20×10 ⁻³	$\begin{aligned} \alpha(\text{P}) = 8.38 \times 10^{-8} \ 12; \ \alpha(\text{IPF}) = 0.000200 \ 3 \\ \text{Mult.: I(ce(K))(1532.2+1536.6) = 0.08 so } \alpha(\text{K}) \text{exp} = 0.00113 \ 24; \\ \text{consistent with both transitions being E1.} \\ \alpha(\text{K}) = 0.000842 \ 12; \ \alpha(\text{L}) = 0.0001212 \ 17; \ \alpha(\text{M}) = 2.75 \times 10^{-5} \ 4 \\ \alpha(\text{N}) = 6.79 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.220 \times 10^{-6} \ 17; \ \alpha(\text{P}) = 8.34 \times 10^{-8} \ 12; \\ \alpha(\text{IPF}) = 0.000203 \ 3 \\ \text{Mult.: see comment on 1532} \gamma. \end{aligned}$
x1560.6 3 x1563.3 3 x1565.5 3	6.5 <i>10</i> 4.2 <i>6</i> 4.8 <i>7</i>							
1592.9 <i>3</i>	25 4	1940.49	(3/2,5/2) ⁻	347.62	(5/2)-	E2	0.00235	$\begin{aligned} \alpha(K) &= 0.00187 \ 3; \ \alpha(L) &= 0.000298 \ 5; \ \alpha(M) &= 6.86 \times 10^{-5} \ 10 \\ \alpha(N) &= 1.694 \times 10^{-5} \ 24; \ \alpha(O) &= 3.03 \times 10^{-6} \ 5; \ \alpha(P) &= 1.95 \times 10^{-7} \ 3; \\ \alpha(IPF) &= 9.77 \times 10^{-5} \ 14 \\ \text{Mult.: I(ce(K))} &= 0.05 \ \text{so} \ \alpha(K) \text{exp} &= 0.0020 \ 4. \end{aligned}$
1595.5 <i>3</i> ^x 1606.2 <i>3</i>	3.5 5 10.0 <i>15</i>	1970.71	(7/2)-	375.30	$(7/2)^+$			
1608.8 3	7.6 11	1956.63	$(7/2)^{-}$	347.62	$(5/2)^{-}$			
1615.8 <i>3</i>	5.6 8	1914.68	$(3/2,5/2)^{-}$	298.82	$7/2^{-}$			
1634.3 <i>3</i>	7.6 11	1948.69	$(5/2^{-},7/2)$	314.25	9/2-			
1639.9 <i>3</i>	4.1 6	1938.56	$(7/2)^{-}$	298.82	7/2-			
1642.5 <i>3</i>	14.0 21	1956.63	$(7/2)^{-}$	314.25	$9/2^{-}$			
1656.7 <i>3</i>	12.0 18	1970.71	(7/2)-	314.25	9/2-	E2	0.00222	$\begin{aligned} &\alpha(\text{K}) = 0.001741 \ 25; \ \alpha(\text{L}) = 0.000276 \ 4; \ \alpha(\text{M}) = 6.34 \times 10^{-5} \ 9 \\ &\alpha(\text{N}) = 1.565 \times 10^{-5} \ 22; \ \alpha(\text{O}) = 2.80 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.82 \times 10^{-7} \ 3; \\ &\alpha(\text{IPF}) = 0.0001218 \ 17 \\ &\text{Mult.: I(ce(\text{K}))(1656.7 + 1658.3) = 0.04 so \ \alpha(\text{K}) exp = 0.0033 \ 7, \\ &\text{suggesting E2 multipolarity for both components of doublet.} \end{aligned}$
1658.3 <i>3</i>	11.0 <i>17</i>	1956.63	(7/2) ⁻	298.82	7/2-	E2	0.00222	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001738\ 25;\ \alpha(\mathrm{L}) = 0.000275\ 4;\ \alpha(\mathrm{M}) = 6.33 \times 10^{-5}\ 9\\ &\alpha(\mathrm{N}) = 1.562 \times 10^{-5}\ 22;\ \alpha(\mathrm{O}) = 2.79 \times 10^{-6}\ 4;\ \alpha(\mathrm{P}) = 1.81 \times 10^{-7}\ 3;\\ &\alpha(\mathrm{IPF}) = 0.0001224\ 18\\ &\text{Mult.: see comment on } 1656.7\gamma. \end{aligned}$
^x 1660.1 3	6.0 9							
1666.7 <i>3</i>	1.8 3	1956.63	$(7/2)^{-}$	289.60	$(11/2)^{-}$			
^x 1675.1 3	12.0 18							
1681.2 <i>3</i>	4.5 7	1979.90		298.82	7/2-			
1697.9 <i>3</i>	8.3 12	1847.53		149.77	$(9/2)^{-}$		-	
1742.6 3	15.0 23	1938.56	(7/2)-	195.76	(9/2)+	E1	1.16×10 ⁻³	$\alpha(K)=0.000683 \ 10; \ \alpha(L)=9.78\times10^{-5} \ 14; \ \alpha(M)=2.22\times10^{-5} \ 4$ $\alpha(N)=5.47\times10^{-6} \ 8; \ \alpha(O)=9.85\times10^{-7} \ 14; \ \alpha(P)=6.78\times10^{-8} \ 10; \ \alpha(IPF)=0.000353 \ 5$ Mult.: I(ce(K))=0.01 so $\alpha(K)$ exp=0.00067 $\ 14$.
1760.9 <i>3</i>	48 7	1956.63	(7/2) ⁻	195.76	(9/2)+	E1	1.16×10 ⁻³	$\alpha(\mathbf{K})=0.000671 \ 10; \ \alpha(\mathbf{L})=9.61\times10^{-5} \ 14; \ \alpha(\mathbf{M})=2.18\times10^{-5} \ 3$ $\alpha(\mathbf{N})=5.38\times10^{-6} \ 8; \ \alpha(\mathbf{O})=9.68\times10^{-7} \ 14; \ \alpha(\mathbf{P})=6.66\times10^{-8} \ 10; \ \alpha(\mathbf{IPF})=0.000366 \ 6$ Mult: $\mathbf{I}(\alpha(\mathbf{K}))=0.02$ so $\alpha(\mathbf{K})$ as $\mathbf{P}=0.00042 \ 0$
1763.3 3	4.0 6	1912.81	$(5/2^{-},7/2^{-})$	149.77	$(9/2)^{-}$			With $1(cc(\mathbf{K}))=0.02$ so $a(\mathbf{K})exp=0.00042$ 9.
			(- <i>i</i> - , <i>i</i> - ,	/ • / /	(~, -)			

 $^{183}_{78}\text{Pt}_{105}\text{--}15$

 $^{183}_{78} Pt_{105}$ -15

From ENSDF

				¹⁸³ A	1a41 (continued)								
γ ⁽¹⁸³ Pt) (continued)													
Eγ [‡]	$I_{\gamma}^{\ddagger a}$	E _i (level)	J^π_i	E_f	${\sf J}_f^\pi$	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments				
^x 1774.8 3	5.7 9												
^x 1778.4 3	5.5 8	1000		~	a /a								
1807.7 3	8.9 13	1892.3	$(\leq 1/2)$	84.66	$3/2^{-}$								
1812.8 3	3.0 5	1847.53	(7.12) -	34.57	$1/2^{-}$								
1820.6 3	5.2 ð	19/0./1	(1/2)	149.//	(9/2)								
1820.0.3	5.2 0 25 1	1912.81	$(3/2, 7/2)^{-}$	84.00 84.66	3/2								
1842 7 3	12018	1914.00	(3/2, 3/2) $(7/2)^{-}$	96.11	5/2-								
1852.6.3	16.0 24	1948.69	(7/2) $(5/2^{-},7/2)$	96.11	5/2-								
^x 1855.6.3	5.4 8	19 10.09	(3/2 ,//2)	<i>y</i> 0.11	5/2								
1861.0 3	11.0 17	1956.63	$(7/2)^{-}$	96.11	$5/2^{-}$								
1872.5 3	46 7	1968.60	(3/2,5/2,7/2) ⁻	96.11	5/2-	E2(+M1)	>1	0.0022 3	$\alpha(K)=0.00161\ 22;\ \alpha(L)=0.00025\ 4;\ \alpha(M)=5.7\times10^{-5}\ 8$ $\alpha(N)=1.42\times10^{-5}\ 20;\ \alpha(O)=2.5\times10^{-6}\ 4;\ \alpha(P)=1.7\times10^{-7}\ 3;$ $\alpha(IPF)=0.00024\ 3$ Mult: $I(ce(K))=0\ 08\ so\ \alpha(K)exp=0\ 0017\ 4$				
1874.6.3	10.0 15	1970.71	$(7/2)^{-}$	96.11	$5/2^{-}$				((((((((((((((((((((((((((((((((((((
1878.0 [°] 3	11.0 17	1912.81	$(5/2^-, 7/2^-)$	34.57	$7/2^{-}$								
^x 1883.0 3	6.0 9												
1903.9 ^c 3	5.6 8	1938.56	$(7/2)^{-}$	34.57	$7/2^{-}$								
1914.2 ^c 3	2.7 4	1948.69	$(5/2^{-},7/2)$	34.57	$7/2^{-}$								
1921.7 ^c 3	6.2 9	1956.63	$(7/2)^{-}$	34.57	7/2-								
1934.0 [°] 3	10.5 16	1968.60	$(3/2, 5/2, 7/2)^{-}$	34.57	$7/2^{-}$								
1940.1 [°] 3	3.1 5	1940.49	$(3/2, 5/2)^{-}$	0.0	$1/2^{-}$								
1945.2 [°] 3	1.7 3	1979.90		34.57	$7/2^{-}$								

[†] Additional information 2.

[‡] From 1989Ro21, relative to I(214 γ)=100. Authors indicate uncertainties in E γ that range from 0.1 to 0.3 keV; however, several E γ values are quoted only to the nearest keV and, in those cases, the evaluator has assigned 1 keV uncertainty.

[#] For E γ <220: from 1984Ma41; otherwise from 1989Ro21. Normalized to 160 γ in ¹⁸³Au. For transitions with E>300 keV the electron and γ intensities are on the same scale and I(ce) data have \approx 15% uncertainty.

[@] From ce data, except As noted.

[&] From coincidence data.

^a For absolute intensity per 100 decays, multiply by 0.069 6.

^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{183}_{78}\text{Pt}_{105}\text{--}16$

 $^{183}_{78}{\rm Pt}_{105}$

¹⁸³₇₈Pt₁₀₅

¹⁸³₇₈Pt₁₀₅

Decay Scheme (continued)

 $^{183}_{78}{\rm Pt}_{105}$

¹⁸³₇₈Pt₁₀₅

¹⁸³Au ε decay _____2000Ro41,1989Ro21,1984Ma41 (continued)

 $^{183}_{78}\mathrm{Pt}_{105}$