-

Adopted Levels, Gammas

		Tvi	ne.	Author	History Citation	Literature Cutoff Date
		Full Eva	luatior	n Coral M. Baglin	NDS 134, 149 (2016)	15-Apr-2015
$Q(\beta^-) = -558$ $Q(\epsilon p) = 1548$ For hfs and i For discussio	3 18; S(n) 27 (2012) sotope shi n of level	=7675 20; S(p) Wa38). ft measurement -energy system:	=4010 s, see atics fo) 26; Q(α)=4822 9 1992Hi07, 1999Le52 or N=105 isotones, see	2012Wa38 , 1999Ro28, 1999Sa40. e 2013Sa43.	
					¹⁸³ Pt Levels	
				Cross Re	ference (XREF) Flags	
			A B C	¹⁸³ Pt IT decay ¹⁸³ Au ε decay ¹⁸⁷ Hg α decay (2.4	D 187 Hg α de E (HI,xn γ) min)	ecay (1.9 min)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XRE	F	(Comments
0.0 ^e	1/2 ^{-f}	6.5 min <i>10</i>	AB	E $\%\varepsilon + \%\beta^+ = 100; \%$ $\mu = +0.5025(199)$ μ : from LASER others: $+0.512$ $< r^2 > 1/2$ (charge) = $\Delta < r^2 > (^{194}\text{Pt}, ^{183}\text{Pt})$ (1992Hi07). $\%\alpha$: from 1995B taking into acc expected to be for possible co μ : from LASER Other: $+0.521$ induced desorp $J^{\pi}: J = 1/2$ from h 1/2[521] level parameter $a = +$ $T_{1/2}$: from 19630	$\delta \alpha$ =0.0096 5 (1995Bi01) 9Le52,1999Ro28,1999Sa resonance ionization mas 3 (1990Hi08), +0.52 3 (1 5.403 fm 4 (2004An14). Pt)=-0.216 8 (1999Le52, i01; based on comparison ount the 43 s component correct within a factor o ntribution to ε+β ⁺ intens spectroscopy (1999Le52, 27 from resonance ioniz tion (1992Hi07). fs spectrum (1992Hi07); (1999Le52,1999Ro28, 19 0.85, typical of v 1/2[52 Gr08. Other value: 7.0 m	40,2000SaZZ) s spectroscopy; ¹⁹⁵ Pt reference standard. 992Hi07). 1999Ro28,1999Sa40). Other: -0.17 5 n of Iα with intensity of ¹⁸³ Pt ε+β ⁺ decay, of that decay. other %α: 0.0013 (1963Gr08); f three, but authors May not have corrected ity from 43 s isomer (1995Bi01). 1999Ro28,1999Sa40), relative to μ (¹⁹⁵ Pt). ation mass spectroscopy and pulsed-LASER μ consistent with that calculated for 1/2 ⁻ 199Sa40). bandhead for band with decoupling I] configuration In this mass region; in 25 (1966Si08).
34.74 ^{&} 7	7/2-	43 s 5	AB	E %ε+%β ⁺ =96.9 8 μ=0.782 14 (199) Q=3.4 3 (1999Le μ,Q: from LASE applied to Q. μ: ¹⁹⁵ Pt reference nuclear orienta other Q: +3.7 3 ($\Delta < r^2 > (^{194}Pt, ^{183}P)$ %α: α decay not keV would hav μ,Q: from LASE μ(¹⁹⁵ Pt), sternft T _{1/2} : from 1979 J ^π : M3 35γ to 1/	biod. Other value: 7.6 in $\gamma_{c}^{c} \ll \alpha < 3 \times 10^{-4}$; %IT=3.1 9Le52,1999Ro28,1999Sa (52,1999Ro28,1999Sa40) R resonance ionization m e standard. others: 0.96 & tion with γ detection. (2000SaZZ). $\gamma_{t} = -0.106 \ 8 \ (1999Le52, 0)$ observed. an α branch t γ eHF<1, unless $\%\alpha < 3x1$ R spectroscopy (1999Le52) neimer correction applied γ_{102} . 2^{-} g.s.	8 (1998Ro32) 40,2000SaZZ) hass spectroscopy. Sternheimer correction 8 (1992Ro21), 1.03 8 (1992St16); from static 1999Ro28,1999Sa40). to the $7/2^{-7}/2[514]^{-179}$ Os level At 145.4 0^{-4} . 52,1999Ro28,1999Sa40); μ relative to
84.73 ^e 7	$3/2^{-f}$		В	J^{π} : E2 85 γ to 1/2	2^{-} g.s.; g.s. band member	г.
96.15 ^e 7	5/2 ⁻		B	E J^{π} : E2 96 γ to 1/2	2 ⁻ g.s.; g.s. band member	r.

Continued on next page (footnotes at end of table)

¹⁸³Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XR	EF	Comments
149.91 ^{&} 10	(9/2)-		В	Е	J^{π} : M1+E2 115 γ to 7/2 ⁻ 35; band assignment.
195.90 [@] 10	$(9/2)^+$	>150 ns	В	Е	J^{π} : E1 from $(5/2,7/2)^{-}$.
_					$T_{1/2}$: from (HI,xn γ).
243.58 [@] 14	$(11/2)^+$		В	Ε	J^{π} : M1(+E2) 48 γ to (9/2) ⁺ 196.
289.74 ^{&} 11	$(11/2)^{-}$		В	Ε	J^{π} : D+Q intraband 140 γ to (9/2) ⁻ 150; intraband 255 γ to 7/2 ⁻ 35.
298.87 ^e 8	$7/2^{-f}$		В		J^{π} : E2 214 γ to 3/2 ⁻ 85; g.s. band member.
314.23 ^e 10	$9/2^{-f}$		В	Ε	J^{π} : stretched E2 218 γ to 5/2 ⁻ 96; g.s. band member.
316.9 [@] 7	(13/2 ⁺)			E	J ^{π} : unhindered α -decay from 13/2 ⁽⁺⁾ 57 level in ¹⁸⁷ Hg; gammas to (11/2) ⁺ and to (9/2) ⁺ .
347.72 ^b 8	(5/2)-		В		J^{π} : M1+E2 313 γ to 7/2 ⁻ 35.
$373.23^{a} 9$	(7/2)-		В		J^{π} : E2+M1 339 γ to 7/2 ⁻ 35.
375.44" 12	$(7/2)^+$		В		J^{n} : M1 180 γ to (9/2) ⁺ 196.
449.4 [°] 7	$(13/2)^{-}$			Е	J^{π} : E2+M1 160 γ to (11/2) ⁻ 290.
471.660 10	(7/2)-		В		J^{π} : E2+M1 437 γ to 7/2 ⁻ 35.
477.7 [@] 8	$(15/2^+)$			E	J^{π} : E2+M1 160 γ to (13/2) ⁺ 317; stretched E2 235 γ to (11/2) ⁺ 243.
531.60# 12	$(9/2)^+$		B		J^{π} : E1 from $(5/2,7/2)^{-}$.
555.91° 11 556.61° 13	(9/2)		B		I^{π} : M1+F2 557 α to 1/2 ⁻ g s
568.79^{d} 12	$(1/2)^{-}$		R		I^{π} : M1+F2 484 γ to 3/2 ⁻ 85
590.1 ⁰ 9	(1/2) $(17/2^+)$		D	F	J : 1011 + L2 + 047 = 10 - 5/2 = 05.
611.47 22	(17/2)		В	-	
613.16 21	(3/2,5/2)-		В		J^{π} : M1+E2 517 γ to 5/2 ⁻ 96, possible (E2) 613 γ to 1/2 ⁻ g.s
617.67 [°] 16	(5/2)-		В		J^{π} : E2(+M1) 533 γ to 3/2 ⁻ 85; possible M1+E2 583 γ to 7/2 ⁻ 35; possible 303 γ to 9/2 ⁻ 314.
627.2 ^e 10	$13/2^{-f}$			E	XREF: E(627.0). J^{π} : 313 γ to 9/2 ⁻ 314; member of g.s. band.
629.2 ^{&} 8	(15/2)-			Ε	J^{π} : intraband Q 339 γ to (11/2) ⁻ 289; intraband 180 γ to (13/2) ⁻ 449.
636.37 17	$(7/2^+, 9/2, 11/2^-)$		В		J^{π} : 165 γ to (7/2) ⁻ 472; 393 γ to (11/2) ⁺ 244; weak branch from (5/2) ⁻ In ε
650 22 <u>d</u> 11	$(2/2)^{-}$		ъ		decay (log $f(\approx 7.2)$ makes $J > 7/2$ unlikely.
030.25" 11	(3/2)		Б		J^{-1} : E2+W1 5007 to $5/2$ - 85 ; $\log j_{\ell}=0.0$ from $(5/2)$ - Iff \mathcal{E} decay; band assignment
678.45 16	$(3/2, 5/2)^{-}$		В		J^{π} : E2 594 γ to 5/2 ⁻ , uncertain γ to 1/2 ⁻ .
692.99 <i>13</i>	(3/2,5/2)-		В		J^{π} : E2+M1 597 γ to 5/2 ⁻ , uncertain 693 γ to 1/2 ⁻ g.s.; log <i>ft</i> =6.2 from (5/2) ⁻ In ε decay; 394 γ to 7/2 ⁻ 299.
702.44 ^c 14	(7/2)-		В		J^{π} : E2+M1 607 γ to 5/2 ⁻ . Note that if the 702 γ were to deexcite this level, as suggested by 1989Ro21, this band assignment would be incorrect.
730.92 18	$(\geq 5/2)^+$		В		J^{π} : E2 535 γ to $(9/2)^+$ 196.
762.22 ^{<i>d</i>} 12	(5/2)-		В		J^{π} : M1+E2 463 γ to 7/2 ⁻ 299; 678 γ to 3/2 ⁻ 85; 613 γ to (9/2) ⁻ 150; band assignment.
801.90 13	$(3/2, 5/2, 7/2)^{-}$		В		J^{π} : E2 717 γ to 3/2 ⁻ 85; 429 γ to (7/2) ⁻ 373.
819.90 17	$(7/2,9/2)^{-}$		В		J^{π} : M1+E2 506y to to 7/2 ⁻ 299; M1+E2 521y to 9/2 ⁻ 314. log <i>ft</i> =6.7 from
824.90 16	(5/2,7/2,9/2) ⁻		В		$(5/2)$ In ε decay for weak branch makes $J=9/2$ unlikely. J^{π} : M1+E2 526 γ to $7/2^{-}$ 299; 477 γ to $(5/2)^{-}$ 348. log <i>ft</i> =6.8 from $(5/2)^{-}$ In ε decay for weak branch makes $J=9/2$ unlikely.
825.3 ^{&} 10	$(17/2)^{-}$			Ε	J^{π} : intraband gammas to $(13/2)^{-}$ and to $(15/2)^{-}$.
834.2 [@] 10	(19/2 ⁺)			Ε	J^{π} : intraband D+Q 244 γ to (17/2 ⁺) 590; intraband Q 356 γ to (15/2 ⁺) 478.
835.31 16	$(3/2,5/2)^{-}$		B	Е	J^{π} : M1+E2 739 γ to 5/2 ⁻ 96; possible 836 γ to 1/2 ⁻ g.s.; 536 γ to 7/2 ⁻ 299.
847.33 23 879 74 16	(7/2,9/2,11/2) (7/2-9/2-)		B		J ^{**} : $M1+E2$ 333 γ to $9/2$ 314. $I^{\pi_{12}}$ (F2+M1) 73(by to (9/2) ⁻¹ 15(); possible F2(+M1) 845 γ to 7/2 ⁻³⁵
919.02 22	$(3/2,5/2,7/2)^{-}$		B		J^{π} : E2+M1 571 γ to (5/2) ⁻ 348.

¹⁸³Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XRE	EF	Comments							
930.64 16	_	В		J^{π} : E2+M1 1010 γ from π =- 1941 level.							
931.88 17	$(7/2, 9/2)^{-}$	В		J^{π} : M1+E2 617 γ to 9/2 ⁻ 314; 571 γ to (7/2) ⁺ 375.							
963.80 17	(7/2,9/2,11/2)-	В	Ε	J^{π} : M1(+E2) 650 γ to 9/2 ⁻ 314; 665 γ to 7/2 ⁻ 299.							
966.2 [@] 11	$(21/2^+)$		Ε	J^{π} : intraband D+Q 132 γ to (19/2 ⁺) 834; (E2) 376 γ to (17/2 ⁺) 590.							
978.62 22	(7/2)-	В		J ^π : M1+E2 829γ to $(9/2)^{-}$ 150; 631γ to $(5/2)^{-}$ 348; M1 944γ to $7/2^{-}$ 35; log <i>ft</i> =6.9 for weak branch from $(5/2)^{-}$ In ε decay.							
989.94 <i>23</i>	(*)	В		J ^π : (E2) 615γ to (7/2) ⁺ 375 allows J=(3/2 to 11/2); log <i>ft</i> =7.2 for weak branch from (5/2) [−] In ε decay favors J≤(7/2).							
998.72 18	(≥7/2)	В		J^{π} : 623 γ to (7/2) ⁺ 375; 755 γ to (11/2) ⁺ 244 suggests J^{π} =(7/2 ⁺ ,9/2, 11/2 ⁺). log <i>ft</i> =7.0 for weak branch from (5/2) ⁻ In ε decay favors J=(7/2).							
1011.9 ^e 15	$17/2^{-f}$		E	J^{π} : stretched Q 385 γ to 13/2 ⁻ 627; g.s. band member.							
1024.53 22	$(5/2,7/2,9/2)^{-}$	В		J^{π} : M1(+E2) 651 γ to (7/2) ⁻ 373.							
1035.11 16	$(7/2, 9/2)^{-}$	В		J^{π} : M1+E2 736 γ to 7/2 ⁻ 299; 746 γ to (11/2) ⁻ 290.							
1038.2° <i>13</i>	$(19/2)^{-}$	_	Е	J^{π} : intraband stretched Q 409 γ to $(15/2)^{-}$ 629 In (HI,xn γ).							
1058.03 22		В		J^{*} : 685 γ to (1/2) 3/3 implies J=(3/2 to 11/2); log $ft=1.2$ from (5/2) inconsistent with I=0/2 11/2 but branching May be too weak to be reliable							
1071.54 19	$(5/2,7/2)^{-}$	В		J^{-} (2, 11/2, but branching way be too weak to be reliable. J^{π} : E2(+M1) 1037 γ to 7/2 ⁻ 35: 696 γ to (7/2) ⁺ 375: log ft=6.5 from (5/2) ⁻ In ε decay.							
1126.47 17	(0/2,//2)	В		J^{π} : 753 γ to (7/2) ⁻ 373, 595 γ to (9/2) ⁺ 532 suggests J^{π} =(5/2 ⁺ , 7/2,9/2,11/2 ⁻); log ft=6.9 from (5/2) ⁻ for weak branch In ε decay disfavors J=(9/2,11/2).							
1263.0 <mark>&</mark> 14	$(21/2^{-})$		E	J^{π} : intraband 438 γ to $(17/2)^{-}$ 825.							
1280.1 [@] 12	$(23/2^+)$		Е								
1421.3 [@] 13	$(25/2^+)$		E								
1444.0 ^e 18	$\frac{21}{2^{-f}}$		E								
1501 3 ^{&} 16	$(23/2^{-})$		F								
1748 1 17	$(25/2^{-})$		E .								
1740.4 17	$(23/2^{+})$		E E								
1790.9 14	(27/2)	R	E	I^{π} : 1512 γ to 7/2 ⁻ 299							
1814.5 3	$(3/2, 5/2, 7/2)^{-}$	B		J^{π} : M1(+E2) 1467 γ to (5/2) ⁻ 348.							
1844.4 <i>3</i>	_	В		J^{π} : E2(+M1) 1497 γ to (5/2) ⁻ 348.							
1847.8 4		В		J^{π} : 1698 γ to (9/2) ⁻ 150, possible 1813 γ to 7/2 ⁻ 35 imply $J^{\pi} = (5/2^{-}, 7/2, 9/2, 11/2^{-})$. log <i>ft</i> =6.5 for weak branch from (5/2) ⁻ In decay renders J=9/2 or 11/2 very unlikely.							
1884.3 3	$(3/2,5/2,7/2)^+$	B		J^{π} : E1 1537 γ to $(5/2)^{-}$ 348.							
1892.4 5	$(\leq 1/2)$	В	_	J^{m} : 1808 γ to $3/2$ 85; log ff =0.5 from $(3/2)$ in ε decay, but branch is weak.							
1900.6° 20	$25/2^{-3}$	D	E	J [*] : intraband stretched Q 45/ γ to 21/2 1444. I [#] : E1 1532 α to (7/2) ⁺ 375: log ff=5.6 from (5/2) ⁻ In a decay							
1907.04	(5/2,7/2) $(5/2^{-},7/2^{-})$	B		J. ET 15527 to $(7/2)^{-575}$, log $f=5.0$ from $(5/2)^{-111}$ is decay. $I^{\pi} \cdot 1828\gamma$ to $3/2^{-85} \cdot 1763\gamma$ to $(9/2)^{-150}$							
1914.74 19	$(3/2, 5/2)^{-}$	B		J^{π} : M1 1358 γ to (3/2) ⁻ 557; 1616 γ to 7/2 ⁻ 299.							
1936.3 [@] 15	$(29/2^+)$		Е	J^{π} : intraband (E2) 515 γ to (25/2 ⁺) 1421.							
1938.66 17	$(7/2)^{-}$	В		J^{π} : E1 1407 γ to (9/2) ⁺ 532; log ft=5.8 from (5/2) ⁻ ; 1843 γ to 5/2 ⁻ 96							
1940.67 17	$(3/2, 5/2)^{-}$	В		J^{π} : E2 1593 γ to (5/2) ⁻ 348; log <i>ft</i> =5.7 from (5/2) ⁻ ; 1372 γ to (1/2) ⁻ 569.							
1948.65 23	$(5/2^{-},7/2)$	В		J^{π} : log ft=6.0 from (5/2) ⁻ In ε decay; 1634 γ to 9/2 ⁻ 314.							
1956.75 13	(1/2)-	В		J^{*} : 1643 γ to 9/2 ⁻ 314; log ft=5.3 from (5/2) ⁻ ; E1 1/60 γ to (9/2) ⁺ 196; 166/ γ to (11/2) ⁻ 290.							
1968.7 3	$(3/2, 5/2, 7/2)^{-}$	В		J^{π} : E2(+M1) 1873 γ to 5/2 ⁻ 95; log <i>ft</i> <5.9 from (5/2) ⁻ .							
1970.72 76 1980.1 4	(7/2)	B B		J [*] : log $ft < 5.9$ from (5/2); E2 165 / γ to 9/2 314; 1439 γ to (9/2) 532. J [#] : 1681 γ to 7/2 ⁻ 299 suggests J=(3/2 to 11/2). log ft =6.7 In ε decay for weak branch from (5/2) ⁻ favors J=(3/2,5/2,7/2).							
2005.5 ^{&} 19	$(27/2^{-})$		E	J^{π} : stretched Q 504 γ to (23/2 ⁻) 1501 In (HI,xn γ).							
2268.5 ^{&} 20	$(29/2^{-})$		Е	J^{π} : intraband stretched Q 520 γ to (25/2 ⁻) 1748 In (HI,xn γ).							
2340.8 [@] 15	$(31/2^+)$		E	J^{π} : intraband D+Q 404 γ to (29/2 ⁺) 1936 In (HI,xn γ).							
2373.7 ^e 23	$29/2^{-f}$		E	J ^{π} : intraband stretched Q 473 γ to 25/2 ⁻ 1901; 1/2[521] band MEMBER							
2503.0 [@] 17	$(33/2^+)$		E	J^{π} : intraband stretched (Q) 567 γ to (29/2 ⁺) 1936.							

Continued on next page (footnotes at end of table)

¹⁸³Pt Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
2541.8 ^{&} 22	(31/2 ⁻)	E	J^{π} : stretched Q 536 γ to (27/2 ⁻) 2005 In (HI,xn γ).
2818.5 ^{&} 22	$(33/2^{-})$	Е	J^{π} : (E2) 550 γ to (29/2 ⁻) 2269.
2872.1 ^e 25	33/2 ⁻ <i>f</i>	Е	J^{π} : stretched Q 498 γ to 29/2 ⁻ 2374; 1/2[521] band member.
2919.1 [@] 17	$(35/2^+)$	Е	J ^{π} : intraband 416 γ to (33/2 ⁺) 2503; intraband Q78G to (31/2 ⁺) 2341.
3108.8 ^{&} 24	$(35/2^{-})$	Е	J^{π} : possible intraband 290 γ to (33/2 ⁻) 2819; intraband 567 γ to (31/2 ⁻) 2542.
3122.7 [@] 18	$(37/2^+)$	E	J^{π} : intraband stretched Q 620 γ to (33/2 ⁺) 2503.
3396.5 ^{&} 25	(37/2-)	E	J^{π} : intraband 578 γ to (33/2 ⁻) 2819.
3423 ^e 3	37/2 ⁻	E	J^{π} : 1/2[521] band member.
3543.4 [@] 18	$(39/2^+)$	E	J^{π} : intraband 421 γ to (37/2 ⁺) 3123; intraband 624 γ to (35/2 ⁺) 2919.
3698 ^{&} 3	$(39/2^{-})$	E	J^{π} : intraband 589 γ to (35/2 ⁻) 3109.
3793.7 [@] 21	$(41/2^+)$	E	J^{π} : intraband 671 γ to (37/2 ⁺) 3123.
4019 ^{&} 3	(41/2 ⁻)	E	XREF: E(4018.2). J ^{π} : 622 γ to 37/2 ⁻ 3423; band assignment.
4025 ^e 3	41/2 ⁻ <i>f</i>	E	XREF: E(4024.9). J^{π} : 1/2[521] band member.
4290 ^{&} 3	$(43/2^{-})$	Е	J^{π} : intraband 592 γ to (39/2 ⁻) 3698.
4507.7 [@] 23	$(45/2^+)$	Е	J^{π} : intraband 714 γ to (41/2 ⁺) 3794.
4950 ^{&} 3	$(47/2^{-})$	E	J^{π} : intraband 660 γ to (43/2 ⁻) 4290.
5256.7? [@] 25	$(49/2^+)$	Е	J^{π} : intraband 749 γ to (45/2 ⁺) 4508.

[†] From least-squares fit to $E\gamma$, assigning 1 keV uncertainty to $E\gamma$ data for which authors did not state an uncertainty.

[‡] From band assignments and connecting-transition multipolarities as indicated. Above 1.8 MeV, log *ft* arguments are reliable for only the strongly fed levels. Where missing feeding intensity is improbable, the parities of the levels associated with the 7/2[514], 9/2[624], and 7/2[633] bands are established by E1 transitions from the 1938 and 1954 levels into the 196 level and connecting transition multipolarities between these band members.

- [#] Band(A): 7/2[633] band (1989Ro21). Band parameters: $E_0=315$, $\alpha=17.4$ (J=7/2,9/2).
- [@] Band(B): 9/2[624] band (1990Ny02).
- [&] Band(C): 7/2[514] band (1990Ny02). $E_0 = -166.3$, $\alpha = 12.8$.
- ^a Band(D): 7/2[503] band (1989Ro21). Band parameters: E₀=310, α=18.1 (J=7/2,9/2).
- ^{*b*} Band(E): 5/2[512] band (1989Ro21). E₀=303.5, α =17.7.
- ^c Band(F): 3/2[512] band (1989Ro21). E₀=511.0, α =12.1.
- ^d Band(G): 1/2[510] band (1989Ro21). E₀=559, α =24.8, a=0.096 (J=1/2,3/2,5/2).
- ^{*e*} Band(H): 1/2[521] g.s. band (1990Ny02). E₀=5.3, α =15.3, a=+0.85 (J=1/2,3/2,5/2).

^{*f*} Definite J^{π} assigned to g.s. band members based on progression of level energies (decoupling parameter consistent with that expected for 1/2[521] band) and independently-determined J(g.s.)=1/2 and E2 multipolarity for intraband 85 γ .

E,I $\!\gamma,\!M,\!\delta$ from $^{183}{\rm Au}\ \varepsilon$ decay, except As noted.

S

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	$lpha^\dagger$	Comments
34.74	7/2-	35.0 1	100	0.0 1/2-	M3		1.71×10 ⁵ 4	B(M3)(W.u.)=0.0042 <i>12</i> E_{y} .Mult.: from ¹⁸³ Pt IT decay.
84.73	$3/2^{-}$	84.6 <i>1</i>	100	$0.0 1/2^{-}$	E2		9.93	
96.15	$5/2^{-}$	11.4 2	≈ 0.0008	84.73 3/2-	[E2]		4.3×10 ⁴ 4	
		96.0 1	100 16	0.0 1/2-	E2		5.80	
149.91	(9/2)-	115.2 1	100	34.74 7/2-	M1+E2		3.6 9	Mult., δ : D(+Q), δ =-0.10 +22-10 from (HI,xn γ), but α (L)exp and α (K)exp In ε decay imply M1+E2, δ =3 +7-1 and are considered adequate to establish $\Delta \pi$ =No for 115 γ .
195.90	$(9/2)^+$	46.1 2	0.75 12	149.91 (9/2)-	[E1]		0.659 13	$B(E1)(W.u.) < 1.5 \times 10^{-6}$
		161.2 <i>I</i>	100 15	34.74 7/2-	E1		0.1208	$B(E1)(W.u.) < 1.6 \times 10^{-7}$
								α : anomalous E1 transition. α (E1)=0.1208 from theory but α (K)=0.69 10 from c decay
243 58	$(11/2)^+$	48.0.2	100	$195.90 (9/2)^+$	M1(+E2)	0 27 8	19.6	$u(\mathbf{K})\exp[-0.09\ 10\ \text{Hom}\ \varepsilon\ \text{decay}]$
289.74	$(11/2)^{-}$	140 1	36 6	$149.91 (9/2)^{-1}$	(M1+E2)	0127 0	1.9 7	other Iy: 17.3 17 from (HI, xny).
								Mult.: D+Q from $\gamma(\theta)$ In (HI,xn γ) for intraband G.
		255.0 1	100 15	34.74 7/2-	(E2)		0.1620	Mult.: Q intraband γ from (HI,xn γ).
298.87	7/2-	202.6 1	13.0 20	96.15 5/2-	[M1+E2]		0.6 3	
214.22	0/2-	214.1 <i>I</i>	100 15	84.73 3/2	E2 E2		0.286	
314.23	9/2	218.1 I	100	90.15 5/2	E2		0.268	
316.9	$(13/2^{+})$	/3"		243.58 (11/2)				
247.72	(5/0)-	121"	25.4	$195.90 (9/2)^+$	[E2]		2.27	
347.72	(5/2)	251.4 1	25 4 10 3	96.15 5/2	[M1+E2]		0.33 17 0.20 15	
		202.8 I 313 1 I	19 5		[M1+E2] M1+F2	053	0.29 13	
373.23	$(7/2)^{-}$	223 1	≈3.8	$149.91 (9/2)^{-1}$	[M1+E2]	0.5 5	0.47 22	
	(.,-)	277.0 1	26 4	96.15 5/2-	[M1+E2]	0.25 13	0.365 18	
		338.5 1	100 16	34.74 7/2-	E2+M1	1.2 3	0.131 22	
375.44	$(7/2)^+$	179.5 <i>1</i>	100	195.90 (9/2)+	M1		1.264	
449.4	$(13/2)^{-}$	160.0 [#]	5.5 [#] 11	289.74 (11/2)-	(E2+M1) [‡]	-2.5 2	0.921 24	
		299.2#	100 [#] 4	149.91 (9/2)-	(E2) ⁴		0.0992	
471.66	$(7/2)^{-}$	98.5 2	5.5 8	$3/3.23 (7/2)^{-1}$	[M1+E2]	0.65	6.1 9	
		123.9 1	100 15	347.72(5/2)	MI(+E2)	<0.65	3.38 24	
		37562	15 3	96 15 5/2 ⁻				
		437.1 2	69 10	34.74 7/2-	E2+M1	1.2 6	0.066 2.5	
477.7	$(15/2^+)$	160.0 [#]	100 [#] 9	$316.9 (13/2^+)$	$(E2+M1)^{\ddagger}$	-1.7.5	1.03.75	
.,,.,	(10/2)	234 5 [#]	70# 3	$243.58 (11/2)^+$	$(E2)^{\ddagger}$	1.7 5	0.212	
		257.5	10 5	2 + 5.50 (11/2)	$(\mathbf{L} \mathbf{Z})$		0.212	

γ (¹⁸³Pt) (continued)

E _i (level)	${ m J}^{\pi}_i$	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}
531.60	$(9/2)^+$	155.9.2	29 4	375.44	$(7/2)^+$	[M1+E2]		1.4.5
001100	(>/=)	288.1 1	100 16	243.58	$(11/2)^+$	[M1+E2]		0.23 12
		335.8 2	32 5	195.90	$(9/2)^{+}$	L J		
535.91	$(9/2^{-})$	162.6 <i>1</i>	100 15	373.23	$(7/2)^{-}$			
		221 <i>I</i>	≈9.2	314.23	9/2-			
		246.2 2	10.8 17	289.74	$(11/2)^{-}$			
		386.3 2	6.3 9	149.91	$(9/2)^{-}$			
556.61	3/2-	471.8 2	16.9 26	84.73	3/2-	M1		0.0908
		556.7 ^{&} 2	≈100 ^{&}	0.0	$1/2^{-}$	M1+E2	1.3 4	0.034 8
568.79	$(1/2)^{-}$	484.1 <i>1</i>	100	84.73	3/2-	M1+E2	0.8 <i>3</i>	0.062 11
590.1	$(17/2^+)$	112.2 [#]	2.7 [#] 5	477.7	$(15/2^+)$	(M1+E2) [‡]	-0.6 +30-4	4.3 11
		273.5 [#]	$100^{\#} 5$	316.9	$(13/2^+)$	(E2) [‡]		0.1302
611.47		297.1 ^a 2	15.7 23	314.23	9/2-			
		312.6 2	100 15	298.87	$7/2^{-}$			
613.16	$(3/2, 5/2)^{-}$	517.0 2	100 15	96.15	5/2-	M1+E2	0.4 + 3 - 4	0.065 10
		613.2 ^{<i>a</i>} 2	89 14	0.0	$1/2^{-}$	(E2)		0.01532
617.67	$(5/2)^{-}$	269.8 2	27 4	347.72	$(5/2)^{-}$	[M1+E2]		0.27 14
		302.8 ^{<i>a</i>} 2	1.71 25	314.23	9/2-			
		533.1 ^{&} 2	≈39 ^{&}	84.73	3/2-	E2(+M1)		0.044 23
		582.8 <mark>&a</mark> 2	≈100 ^{&}	34.74	$7/2^{-}$	E2+M1	2 1	0.024 11
627.2	13/2-	313.0 [#]	100	314.23	9/2-			
629.2	$(15/2)^{-}$	179.6 [#]		449.4	$(13/2)^{-}$			
		339.4 [#]	$100^{\#} 5$	289.74	$(11/2)^{-}$	(E2) [‡]		0.0688
636.37	$(7/2^+, 9/2, 11/2^-)$	164.7 2	100 14	471.66	$(7/2)^{-}$			
		392.8 2	40 6	243.58	$(11/2)^+$			
		601.7 ^a 2	63 9	34.74	7/2-			
650.23	$(3/2)^{-}$	553.7 2	24 4	96.15	5/2-			
		565.6 1	100 18	84.73	3/2-	E2+M1	1.3 +4-3	0.033 5
678.45	$(3/2, 5/2)^{-}$	379.5 2	≈18	298.87	$7/2^{-}$			
		593.8 2	100 15	84.73	3/2-	E2		0.01648
(02.00		678.6 ^{<i>a</i>} 2	15.0 25	0.0	$1/2^{-}$			
692.99	$(3/2, 5/2)^{-}$	394.0 2	9.2 13	298.87	7/2 ⁻	E2 . M1	2 . 2 1	0.020 4
		596.9 2	100 17	90.15	5/2 2/2-	E2+M1	3 + 2 - 1	0.020 4
		608.32	32 S	84.73	3/2 1/2-			
702.44	$(7/2)^{-}$	320 3 2	0./ IS	0.0	$\frac{1}{2}$			
/02.44	(1/2)	329.5 2	≈ 12.8	3/3.23	(1/2) $(5/2)^{-}$			
		606 5 2	10.0 14	96.15	(3/2) $5/2^{-}$	F2+M1	15 + 5 - 3	0 025 4
730.92	$(>5/2)^+$	355 4 2	38.6	375 44	$(7/2)^+$		1.5 15 5	0.025 4
, 50.72	(===)(=)	535.1 2	100 15	195.90	$(9/2)^+$	E2		0.0210
762.22	$(5/2)^{-}$	388.5^{a} 2	24.3	373.23	$(7/2)^{-}$			5.0210
	(-,-)	200.2 1	210	515.25	(1-)			

6

$\gamma(^{183}\text{Pt})$ (continued)

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
762.22	(5/2)-	463.1 2 612.5 2	47 7 57 9	298.87 149.91	7/2 ⁻ (9/2) ⁻	M1+E2 (E2)	0.9 3	0.066 <i>12</i> 0.01536	
		666.1 2 677.5 2 727.5 ^a 2	24 3 89 13 100 15	96.15 84.73 34.74	5/2 ⁻ 3/2 ⁻ 7/2 ⁻	M1(+E2)	<2	0.022 8	
801.90	(3/2,5/2,7/2)-	428.8 2 705.8 2	54 9 100 <i>15</i>	373.23 96.15	$(7/2)^{-}$ 5/2 ⁻			0.01005	
819.90	(7/2,9/2)-	505.7 2 521.0 2	69 10 26 4 100 15	84.73 314.23 298.87	3/2 9/2 ⁻ 7/2 ⁻	E2 M1+E2 M1+E2	0.7 <i>3</i> 0.9 <i>3</i>	0.01085 0.059 <i>10</i> 0.049 <i>9</i>	
824.90	(5/2,7/2,9/2)-	477.1 2 526.1 2	31 <i>4</i> 100 <i>15</i>	347.72 298.87	(5/2) ⁻ 7/2 ⁻	M1+E2	≈0.4	≈0.0618	
825.3	(17/2) ⁻	196 # 376 [#]		629.2 449.4	$(15/2)^{-}$ $(13/2)^{-}$				E_{γ} : for doubly-placed G.
834.2	(19/2+)	244.2 [#] 356.4 [#]	13.2 [#] 22 100 [#] 5	590.1 477.7	$(17/2^+)$ $(15/2^+)$	(E2+M1) [‡] (E2) [‡]	-1.1 +3-5	0.34 <i>6</i> 0.0599	
835.31	(3/2,5/2) ⁻	536.2 2 739.4 2 835.6 ^a 2	24 3 100 15 18.0 27	298.87 96.15 0.0	7/2 ⁻ 5/2 ⁻ 1/2 ⁻	M1+E2	0.7 +5-4	0.022 5	
847.33 879.74	(7/2,9/2,11/2) ⁻ (7/2 ⁻ ,9/2 ⁻)	533.1 ^{&} 2 581.1 2 729.6 2	100 & 100 <i>16</i> 67 <i>10</i>	314.23 298.87 149.91	$9/2^{-}$ $7/2^{-}$ $(9/2)^{-}$	M1+E2 (E2+M1)		0.044 23	
919.02	(3/2,5/2,7/2)-	845.1 ^{<i>a</i>} 2 571.3 2	46 7 63 9	34.74 347.72	$7/2^{-}$ (5/2) ⁻	E2(+M1) E2(+M1) E2+M1	>2 1.5 +6-3	0.0089 <i>13</i> 0.029 <i>5</i>	
930.64	-	$884.5^{\circ} 2$ 362.0 2 582.8 $2^{\circ} 2$	$100 \ 15$ 23 3 $\approx 100^{\&}$	34.74 568.79 347.72	$(1/2)^{-}$ $(5/2)^{-}$	E2(+M1)	>2	0.0081 11	
931.88	(7/2,9/2) ⁻	556.7 ^{&} 2 617.4 2 897.6 ^a 2	$\approx 100^{\&}$ 58 9 11.0 17	375.44 314.23 34.74	$(7/2)^+$ 9/2 ⁻ 7/2 ⁻	[E1] M1+E2	0.8 +4-3	0.00660 0.033 <i>6</i>	
963.80	(7/2,9/2,11/2)-	649.9 2 664.6 2	100 <i>16</i> 38 <i>5</i>	314.23 298.87	9/2 ⁻ 7/2 ⁻	M1(+E2)	<1	0.033 7	
966.2	$(21/2^+)$	132.1 [#] 376 [#]	5.0 [#] 5 100 [#] 5	834.2 590.1	$(19/2^+)$ $(17/2^+)$	(M1+E2) [‡] (E2) [‡]		2.3 7 0.0517	I_{γ} : for doublet.
978.62	(7/2)-	631 <i>1</i> 828.7 <i>2</i> 944.0 ^{<i>a</i>} <i>2</i>	≈24 100 <i>15</i> 83 <i>12</i>	347.72 149.91 34.74	$(5/2)^{-}$ $(9/2)^{-}$ $7/2^{-}$	M1+E2 M1	1.0 +8-4	0.015 <i>4</i> 0.01515	,
989.94 998.72	(⁺) (≥7/2)	614.5 2 467.3 2 623.1 2	100 38 6 100 15	375.44 531.60 375.44	$(7/2)^+$ $(9/2)^+$ $(7/2)^+$	(E2)		0.01525	

 \neg

γ (¹⁸³Pt) (continued)

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}
998.72	(≥7/2)	754.5 ^a 2	68 9	243.58 (11/2)+			
1011.9	$17/2^{-}$	384.7 [#]	100 [#]	627.2 13/2-	(E2) [‡]		0.0486
1024.53	$(5/2,7/2,9/2)^{-}$	651.3 2	100 15	373.23 (7/2)-	M1(+E2)	<1	0.033 7
		990.1 ^a 2	38 5	34.74 7/2-			
1035.11	$(7/2, 9/2)^{-}$	736.1 2	100 14	298.87 7/2-	M1+E2	0.7 + 5 - 4	0.023 5
		745.5 2	28 4	$289.74 (11/2)^{-1}$			
1020.0	(10/2)-	1000.0^{-1} 3	91 14	34.74 7/2			
1038.2	(19/2)	214""	100## 7	825.3 (17/2)			0.0412
1059.02		409.0""	100 7	$629.2 (15/2)^{-1}$	(E2)*		0.0412
1058.03	$(5/2 \ 7/2)^{-}$	684.8 Z	100 15	3/3.23 (1/2) $375 \Lambda \Lambda (7/2)^+$			
1071.54	(3/2, 7/2)	1036.8.3	100 15	$34.74 \ 7/2^{-1}$	E2(+M1)	>2	0.0058 7
1126.47		595.1 2	66 9	$531.60 (9/2)^+$	22(1111)		01000007
		753.0 2	72 9	373.23 (7/2)-			
		1091.8 ^a 3	100 16	34.74 7/2-			
1263.0	$(21/2^{-})$	437.7 [#]	100	825.3 (17/2) ⁻			
1280.1	$(23/2^+)$	314 [#]		966.2 (21/2+)			
		445.9 [#]	100 [#] 6	834.2 (19/2+)	(E2) [‡]		0.0330
1421.3	$(25/2^+)$	141.2 [#]	2.4 [#] 7	1280.1 (23/2+)	(M1+E2) [‡]		1.9 7
		454.8 [#]	100 [#] 4	966.2 (21/2 ⁺)	(E2) [‡]		0.0313
1444.0	21/2-	432.1 [#]	100 [#]	1011.9 17/2-	(E2) [‡]		0.0357
1501.3	$(23/2^{-})$	239 ^{#a}		1263.0 (21/2 ⁻)			
		463.2 [#]	100 [#] 6	1038.2 (19/2)-	(E2) [‡]		0.0299
1748.4	(25/2-)	485.4 [#]	100 [#]	1263.0 (21/2 ⁻)	(E2) [‡]		0.0266
1790.9	$(27/2^+)$	369.5 [#]	100 [#] 36	1421.3 (25/2 ⁺)	(E2+M1) [‡]	-1.4 +5-10	0.09 3
		511 [#]		$1280.1 (23/2^+)$			
1810.8		1511.9 <i>3</i>	100	298.87 7/2-			
1814.5	$(3/2, 5/2, 7/2)^{-}$	1466.8 <i>3</i>	100	347.72 (5/2)-	M1(+E2)	<1.6	0.0042 9
1844.4	-	1496.7 3	100	$347.72 (5/2)^{-1}$	E2(+M1)	>1	0.0032 6
1847.8		169/.93 1812.8 ^{<i>a</i>}	100 14	149.91 (9/2) $34.74 7/2^{-}$			
1884 3	$(3/2 5/2 7/2)^+$	1536.6.3	100	$347.74 \ 1/2$ $347.72 \ (5/2)^{-}$	F1		1.20×10^{-3}
1892.4	(<7/2)	1807.7 3	100	84.73 3/2-	LI		1.20/(10
1900.6	25/2-	456.6 [#]	100 [#]	1444.0 21/2-	(E2) [‡]		0.0310
1907.6	$(5/2,7/2)^{-}$	1532.2 3	100	375.44 (7/2)+	E1		
1913.03	$(5/2^-, 7/2^-)$	1763.3 <i>3</i>	36 5	149.91 (9/2)-			
		1828.1 3	47 7	84.73 3/2-			
1014 74	(2 0, 5 0) =	1878.0 ^{<i>u</i>} 3	100 15	34.74 7/2-	M1		0.00(10
1914./4	(3/2, 3/2)	1338.2 3	12 12	550.01 5/2	IVI 1		0.00610

 ∞

$\gamma(^{183}\text{Pt})$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}
1914.74	$(3/2, 5/2)^{-}$	1615.8 <i>3</i>	22 3	298.87 7/2-			
		1830.0 <i>3</i>	100 16	84.73 3/2-			
1936.3	$(29/2^+)$	147 ^{#a}		1790.9 (27/2 ⁺)			
		515.0 [#]	100 [#] 7	$1421.3 (25/2^+)$	(E2) [‡]		0.0230
1938.66	$(7/2)^{-}$	1406.9.3	83 13	$531.60 (9/2)^+$	E1		1.28×10^{-3}
	(.,-)	1639.9 <i>3</i>	27 4	298.87 7/2-			
		1742.6 <i>3</i>	100 15	$195.90 (9/2)^+$	E1		1.16×10^{-3}
		1842.7 <i>3</i>	80 12	96.15 5/2-			
		1903.9 ^a 3	37 5	34.74 7/2-			
1940.67	$(3/2, 5/2)^{-}$	1010.1 <i>3</i>	27 4	930.64 -	E2+M1	1.1 +13-5	0.0087 23
		1371.9 <i>3</i>	24 4	568.79 (1/2)-			
		1384.0 <i>3</i>	60 9	556.61 3/2-	E2(+M1)	>0.6	0.0040 11
		1592.9 <i>3</i>	100 16	347.72 (5/2)-	E2		0.00235
		1940.1 ^a 3	12.4 20	$0.0 1/2^{-}$			
1948.65	$(5/2^-, 7/2)$	1634.3 <i>3</i>	48 7	314.23 9/2-			
		1852.6 <i>3</i>	100 15	96.15 5/2-			
		1914.2 ^{<i>a</i>} 3	16.9 25	34.74 7/2-			2
1956.75	$(7/2)^{-}$	1425.0 <i>3</i>	58 8	531.60 (9/2)+	E1		1.26×10^{-3}
		1484.9 <i>3</i>	25 4	471.66 (7/2)-	E2(+M1)	>1	0.0032 6
		1608.8 <i>3</i>	15.8 23	347.72 (5/2)-			
		1642.5 3	29 4	314.23 9/2-			
		1658.3 3	23 4	298.87 7/2-	E2		0.00222
		1666.7 3	3.76	289.74 (11/2)			
		1760.9 3	100 15	$195.90 (9/2)^+$	E1		1.16×10^{-3}
		1861.0 3	23 4	96.15 5/2-			
10/0 7		1921.7 ⁴ 3	12.9 19	34.74 7/2-			0.0000.0
1968.7	(3/2,5/2,7/2)	18/2.5 3	100 15	96.15 5/2	E2(+M1)	>1	0.0022 3
1070 70	(7/0)-	1934.04 3	23 3	34.74 7/2			
1970.72	(7/2)	899.6" 2	28 4	10/1.54 (5/2, 1/2)			
		1438.8 3	72 11	$531.60 (9/2)^{+}$			
		1595.5 5	29 4	373.44 (7/2) $314.22 0/2^{-1}$	ED		0.00222
		1820.6.3	100 15	$514.25 \ 9/2$ 1/0 01 (0/2) ⁻	EZ		0.00222
		1874.6.3	83 13	$96.15 5/2^{-1}$			
1980-1		1681 2 3	100 16	298 87 7/2-			
190011		1945.2^{a} 3	38.7	34.74 7/2-			
2005 5	$(27/2^{-})$	$250\frac{\#a}{2}$	20 /	$1748 A (25/2^{-})$			
2005.5	(21/2)	239 504 0#	100# 1	1770.7 (23/2)	$(\mathbf{E}_{2})^{\ddagger}$		0.0242
		504.2"	100" 4	1501.5 (25/2)	(E2) ⁺		0.0243
2268.5	$(29/2^{-})$	520.1"	100"	$1748.4 (25/2^{-})$	(E2)+		0.0225
2340.8	$(31/2^+)$	404.1 [#]	28 [#] 3	1936.3 (29/2 ⁺)	(M1+E2) [‡]		0.09 5
		550 [#]	100 [#] 13	1790.9 (27/2 ⁺)	(E2) [‡]		0.0197

9

	Adopted Levels, Gammas (continued)											
	$\gamma(^{183}\text{Pt})$ (continued)											
E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E _f J	$\frac{\pi}{f}$ Mu	ılt.	α^{\dagger}	Comments				
2373.7	29/2-	473.1 [#]	100 [#]	1900.6 25/2	2- (E2	2) [‡] 0	.0284					
2503.0	$(33/2^+)$	164 ^{#a}		2340.8 (31/	/2+)							
		567 ^{@#}	100 ^{@#} 6	1936.3 (29/	$/2^+)$ (E2)	2) [‡] 0	.0183					
2541.8	$(31/2^{-})$	275 ^{#a}		2268.5 (29/	/2-)							
		536.3 [#]	100 [#] 3	2005.5 (27/	/2 ⁻) (E2	2) [‡] 0	.0209					
2818.5	$(33/2^{-})$	550 [#]	100 [#]	2268.5 (29/	/2 ⁻) (E2	2) [‡] 0	.0197					
2872.1	33/2-	498.4 [#]	100 [#]	2373.7 29/2	2- (E2	2) [‡] 0	.0250					
2919.1	$(35/2^+)$	416 [#]		2503.0 (33/	/2+)							
		578		2340.8 (31/	/2+)			E_{γ} : from (HI,xn γ) for doublet.				
3108.8	$(35/2^{-})$	290 ^{#a}		2818.5 (33/	/2-)							
		567 ^{@#}	100 ^{@#} 6	2541.8 (31/	$/2^{-})$ (E2)	$(2)^{\frac{1}{4}} = 0$.0183					
3122.7	$(37/2^+)$	205 ^{#a}		2919.1 (35/	/2+)							
		620.0 [#]	100 [#] 13	2503.0 (33/	$/2^+)$ (E2)	$(2)^{\frac{1}{4}} = 0$.01494					
3396.5	$(37/2^{-})$	578 [#]	100	2818.5 (33/	/2-)			E_{γ} : for doublet.				
3423	37/2-	551 [#]	100 [#]	2872.1 33/2	2 ⁻ (E2	$(2)^{\ddagger} = 0$.0196					
3543.4	$(39/2^+)$	421 #		3122.7 (37)	/2+)							
		624 #		2919.1 (35/	(2^{+})							
3698	$(39/2^{-})$	589 [#]	100	3108.8 (35/	/2-)							
3793.7	$(41/2^+)$	671 [#]	100	3122.7 (37/	/2+)							
4019	$(41/2^{-})$	622 #	100	3396.5 (37/	/2-)							
4025	$41/2^{-}$	602 #	100	3423 37/2	2-							
4290	$(43/2^{-})$	592 #	100	3698 (39/	/2-)							
4507.7	$(45/2^+)$	714 [#]	100	3793.7 (41/	(2^{+})							
4950	$(47/2^{-})$	660 [#]	100	4290 (43/	/2-)							
5256.7?	$(49/2^+)$	749 ^{#a}	100	4507.7 (45/	/2+)							

[†] Additional information 1. [‡] From $\gamma(\theta)$ In (HI,xn γ), assigning $\Delta \pi$ =(No) if transition is intraband.

[#] From (HI,xnγ).
[@] Multiply placed with undivided intensity.
[&] Multiply placed with intensity suitably divided.
^a Placement of transition in the level scheme is uncertain.

Legend Level Scheme Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given γ Decay (Uncertain) ٠ 001 057 + (49/2+) _5<u>256.7</u> + 600 100 + (47/2-) 4950 4 214 100 $(45/2^+)$ 4507.7 6 હે (43/2-) -00-100-4290 1 22 100 4025 4019 $\frac{41/2^{-}}{(41/2^{-})}$ -8 - 280 100 -6 $\frac{(41/2^+)}{(39/2^-)}$ 3793.7 3698 84 8 (39/2+) 3543.4 <u>37/2</u>-(37/2 3423 ¥. Ì 3396.5 Ð 000 ²05 $(37/2^+)$ \$-8-, ⁵⁵0 , ⁶², ¹, ¹0 3122.7 (35/2-) 3108.8 578 416 $(35/2^+)$ ¥ 2919.1 <u>33/2</u>-(33/2-2872.1 1 001 (2) ; Ð 2818.5 536.3 236.3 (31/2⁻) 2541.8 $(33/2^+)$ Ť 2503.0 Ś 29/2-30 2373.7 Ð 2340.8 V \sim (29/2-) 2268.5 6 $(27/2^{-})$ 2005.5 1980.1 (7/2) 1970.72 (29/2+) 1936.3 $\frac{25/2^-}{(27/2^+)}$ 1900.6 1790.9 (25/2-1748.4 $(23/2^{-})$ 1501.3 (5/2,7/2)-1071.54 $\frac{(9/2)^+}{(7/2)^+}$ 531.60 375.44 9/2-314.23 ¥ $\frac{7/2^{-}}{(9/2)}$ 298.87 149.91 5/2 7/2 96.15 34.74 43 s 5 $1/2^{-}$ 0.0 6.5 min 10

 $^{183}_{78}{\rm Pt}_{105}$

 $^{183}_{78}\mathrm{Pt}_{105}$

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given γ Decay (Uncertain) ٠ + 48.54 (E2) 100 $(25/2^{-})$ 1748.4 + 403,2 (E2) 100 1 ¹41.2 | 1¹41.2 | 14.482] 24 ⊢ \$3.2 | . (€2) 100 ŝ $(23/2^{-})$ 1501.3 <u>1444.0</u> 1421.3 $\frac{21/2^{-}}{(25/2^{+})}$ + *45.9 (5.3) 100 | | 43?> 100 314 $(23/2^+)$ 1280.1 (21/2-) 1263.0 + 907 - 100 - 1 + 233.0 22 + 3_{95,1}65 + 69 | -+ 60 | -+ 100 (C) (D) 100 S 1126.47 (5/2,7/2) 1071.54 1058.03 (19/2) 1038.2 1011.9 $\frac{17/2^{-}}{(21/2^{+})}$ 966.2 $\frac{(19/2^+)}{(17/2)^-}$ 834.2 825.3 (15/2) 629.2 $(9/2)^+$ 531.60 $(7/2)^+$ 375.44 373.23 (7/2) 7/2-<u>34.74</u> 43 s 5 $1/2^{-}$ 0.0 6.5 min 10 ¹⁸³₇₈Pt₁₀₅

¹⁸³₇₈Pt₁₀₅

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

¹⁸³₇₈Pt₁₀₅

Band(B): 9/2[624] band (1990Ny02)

¹⁸³₇₈Pt₁₀₅

¹⁸³₇₈Pt₁₀₅