		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 134, 149 (2016)	15-Apr-2015

Parent: ¹⁸³Ir: E=0.0; $J^{\pi}=5/2^-$; $T_{1/2}=58 \text{ min } 6$; $Q(\varepsilon)=3460 \ 50$; $\%\varepsilon+\%\beta^+$ decay=100.0 Other measurements: 1975La22, 1961Di04, 1961La05.

1988Ro13: Source produced by bombardment of Pt-B alloy target with 200 MeV p or 280 MeV ³He; Isocele mass separator, two

HPGe detectors (FWHM 1.9 keV at 1.3 MeV) for γ spectroscopy (E γ =15-2500), magnetic spectrometer (for E(ce)=44-340 keV) and cooled Si(Li) detector for electron measurements; measured E γ , I γ , I(ce), $\gamma\gamma$ coin.

Total energy release for this decay scheme is $3556 \ 323 \ cf. \ QxBR=3460 \ 50.$

¹⁸³ Os Levels	\$
--------------------------	----

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	E(level) [†]	$J^{\pi \ddagger}$
0.0	$9/2^{+}$		832.03 11	$(3/2, 5/2, 7/2)^{-}$
96.23 11	$11/2^+$		850.20 13	(3/2,5/2,7/2)-
170.70 7	$1/2^{-}$	9.9 [‡] h <i>3</i>	896.76 14	7/2+
258.32 8	$3/2^{-}$		944.31 <i>12</i>	$(3/2, 5/2)^{-}$
273.04 8	5/2-		964.83 16	$(3/2, 5/2)^{-}$
392.48 8	$(7/2)^{-}$		1039.19 22	$(5/2,7/2,9/2)^{-}$
395.19 10	$1/2^{-}$		1045.95 12	$(5/2^+)$
453.05 9	3/2-		1054.34 14	$(5/2,7/2,9/2)^{-}$
486.99 10	$7/2^{-}$		1180.87 17	$(3/2, 5/2)^{-}$
509.88 11	9/2-		1236.76 15	$(7/2)^+$
512.54 12	$7/2^{-}$		1252.96 15	5/2+
513.09 8	$5/2^{-}$		1295.46 18	$(5/2,7/2)^+$
544.38 9	$5/2^{-}$		1332.58 23	$(1/2, 3/2, 5/2)^{-}$
558.15 14	$(9/2)^{-}$		1911.52 <i>17</i>	$(3/2^{-}, 5/2, 7/2^{-})$
582.21 10	$(3/2)^{-}$		1921.03 23	1/2,3/2,5/2-
620.78 10	$7/2^{-}$		1977.95 <i>15</i>	$(3/2)^+$
646.88 22	9/2-		2083.43 23	$(1/2, 3/2, 5/2^{-})$
655.32 11	$(7/2)^{-}$		2219.11 24	$(5/2^{-},7/2)$
669.09 9	$(5/2)^{-}$		2249.34 23	$(5/2^+, 7/2)$
714.01 11	$9/2^{+}$		2254.58 19	$3/2^{(-)}, 5/2, 7/2^{(-)}$
731.58 11	$7/2^+$		2258.31 14	(7/2)
748.76 17	$(11/2^{-})$		2273.79 10	$(7/2)^{-}$
763.82 12	$(7/2)^{-}$		2300.03 11	$(5/2)^{-}$
792.93 17	$(11/2)^+$		2310.49 23	$3/2, 5/2, 7/2^{(-)}$
800.56 13	$(5/2)^+$		2511.21 23	$(5/2^+, 7/2)$

[†] From least-squares fit to $E\gamma$ omitting transitions whose placement is uncertain.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
$(9.5 \times 10^2 5)$	2511.21	0.46 8	7.13 11	0.46 8	εK=0.8036 13; εL=0.1490 10; εM+=0.0474 4
$(1.15 \times 10^3 5)$	2310.49	0.54 9	7.24 10	0.54 9	εK=0.8076 9; εL=0.1462 7; εM+=0.04627 23
$(1.16 \times 10^3 5)$	2300.03	8.1 10	6.07 8	8.1 10	εK=0.8077 9; εL=0.1460 6; εM+=0.04622 23
$(1.19 \times 10^3 5)$	2273.79	7.6 10	6.12 9	7.6 10	εK=0.8081 8; εL=0.1457 6; εM+=0.04611 22
$(1.20 \times 10^3 5)$	2258.31	1.6 3	6.81 10	1.6 3	εK=0.8084 8; εL=0.1456 6; εM+=0.04605 21
$(1.21 \times 10^3 5)$	2254.58	0.84 13	7.09 9	0.84 13	εK=0.8084 8; εL=0.1455 6; εM+=0.04604 21
$(1.21 \times 10^3 5)$	2249.34	0.54 9	7.28 10	0.54 9	εK=0.8085 8; εL=0.1455 6; εM+=0.04602 21
$(1.24 \times 10^3 5)$	2219.11	0.23 4	7.68 10	0.23 4	εK=0.8089 7; εL=0.1452 6; εM+=0.04590 20

Continued on next page (footnotes at end of table)

1988Ro13 (continued)

¹⁸³Ir ε decay

ϵ, β^+ radiations (continued) Iβ+ ‡ Ιε[‡] Log ft $I(\varepsilon + \beta^+)^{\dagger \ddagger}$ E(decay) E(level) Comments $(1.38 \times 10^3 5)$ 0.53 8 2083.43 0.53 8 7.41 9 εK=0.8104 5; εL=0.1439 5; εM+=0.04544 16 $(1.48 \times 10^3 5)$ 1977.95 0.0016 9 2.2 4 2.2 4 av E\u03c8=226 23; \u03c8K=0.8110 3; \u03c8L=0.1431 4; 6.86 10 εM +=0.04512 15 $(1.54 \times 10^3 5)$ 1921.03 $0.0007 \ 4$ 0.61 11 7.45 10 0.61 11 av Eβ=252 23; εK=0.8112 2; εL=0.1427 4; *ε*M+=0.04496 *14* $(1.55 \times 10^3 5)$ 7.28 9 0.92 13 1911.52 0.0012 6 0.92 13 av Eβ=256 23; εK=0.81118 9; εL=0.1426 4; €M+=0.04494 14 $(2.13 \times 10^3 5)$ 1332.58 0.016 4 0.74 13 7.65 9 0.76 13 av Eβ=511 22; εK=0.7990 25; εL=0.1373 7; *ε*M+=0.04312 21 $(2.16 \times 10^3 5)$ 1295.46 0.0030 15 0.13 6 8.44 21 0.13 6 av E\beta=527 22; EK=0.797 3; EL=0.1369 7; €M+=0.04297 21 $(2.21 \times 10^{3\#} 5)$ 1252.96 $I(\varepsilon + \beta^+)$: more intensity deexcites than feeds this level. $(2.28 \times 10^3 5)$ 1180.87 0.010 2 0.32 6 8.08 10 0.33 6 av Eβ=578 22; εK=0.791 4; εL=0.1353 8; ε M+=0.04247 24 $(2.41 \times 10^3 5)$ 1054.34 0.069 15 1.5 3 7.45 10 1.6 3 av Eβ=633 22; εK=0.782 4; εL=0.1334 9; €M+=0.0419 3 $(2.41 \times 10^3 5)$ 1045.95 0.048 12 1.04 22 7.62 11 1.09 23 av Eβ=637 22; εK=0.781 4; εL=0.1333 9; *ε*M+=0.0418 *3* $(2.42 \times 10^3 5)$ 1039.19 0.0055 13 0.118 23 8.57 10 0.124 24 av E\beta=640 22; EK=0.780 4; EL=0.1332 9; $\varepsilon M{+}{=}0.0418~3$ $(2.50 \times 10^3 5)$ 0.054 12 0.98 20 7.68 11 1.03 21 964.83 av Eβ=673 22; εK=0.774 5; εL=0.1319 9; *ε*M+=0.0414 *3* $(2.52 \times 10^3 5)$ 944.31 0.067 13 1.15 19 7.61 9 1.22 20 av Eβ=682 22; εK=0.772 5; εL=0.1315 10; ε M+=0.0413 3 $(2.56 \times 10^3 5)$ 896.76 0.066 19 1.0 3 7.68 13 1.1 3 av Eβ=703 22; εK=0.768 5; εL=0.1307 10; €M+=0.0410 3 $(2.61 \times 10^3 5)$ 850.20 0.048 9 0.68 10 7.87 9 0.73 11 av Eβ=723 22; εK=0.764 6; εL=0.1298 10; €M+=0.0407 4 $(2.63 \times 10^3 5)$ 832.03 0.14 2 1.9 3 7.44 9 2.03 av E_β=731 22; εK=0.762 6; εL=0.1294 10; *ε*M+=0.0406 4 $(2.66 \times 10^3 5)$ 800.56 0.14 4 1.8 5 7.48 13 1.9 5 av E_β=745 22; εK=0.758 6; εL=0.1288 11; *ε*M+=0.0404 4 $(2.67 \times 10^3 5)$ 792.93 0.103 19 1.30 20 7.61 9 1.40 22 av Eβ=748 22; εK=0.758 6; εL=0.1286 11; €M+=0.0403 4 $(2.70 \times 10^3 5)$ 763.82 0.054 16 0.65 18 7.93 14 0.70 20 av Eβ=761 23; εK=0.754 6; εL=0.1280 11; €M+=0.0401 4 $(2.71 \times 10^3 5)$ 748.76 0.014 3 0.16 4 8.55 12 0.17 4 av Eβ=768 22; εK=0.753 6; εL=0.1277 11; €M+=0.0400 4 $(2.73 \times 10^3 5)$ 731.58 0.10 4 1.1 5 7.71 19 1.2 5 av Eβ=775 22; εK=0.751 6; εL=0.1274 11; €M+=0.0399 4 $>9.3^{1u}$ $(2.75 \times 10^3 5)$ 714.01 < 0.02< 0.8< 0.8av Eβ=785 22; εK=0.7895 20; εL=0.1405 6; *ε*M+=0.04437 20 $(2.79 \times 10^3 5)$ 669.09 0.20 4 $2.0 \ 4$ 7.47 10 2.24av Eβ=803 23; εK=0.744 6; εL=0.1260 12; €M+=0.0395 4 $(2.80 \times 10^3 5)$ 655.32 0.08 3 0.8 3 7.86 16 0.93 av E_β=809 23; εK=0.742 7; εL=0.1257 12; €M+=0.0394 4 $(2.81 \times 10^3 5)$ 646.88 0.096 22 0.92 20 7.81 11 1.02 22 av E\beta=813 23; EK=0.741 7; EL=0.1255 12; *ε*M+=0.0393 4 $(2.84 \times 10^3 5)$ 620.78 0.30 7 2.8 6 7.34 11 3.17 av E\beta=824 23; EK=0.738 7; EL=0.1249 12; *ε*M+=0.0391 4 $(2.88 \times 10^3 5)$ 582.21 0.26 6 2.2 4 7.44 10 2.5 5 av E\beta=841 23; EK=0.733 7; EL=0.1240 12; €M+=0.0389 4 $(2.90 \times 10^3 5)$ 558.15 0.18 6 1.5 4 7.62 14 1.7 5 av E\beta=852 23; EK=0.730 7; EL=0.1235 12; €M+=0.0387 4

Continued on next page (footnotes at end of table)

			1	83 Ir ε decay	1988Ro13	(continued)					
ϵ, β^+ radiations (continued)											
E(decay)	E(level)	Iβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments					
$(2.92 \times 10^3 5)$	544.38	0.31 12	2.5 10	7.41 18	2.8 11	av Eβ=858 23; εK=0.728 7; εL=0.1231 13; εM+=0.0386 4					
$(2.95 \times 10^3 5)$	513.09	0.33 12	2.6 9	7.41 16	2.9 10	av Eβ=872 23; εK=0.724 7; εL=0.1224 13; εM+=0.0383 4					
$(2.95 \times 10^3 5)$	512.54	0.20 12	1.5 9	7.6 3	1.7 10	av Eβ=872 23; εK=0.724 7; εL=0.1224 13; εM+=0.0383 4					
$(2.95 \times 10^3 5)$	509.88	0.13 5	1.0 4	7.83 17	1.1 4	av Eβ=874 23; εK=0.723 7; εL=0.1223 13; εM+=0.0383 4					
$(2.97 \times 10^3 5)$	486.99	0.59 18	4.3 13	7.19 15	4.9 15	av Eβ=884 23; εK=0.720 7; εL=0.1217 13; εM+=0.0381 4					
$(3.01 \times 10^3 5)$	453.05	0.62 17	4.3 11	7.20 13	4.9 13	av Eβ=899 23; εK=0.716 7; εL=0.1209 13; εM+=0.0379 4					
$(3.06 \times 10^3 5)$	395.19	0.26 12	1.6 8	7.64 22	1.9 9	av Eβ=925 23; εK=0.707 8; εL=0.1194 14; εM+=0.0374 5					
$(3.07 \times 10^3 5)$	392.48	0.34 22	2.2 14	7.5 3	2.5 16	av Eβ=926 23; εK=0.707 8; εL=0.1193 14; εM+=0.0374 5					
$(3.20 \times 10^3 5)$	258.32	2.7 13	14 7	6.74 21	17 8	av Eβ=986 23; εK=0.687 8; εL=0.1157 14; εM+=0.0362 5					
$(3.36 \times 10^3 5)$	96.23	0.23 15	1.0 6	7.9 3	1.2 8	av Eβ=1058 23; εK=0.661 9; εL=0.1112 15; εM+=0.0348 5					
$(3.46 \times 10^{3\#} 5)$	0.0	<1.1	<12	>8.5 ¹ <i>u</i>	<13	av Eβ=1090 22; εK=0.747 5; εL=0.1302 9; εM+=0.0410 3					
						$I(\varepsilon + \beta^+)$: calculated assuming log $f^{lu}t > 8.5$.					

[†] Calculated from decay scheme intensity balances, assigning $0.5I\gamma \pm 0.5I\gamma$ to transitions with uncertain placements. About 20% [‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

 $\gamma(^{183}\text{Os})$

I γ normalization: assuming Σ (I(γ +ce) to g.s.+171 level)=93% 7 based on I β (g.s.)<13% if log $f^{du}t$ >8.5 and negligible expected feeding of 171 level (Δ J=3, $\Delta \pi$ =yes). The Q(β^{-})value and complexity of the decay scheme suggest that significant unobserved transition intensity may exist.

E_{γ}^{\ddagger}	$I_{\gamma}^{\#e}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{\&}$	α^{\dagger}	$I_{(\gamma+ce)}^{e}$	Comments
14.7 2		273.04	5/2-	258.32 3/2-	[M1]		276 12	97 14	ce(L)/(γ+ce)=0.767 23; ce(M)/(γ+ce)=0.178 10 ce(N)/(γ+ce)=0.044 3; ce(O)/(γ+ce)=0.0075 5; ce(P)/(γ+ce)=0.00056 4 α (L)=212 9; α (M)=49.3 22; α (N)=12.0 6; α (O)=2.07 10; α (P)=0.154 7 I _(γ+ce) : calculated from the intensity balance at the 273 level assuming no direct ε feeding to that level. Authors estimated I(γ+ce)≈60 from
26.1 2	0.33 5	513.09	5/2-	486.99 7/2-	M1(+E2)	<0.1	62 12		coincidence intensities. $\alpha(L)=48 \ 9; \ \alpha(M)=11.2 \ 23$ $\alpha(N)=2.7 \ 6; \ \alpha(O)=0.45 \ 8; \ \alpha(P)=0.0279 \ 8$ Mult., δ : I(γ +ce)=21.0 from authors' coin spectrum analysis implies $\alpha(exp)=63 \ 9$ and δ <0.1.
31.6 2	0.120 18	544.38	5/2-	512.54 7/2-	M1+E2	0.34 +12-15	1.2×10 ² 7		α (L)=9.E1 5; α (M)=23 13 α (N)=6 3; α (O)=0.8 5; α (P)=0.0147 9 Mult., δ : I(γ +ce)=15.0 from authors' coin spectrum analysis implies α (exp)=124 19 and δ =0.34
57.9 2	≈0.50 ^{<i>a</i>}	453.05	3/2-	395.19 1/2-	M1+E2	0.4 4	11 11		$\alpha(L)=8 \ 9; \ \alpha(M)=2.0 \ 22$ $\alpha(N)=0.5 \ 5; \ \alpha(O)=0.08 \ 8; \ \alpha(P)=0.0024 \ 6$ Mult., $\delta: I(\gamma+ce)=5.4$ from authors' coin spectrum analysis implies $\alpha(exp)\approx 11$ and $\delta=0.4$.
*84.7 2 87.5 <i>1</i>	0.62 9 54 8	258.32	3/2-	170.70 1/2-	E2+M1	0.85 +18-16	7.96 14		$\alpha(K)=4.3 6; \alpha(L)=2.8 4; \alpha(M)=0.69 10$ $\alpha(N)=0.165 24; \alpha(O)=0.025 4; \alpha(P)=0.00051 7$ %I $\gamma=5.3 6$ assuming adopted decay scheme normalization. Mult.: L1:L2:L3:M:N+=24 4:61 9:52 8:35 5:9.7 15; $\alpha(L2)$ exp=1.13 24. &: from $\alpha(L2)$ exp
91.1 2	0.80 12	544.38	5/2-	453.05 3/2-	M1		7.35 12		$\alpha(K) = 6.07 \ 10; \ \alpha(L) = 0.991 \ 16; \ \alpha(M) = 0.227 \ 4$ $\alpha(N) = 0.0555 \ 9; \ \alpha(O) = 0.00958 \ 15;$ $\alpha(P) = 0.000713 \ 11$ Mult: $\alpha(L) = 0.252 \ 25.$
96.2 2	6.1 9	96.23	11/2+	0.0 9/2+	M1+E2	-0.39 4	6.13 10		$\alpha(K)=4.62\ 13;\ \alpha(L)=1.16\ 6;\ \alpha(M)=0.277\ 16$ $\alpha(N)=0.067\ 4;\ \alpha(O)=0.0109\ 6;\ \alpha(P)=0.000540\ 15$

183 Ir ε decay 1						183 Ir ε	1988Ro13 (continued)				
							γ(¹⁸³ C	Os) (continued)			
E _γ ‡	$I_{\gamma}^{\#e}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	$\delta^{\&}$	α^{\dagger}	Comments		
102.2 <i>I</i>	14.0 <i>21</i>	273.04	5/2-	170.70	1/2-	E2		3.99	%Iγ=0.63 10 assuming adopted decay scheme normalization. Mult.,δ: L1:L2=4.4 7:1.8 3; sign of δ from Adopted Gammas. α (L1)exp=0.72 15 implies δ =0.3 +4-3. α (K)=0.774 11; α (L)=2.42 4; α (M)=0.620 10 α (N)=0.1486 22; α (O)=0.0219 4; α (P)=7.98×10 ⁻⁵ 12 %Iγ=1.37 25 assuming adopted decay scheme normalization. Mult.: from L1:L2:L3:M:N+=2.1 3:17.0 26:16.0 24:9.9 15:7.5 11;		
107.6 2	3.9 6	620.78	7/2-	513.09	5/2-	M1(+E2)	<0.11	4.55	α (L)exp=2.5 5. α (K)=3.75 6; α (L)=0.620 13; α (M)=0.143 3 α (N)=0.0348 8; α (O)=0.00599 12; α (P)=0.000438 7		
110.8 2	2.2 3	655.32	(7/2)-	544.38	5/2-	[E2]		2.89 5	Mult.: L1:L2=1.00 <i>15</i> :0.20 <i>3</i> ; α (L1)exp=0.26 5. α (K)=0.677 <i>10</i> ; α (L)=1.67 <i>3</i> ; α (M)=0.426 7		
118.0 2	≈1.0 ^{<i>a</i>}	513.09	5/2-	395.19	1/2-	[E2]		2.26	$ \begin{aligned} &\alpha(N) = 0.1022 \ 17; \ \alpha(O) = 0.01512 \ 25; \ \alpha(P) = 6.58 \times 10^{-5} \ 10 \\ &\alpha(K) = 0.600 \ 9; \ \alpha(L) = 1.249 \ 20; \ \alpha(M) = 0.319 \ 6 \end{aligned} $		
119.9 2	3.4 5	512.54	7/2-	392.48	(7/2)-	M1(+E2)	≤0.52	3.22 14	$\begin{aligned} &\alpha(N)=0.0765 \ 13; \ \alpha(O)=0.01133 \ 19; \ \alpha(P)=5.67\times 10^{-5} \ 9\\ &\alpha(K)=2.53 \ 24; \ \alpha(L)=0.52 \ 8; \ \alpha(M)=0.124 \ 21\\ &\alpha(N)=0.030 \ 5; \ \alpha(O)=0.0050 \ 7; \ \alpha(P)=0.00029 \ 3 \end{aligned}$		
124.3 2	3.7 6	669.09	(5/2)-	544.38	5/2-	E2(+M1)	≥3.4	1.89 6	Mult.: α (K)exp=2.9 6. α (K)=0.62 8; α (L)=0.96 3; α (M)=0.245 8 α (N)=0.0588 18; α (O)=0.00875 25; α (P)=6.0×10 ⁻⁵ 10		
128.9 2	4.5 7	582.21	(3/2)-	453.05	3/2-	M1(+E2)	0.4 4	2.6 3	Mult.: α (K)exp=0.57 <i>12</i> . α (K)=2.0 5; α (L)=0.43 <i>12</i> ; α (M)=0.10 <i>4</i> α (N)=0.025 8; α (O)=0.0041 <i>11</i> ; α (P)=0.00023 6		
136.8 1	13.0 20	395.19	1/2-	258.32	3/2-	M1+E2	0.4 1	2.16 7	Mult.: α (K)exp=2.0 4. α (K)=1.70 10; α (L)=0.353 22; α (M)=0.083 6 α (N)=0.0203 14; α (O)=0.00337 19; α (P)=0.000196 12 Mult.: K:L1:L2=15.0 23:3.2 5:0.56 8. α (K)exp=1.15 24 implies		
137.4 2	≈0.50 ^a	792.93	$(11/2)^+$	655.32	(7/2)-	[M2]		15.40	$\delta = 1.0 + 4 - 3.$ $\alpha(K) = 11.08 \ 17; \ \alpha(L) = 3.28 \ 5; \ \alpha(M) = 0.810 \ 13$		
151.7 2	0.46 7	544.38	5/2-	392.48	(7/2)-	[M1+E2]		1.3 5	$ \alpha(N)=0.200 \ 3; \ \alpha(O)=0.0337 \ 6; \ \alpha(P)=0.00217 \ 4 \\ \alpha(K)=0.9 \ 6; \ \alpha(L)=0.32 \ 9; \ \alpha(M)=0.08 \ 3 $		
156.2 2	0.83 12	669.09	(5/2)-	513.09	5/2-	[M1+E2]		1.2 4	$ \alpha(N)=0.019 \ 6; \ \alpha(O)=0.0029 \ 8; \ \alpha(P)=0.00010 \ 7 \\ \alpha(K)=0.8 \ 5; \ \alpha(L)=0.28 \ 8; \ \alpha(M)=0.069 \ 21 $		
165.7 2	8.9 14	558.15	(9/2)-	392.48	(7/2)-	M1+E2	0.7 4	1.11 <i>18</i>	$\begin{aligned} &\alpha(N)=0.017 \ 5; \ \alpha(O)=0.0026 \ 6; \ \alpha(P)=9.E-5 \ 7 \\ &\alpha(K)=0.83 \ 21; \ \alpha(L)=0.210 \ 24; \ \alpha(M)=0.050 \ 7 \\ &\alpha(N)=0.0122 \ 17; \ \alpha(O)=0.00198 \ 20; \ \alpha(P)=9.E-5 \ 3 \end{aligned}$		
167.7 2	2.0 3	620.78	7/2-	453.05	3/2-	[E2]		0.611	Mult.: α (K)exp=0.85 <i>18</i> . α (K)=0.267 <i>4</i> ; α (L)=0.260 <i>4</i> ; α (M)=0.0660 <i>10</i>		
168 <i>1</i>	≈0.8 ^{<i>a</i>}	655.32	(7/2)-	486.99	7/2-	[M1+E2]		0.9 4	α (N)=0.01584 24; α (O)=0.00238 4; α (P)=2.44×10 ⁻⁵ 4 α (K)=0.7 4; α (L)=0.21 5; α (M)=0.052 14		
170.7 <i>1</i>		170.70	1/2-	0.0	9/2+	M4		208	α (N)=0.013 3; α (O)=0.0020 4; α (P)=7.E-5 5 α (K)=63.1 9; α (L)=105.1 16; α (M)=30.9 5		

S

From ENSDF

 $^{183}_{76}\mathrm{Os}_{107}\text{--}5$

							¹⁸³ Ir ε decay	1988Ro1	3 (continued)
							$\gamma(^{183}$	Os) (continu	ued)
	E_{γ}^{\ddagger}	$I_{\gamma}^{\#e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [@]	α^{\dagger}	Comments
	176.6.2	0.70.12	822.02	(2)2512712)-	(55.00	(7/2)-		0.0.2	α (N)=7.71 <i>12</i> ; α (O)=1.194 <i>18</i> ; α (P)=0.0386 <i>6</i> E _{γ} : isomeric transition populated primarily directly in the reaction. Mult.: K:L1:L2:L3:M=6.1 <i>9</i> :6.0 <i>9</i> :1.20 <i>18</i> :9.1 <i>14</i> :6.1 <i>9</i> .
	1/6.6 2	0.78 12	832.03	(3/2,5/2,7/2)	655.32	(7/2)	[MI+E2]	0.8 3	$\alpha(K)=0.64; \alpha(L)=0.183; \alpha(M)=0.04310$ $\alpha(N)=0.010522; \alpha(O)=0.0016724; \alpha(P)=6.E-55$
	179.8 2	3.1 5	453.05	3/2-	273.04	5/2-	[M1+E2]	0.8 3	α (K)=0.6 4; α (L)=0.17 3; α (M)=0.041 9 α (N)=0.0098 19; α (O)=0.00157 20; α (P)=6 E-5 4
	181.8 2	1.70 26	669.09	(5/2)-	486.99	7/2-	[M1+E2]	0.7 3	$\alpha(K) = 0.54; \alpha(L) = 0.16124; \alpha(M) = 0.0398$ $\alpha(N) = 0.009418; \alpha(O) = 0.0015118; \alpha(P) = 6.E-54$
	^x 183.2 2 190.7 2	0.33 <i>5</i> 0.78 <i>12</i>	748.76	(11/2 ⁻)	558.15	(9/2)-	(M1+E2)	0.6 3	$\alpha(K)=0.5 3; \alpha(L)=0.135 16; \alpha(M)=0.033 6$ $\alpha(N)=0.0079 12; \alpha(O)=0.00127 11; \alpha(P)=5 F=5 4$
	194.7 <i>1</i>	15.0 23	453.05	3/2-	258.32	3/2-	M1	0.850	$\alpha(K)=0.703 \ 10; \ \alpha(L)=0.1133 \ 16; \ \alpha(M)=0.0260 \ 4$ $\alpha(N)=0.00635 \ 9; \ \alpha(O)=0.001096 \ 16; \ \alpha(P)=8.17\times10^{-5} \ 12$ Mult: K-L 1=13 0 20:2 3 3; $\alpha(K)$ app =0.87 18
	x198.2 2	0.54 8							Mun K.E1 = 15.0 20.2.5 5, u(K) exp = 0.07 10.
	x199.8 2	0.52 8	822.02	$(2/2) 5/2 7/2)^{-1}$	620 78	7/2-	[M1 + E2]	0 48 20	$\alpha(K) = 0.25, 21; \alpha(L) = 0.004, 4; \alpha(M) = 0.0227, 20$
	211.2 2	1.9 5	832.03	(3/2,3/2,7/2)	020.78	1/2	[MII+E2]	0.46 20	$\alpha(N)=0.055\ 21,\ \alpha(D)=0.004\ 4,\ \alpha(N)=0.0227\ 20$ $\alpha(N)=0.0055\ 5;\ \alpha(O)=0.000886\ 19;\ \alpha(P)=4.E-5\ 3$
`	213.9 2	5.0 8	486.99	7/2-	273.04	5/2-	[M1+E2]	0.46 20	$\alpha(K)=0.34\ 20;\ \alpha(L)=0.090\ 4;\ \alpha(M)=0.0217\ 18$
	228.6 1	66 10	486.99	7/2-	258.32	3/2-	E2	0.213	$\alpha(N)=0.00324, \alpha(O)=0.00084814, \alpha(P)=3.8\times10^{-25}$ $\alpha(K)=0.1196$ 17; $\alpha(L)=0.0708$ 10; $\alpha(M)=0.0178$ 3 $\alpha(N)=0.00427$ 6; $\alpha(O)=0.000652$ 10; $\alpha(P)=1.147\times10^{-5}$ 17
	236.8 1	16.0 24	509.88	9/2-	273.04	5/2-	E2	0.190	Mult.: $\alpha(K)\exp=0.13 \ 3.$ $\alpha(K)=0.1091 \ 16; \ \alpha(L)=0.0614 \ 9; \ \alpha(M)=0.01538 \ 22$ $\alpha(N)=0.00370 \ 6; \ \alpha(O)=0.000566 \ 8; \ \alpha(P)=1.052\times10^{-5} \ 15$ Mult : $\alpha(K)\exp=0.17 \ 4$
	239.9 1	17 3	513.09	5/2-	273.04	5/2-	M1	0.477	δ(M1,E2)=2.0 + 17-6 from α(K)exp. α(K)=0.395 6; α(L)=0.0633 9; α(M)=0.01451 21 $ α(N)=0.00354 5; α(O)=0.000612 9; α(P)=4.57×10^{-5} 7 $
	245.2 2	0.49 7	1045.95	(5/2+)	800.56	(5/2)+	[M1+E2]	0.31 14	Mult.: $\alpha(K)\exp=0.48 \ 10.$ $\alpha(K)=0.24 \ 14; \ \alpha(L)=0.057 \ 4; \ \alpha(M)=0.01351 \ 25$ $\alpha(N)=0.00328 \ 8; \ \alpha(O)=0.00053 \ 5; \ \alpha(P)=2.6\times10^{-5} \ 17$
	249.7 2	2.0 3	832.03	(3/2,5/2,7/2) ⁻	582.21	(3/2)-	[M1+E2]	0.29 14	$\alpha(K) = 0.00525 0, \alpha(C) = 0.00055 5, \alpha(T) = 2.0 \times 10^{-17}$ $\alpha(K) = 0.22 13; \alpha(L) = 0.053 4; \alpha(M) = 0.0127 4$ $\alpha(N) = 0.00308 10; \alpha(O) = 0.00050 5; \alpha(P) = 2.5 \times 10^{-5} 16$
	250.7 2	6.3 9	763.82	(7/2)-	513.09	5/2-	[M1+E2]	0.29 14	$\alpha(K) = 0.02505 \ 10, \ \alpha(O) = 0.00000 \ 5, \ \alpha(I) = 2.5 \times 10^{-5} \ 16$ $\alpha(K) = 0.00304 \ 11; \ \alpha(O) = 0.00050 \ 5; \ \alpha(P) = 2.5 \times 10^{-5} \ 16$
	253 1	≈1.2 ^{<i>a</i>}	763.82	(7/2)-	509.88	9/2-	[M1+E2]	0.28 13	$\alpha(K) = 0.22 \ 13; \ \alpha(L) = 0.051 \ 4; \ \alpha(M) = 0.0122 \ 5 \ \alpha(N) = 0.00295 \ 13; \ \alpha(O) = 0.00048 \ 5; \ \alpha(P) = 2.4 \times 10^{-5} \ 16$
	254.4 2	8.1 12	646.88	9/2-	392.48	(7/2)-	M1(+E2) ^b	0.28 13	$\alpha(K)=0.21 \ 13; \ \alpha(L)=0.050 \ 4; \ \alpha(M)=0.0119 \ 5$ $\alpha(N)=0.00289 \ 13; \ \alpha(O)=0.00047 \ 5; \ \alpha(P)=2.4\times10^{-5} \ 15$ Mult.: $\alpha(K)\exp(254.4+254.9)=0.34 \ 7.$
	254.9 1	12.0 18	513.09	5/2-	258.32	3/2-	M1 ^{<i>b</i>}	0.403	$\alpha(K)=0.3345; \alpha(L)=0.05358; \alpha(M)=0.0122718$

$^{183}_{76}\mathrm{Os}_{107}\text{-}6$

From ENSDF

 $^{183}_{76}\mathrm{Os}_{107}\text{-}6$

					183	Ir ε decay	1988Ro13 (con	tinued)	
						$\gamma(^{183}$	Os) (continued)		
E _γ ‡	Ι _γ # <i>e</i>	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{\&}$	α^{\dagger}	Comments
267.7 2	1.20 18	850.20	(3/2,5/2,7/2) ⁻	582.21	(3/2)-	[M1+E2]		0.24 12	α (N)=0.00300 5; α (O)=0.000518 8; α (P)=3.87×10 ⁻⁵ 6 Mult.: α (K)exp(254.4+254.9)=0.34 7. α (K)=0.19 11; α (L)=0.042 5; α (M)=0.0101 7 α (N)=0.00244 18; α (O)=0.00040 6; α (P)=2.1×10 ⁻⁵ 13
271.3 <i>I</i>	15.0 23	544.38	5/2-	273.04	5/2-	M1		0.340	$\alpha(N)=0.00244$ 78, $\alpha(O)=0.00040$ 0, $\alpha(\Gamma)=2.1710$ 75 $\alpha(K)=0.282$ 4; $\alpha(L)=0.0451$ 7; $\alpha(M)=0.01033$ 15 $\alpha(N)=0.00252$ 4: $\alpha(Q)=0.000436$ 7: $\alpha(P)=3.26\times10^{-5}$ 5
273.8 2	3.6 5	669.09	(5/2) ⁻	395.19	1/2-	E2 ^c		0.1205	Mult.: $\alpha(K) \exp[-0.327, \alpha(O)] = 0.0003217; \alpha(M) = 0.0086313$ $\alpha(K) = 0.074711; \alpha(L) = 0.03475; \alpha(M) = 0.0086313$ $\alpha(N) = 0.002083; \alpha(O) = 0.0003215; \alpha(P) = 7.39 \times 10^{-6}11$ Mult.: $\alpha(K) \exp[< 0.14]$.
276.7 ^f 2	≈1.2 ^{<i>fa</i>}	669.09	(5/2)-	392.48	(7/2)-	[M1+E2]		0.22 11	$\alpha(K)=0.17 \ 10; \ \alpha(L)=0.038 \ 5; \ \alpha(M)=0.0090 \ 8 \ \alpha(N)=0.00219 \ 20; \ \alpha(O)=0.0036 \ 6; \ \alpha(P)=1.9 \times 10^{-5} \ 12$
276.7 ^f 2	0.8 ^{fa} 4	763.82	$(7/2)^{-}$	486.99	7/2-	[M1+E2]		0.22 11	$\alpha(K) = 0.17 \ lo; \ \alpha(L) = 0.038 \ 5; \ \alpha(M) = 0.000 \ 8$ (K) = 0.0217 \ 20; \ \alpha(L) = 0.038 \ 5; \ \alpha(M) = 0.000 \ 8
282.5 1	47 7	453.05	3/2-	170.70	1/2-	M1(+E2)	0.11 +52-11	0.30 6	$\alpha(N)=0.00219\ 20;\ \alpha(O)=0.00036\ 6;\ \alpha(P)=1.9\times10^{-5}\ 12$ $\alpha(K)=0.25\ 5;\ \alpha(L)=0.040\ 3;\ \alpha(M)=0.0092\ 5$ $\alpha(N)=0.00225\ 12;\ \alpha(O)=0.00030\ 3;\ \alpha(P)=2.0\times10^{-5}\ 6$
286.1 2	9.8 15	544.38	5/2-	258.32	3/2-	M1		0.294	$\begin{array}{l} \alpha(N)=0.00225 \ 12, \ \alpha(O)=0.00039 \ 5, \ \alpha(F)=2.9\times10^{-6} \ 0 \\ \text{Mult.: } \text{K:L1}=11.5 \ 17:3.0 \ 5; \ \alpha(K) \text{exp}=0.25 \ 5. \\ \alpha(K)=0.244 \ 4; \ \alpha(L)=0.0390 \ 6; \ \alpha(M)=0.00893 \ 13 \\ \alpha(N)=0.00218 \ 3; \ \alpha(O)=0.000377 \ 6; \ \alpha(P)=2.82\times10^{-5} \ 4 \\ \end{array}$
309.2 2	1.8 <i>3</i>	582.21	(3/2)-	273.04	5/2-	M1		0.238	Mult.: K:L1=11.5 <i>17</i> :3.0 5; α (K)exp=0.30 6. α (K)=0.198 3; α (L)=0.0315 5; α (M)=0.00722 <i>11</i> α (N)=0.001763 25; α (O)=0.000305 5; α (P)=2.28×10 ⁻⁵ 4
314.4 2	4.5 7	1045.95	(5/2 ⁺)	731.58	7/2+	M1+E2	0.5 +4-5	0.20 4	Mult.: α (K)exp=0.26 5. α (K)=0.16 4; α (L)=0.0282 24; α (M)=0.0065 5 α (N)=0.00159 12; α (O)=0.000271 25; α (P)=1.8×10 ⁻⁵ 4
319.1 2	6.4 10	832.03	(3/2,5/2,7/2)-	513.09	5/2-	M1		0.219	Mult.: $\alpha(K)\exp=0.16$ 3. $\alpha(K)=0.181$ 3; $\alpha(L)=0.0289$ 4; $\alpha(M)=0.00662$ 10 $\alpha(N)=0.001617$ 23: $\alpha(O)=0.000280$ 4: $\alpha(P)=2.09\times10^{-5}$ 3
323.9 2	5.9 9	582.21	(3/2)-	258.32	3/2-	M1		0.210	Mult.: α (K)exp=0.23 5. α (K)=0.1742 25; α (L)=0.0278 4; α (M)=0.00636 9 α (N)=0.001553 22; α (O)=0.000268 4; α (P)=2.01×10 ⁻⁵ 3 Mult.: α (K)exp=0.22 5.
x330.7 2 332.0 2	1.1 2 1.10 <i>1</i> 7	1045.95	(5/2+)	714.01	9/2+	[E2]		0.0679	α (K)=0.0457 7; α (L)=0.01691 24; α (M)=0.00416 6 α (N)=0.001004 15; α (O)=0.0001571 23; α (P)=4.65×10 ⁻⁶
342.4 1	21 3	513.09	5/2-	170.70	1/2-	E2		0.0622	⁷ $\alpha(K)=0.0423\ 6;\ \alpha(L)=0.01514\ 22;\ \alpha(M)=0.00372\ 6$ $\alpha(N)=0.000898\ 13;\ \alpha(O)=0.0001408\ 20;\ \alpha(P)=4.33\times10^{-6}$
345 1	≈1.6 ^{<i>a</i>}	832.03	(3/2,5/2,7/2)-	486.99	7/2-	[M1+E2]		0.12 6	α(K)exp=0.036 7. α(K)=0.09 6; α(L)=0.019 5; α(M)=0.0045 9 $ α(N)=0.00109 22; α(O)=0.00018 5; α(P)=1.1×10^{-5} 7 $

 \neg

From ENSDF

 $^{183}_{76}\mathrm{Os}_{107}\text{--}7$

 $^{183}_{76}\mathrm{Os}_{107}\text{--}7$

					183	Ir ε decay	1988Ro13 (cor	ntinued)	
						γ (¹⁸³ Os	s) (continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#e}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments
347.8 1	25 4	620.78	7/2-	273.04	5/2-	M1+E2	0.9 +4-3	0.122 21	$\alpha(K)=0.098 \ 19; \ \alpha(L)=0.0191 \ 16; \ \alpha(M)=0.0045 \ 4$ $\alpha(N)=0.00109 \ 8; \ \alpha(O)=0.000182 \ 17; \ \alpha(P)=1.10\times10^{-5} \ 23$ Mult.: $\alpha(K)$ exp=0.100 21.
356.2 ^{<i>f</i>} 2	≈0.25 ^{<i>fa</i>}	748.76	(11/2 ⁻)	392.48	(7/2)-	(E2)		0.0556	$\alpha(K)=0.0383\ 6;\ \alpha(L)=0.01317\ 19;\ \alpha(M)=0.00323\ 5$ $\alpha(N)=0.000779\ 11;\ \alpha(O)=0.0001226\ 18;$ $\alpha(P)=3.94\times10^{-6}\ 6$
356.2 ^{<i>f</i>} 2	≈1.1 <i>fa</i>	1252.96	5/2+	896.76	7/2+	M1 ^b		0.1628	α (K)=0.1350 <i>19</i> ; α (L)=0.0215 <i>3</i> ; α (M)=0.00491 <i>7</i> α (N)=0.001200 <i>17</i> ; α (O)=0.000207 <i>3</i> ; α (P)=1.553×10 ⁻⁵ 22
^x 361.7 2	1.4 2					E2+M1	1.9 +13-5	0.076 14	Mult.: $\alpha(K)\exp(doublet)=0.046$ 10. $\alpha(K)=0.057$ 12; $\alpha(L)=0.0142$ 11; $\alpha(M)=0.00341$ 22 $\alpha(N)=0.00083$ 6; $\alpha(O)=0.000134$ 11; $\alpha(P)=6.2\times10^{-6}$ 15 Mult.: $\alpha(K)\exp=0.057$ 12.
^x 370.4 2 ^x 371.5 2	0.43 7 0.64 <i>10</i>	544.20	5 /2-	170 70	1/2-	52		0.0406	
373.8 2	2.0 3	544.38	5/2	170.70	1/2	E2		0.0486	$\begin{aligned} \alpha(K) &= 0.0340 \ \text{5}; \ \alpha(L) = 0.01113 \ \text{76}; \ \alpha(M) = 0.00272 \ \text{4} \\ \alpha(N) &= 0.000657 \ \text{10}; \ \alpha(O) = 0.0001038 \ \text{15}; \\ \alpha(P) &= 3.52 \times 10^{-6} \ \text{5} \\ \text{Mult.:} \ \alpha(K) &= x < 0.05. \end{aligned}$
379.0 2	1.7 3	832.03	(3/2,5/2,7/2) ⁻	453.05	3/2-	E2+M1	1.7 +11-4	0.070 14	$\alpha(M1,E2) > 1 \text{ from } \alpha(K) \exp.$ $\alpha(K) = 0.054 \ 12; \ \alpha(L) = 0.0125 \ 11; \ \alpha(M) = 0.00299 \ 23$ $\alpha(N) = 0.00073 \ 6; \ \alpha(O) = 0.000119 \ 12; \ \alpha(P) = 5.9 \times 10^{-6} \ 14$
392.5 1	100 <i>15</i>	392.48	(7/2)-	0.0	9/2+	E1		0.01307	Mult: $\alpha(K)\exp\approx0.055$ 17. $\alpha(K)=0.01090$ 16; $\alpha(L)=0.001679$ 24; $\alpha(M)=0.000383$ 6 $\alpha(N)=9.27\times10^{-5}$ 13; $\alpha(O)=1.568\times10^{-5}$ 22; $\alpha(P)=1.049\times10^{-6}$ 15 %I γ =9.8 19 assuming adopted decay scheme normalization.
396.1 2	2.0 3	669.09	(5/2)-	273.04	5/2-	M1		0.1226	Mult.: $\alpha(K)\exp=0.013$ 3. $\alpha(K)=0.1017$ 15; $\alpha(L)=0.01612$ 23; $\alpha(M)=0.00369$ 6 $\alpha(N)=0.000901$ 13; $\alpha(O)=0.0001558$ 22; $\alpha(P)=1.168\times10^{-5}$ 17 Mult.: $\alpha(K)\exp=0.125$ 26.
^x 409.1 2 410.7 2	0.47 7 5.8 9	669.09	(5/2) ⁻	258.32	3/2-	[M1+E2]		0.07 4	$\alpha(K)=0.06 4$; $\alpha(L)=0.011 4$; $\alpha(M)=0.0027 7$ $\alpha(N)=0.00065 18$; $\alpha(O)=0.00011 4$; $\alpha(P)=7.E-6 4$ $\alpha(K)=0.036 7$ for doublet.
411.5 <i>1</i>	11.0 17	582.21	(3/2) ⁻	170.70	1/2-	E2(+M1) ^b		0.07 4	$\alpha(K) = 0.064; \alpha(L) = 0.0114; \alpha(M) = 0.00267$ $\alpha(N) = 0.0006417; \alpha(O) = 0.000114; \alpha(P) = 7.E - 64$ Mult.: $\alpha(K) \exp(410.7 + 411.5) = 0.0267$.
x417.1 2 x434.1 2	0.85 <i>13</i> 0.37 <i>6</i>								· · · · ·

 ∞

From ENSDF

 $^{183}_{76}\mathrm{Os}_{107}\text{--}8$

					183	³ Ir ε decay	1988Ro13 (co	ontinued)	
						$\gamma(^{183}$	Os) (continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#e}$	E _i (level)	J_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [@]	$\delta^{\&}$	α^{\dagger}	Comments
x436.9 2 x442.1 2 x443.8 2	0.76 <i>11</i> 0.52 8 0.48 7				_				
^x 450.6 2	1.7 3					M1(+E2)	0.4 4	0.079 15	$\alpha(K)=0.065 \ 13; \ \alpha(L)=0.0107 \ 14; \ \alpha(M)=0.0025 \ 3 \\ \alpha(N)=0.00060 \ 8; \ \alpha(O)=0.000103 \ 14; \ \alpha(P)=7.5\times10^{-6} \ 16 \\ Mult.: \ \alpha(K)exp=0.065 \ 14.$
457.9 ^{<i>f</i>} 2	≈3.8 ^{fa}	850.20	(3/2,5/2,7/2)-	392.48	(7/2)-	(E2) ^b		0.0284	$\alpha(K)=0.0210\ 3$; $\alpha(L)=0.00569\ 8$; $\alpha(M)=0.001372\ 20$ $\alpha(N)=0.000332\ 5$; $\alpha(O)=5.33\times10^{-5}\ 8$; $\alpha(P)=2.21\times10^{-6}\ 4$ Mult.: $\alpha(K)\exp(doublet)=0.029\ 6$; this is the dominant placement.
457.9 ^f 2	≈1.4 ^{<i>fa</i>}	944.31	(3/2,5/2)-	486.99	7/2-	[M1+E2]		0.06 3	$\alpha(K)=0.045\ 25;\ \alpha(L)=0.008\ 3;\ \alpha(M)=0.0019\ 6$
461.9 2	4.0 6	558.15	(9/2) ⁻	96.23	11/2+	E1		0.00910	$\begin{aligned} \alpha(\mathbf{N}) = 0.00761 \ 11; \ \alpha(\mathbf{L}) = 0.001156 \ 17; \ \alpha(\mathbf{M}) = 0.000263 \ 4 \\ \alpha(\mathbf{N}) = 6.38 \times 10^{-5} \ 9; \ \alpha(\mathbf{O}) = 1.083 \times 10^{-5} \ 16; \\ \alpha(\mathbf{P}) = 7.40 \times 10^{-7} \ 11 \\ \end{aligned}$
^x 464.9 2	0.71 11								Mult. $u(\mathbf{K}) = 0.0075 \ T0.$
490.7 2	0.60 9 3.5 5	763.82	(7/2)-	273.04	5/2-	E2(+M1)	>2	0.028 5	$\alpha(K)=0.022 \ 4; \ \alpha(L)=0.0050 \ 5; \ \alpha(M)=0.00120 \ 10 \ \alpha(N)=0.000291 \ 25; \ \alpha(O)=4.8\times10^{-5} \ 5; \ \alpha(P)=2.4\times10^{-6} \ 5$
494.9 2	3.2 5	1295.46	(5/2,7/2)+	800.56	(5/2)+	E2+M1	1.7 +11-5	0.035 7	
498.5 <i>1</i>	12.0 18	669.09	(5/2) ⁻	170.70	1/2-	E2		0.0230	$\alpha(K) = 0.01724 \ 25; \ \alpha(L) = 0.00437 \ 7; \ \alpha(M) = 0.001048 \ 15 \ \alpha(N) = 0.000254 \ 4; \ \alpha(O) = 4.10 \times 10^{-5} \ 6; \ \alpha(P) = 1.83 \times 10^{-6} \ 3 \ Mult.: \ \alpha(K) \exp = 0.017 \ 4.$
x501.7 2 505.1 2	0.45 7 1.40 <i>21</i>	1236.76	(7/2)+	731.58	7/2+	M1+E2	1.0 +5-3	0.043 9	$\alpha(K)=0.035 \ 8; \ \alpha(L)=0.0063 \ 9; \ \alpha(M)=0.00147 \ 18 \\ \alpha(N)=0.00036 \ 5; \ \alpha(O)=6.0\times10^{-5} \ 9; \ \alpha(P)=4.0\times10^{-6} \ 9 \\ Multiple \ \alpha(V)=0.026 \ 7 \ \alpha(P)=4.0\times10^{-6} \ 9 \\ Multiple \ \alpha(V)=0.026 \ 7 \ \alpha(P)=4.0\times10^{-6} \ 9 \\ Multiple \ \alpha(V)=0.00036 \ 7 \ \alpha(P)=4.0\times10^{-6} \ 9 \\ Multiple \ \alpha(V)=0.00036 \ 7 \ \alpha(P)=4.0\times10^{-6} \ 9 \\ Multiple \ \alpha(V)=0.00036 \ 7 \ \alpha(P)=4.0\times10^{-6} \ 9 \\ Multiple \ \alpha(V)=0.00036 \ 7 \ \alpha(P)=4.0\times10^{-6} \ 9 \\ Multiple \ \alpha(P)=4.0\times10^{-6} \ 9 \ \alpha(P)=4.0\times10^{-6} \ (P)=4.0\times10^{-6} \ $
512.5 2	23 3	512.54	7/2-	0.0	9/2+	E1		0.00727	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00609 \ 9; \ \alpha(\mathrm{L}) = 0.000918 \ 13; \ \alpha(\mathrm{M}) = 0.000209 \ 3 \\ \alpha(\mathrm{N}) = 5.06 \times 10^{-5} \ 8; \ \alpha(\mathrm{O}) = 8.61 \times 10^{-6} \ 12; \ \alpha(\mathrm{P}) = 5.96 \times 10^{-7} \\ 9 \end{array}$
x510 5 2	0.66.10								Mult.: $\alpha(K) \exp = 0.0078 \ 16.$
521.3 2	4.0 6	1252.96	5/2+	731.58	7/2+	(M1) ^b		0.0595	$\alpha(K)=0.0494\ 7;\ \alpha(L)=0.00776\ 11;\ \alpha(M)=0.001775\ 25$ $\alpha(N)=0.000433\ 6;\ \alpha(O)=7.50\times10^{-5}\ 11;\ \alpha(P)=5.64\times10^{-6}\ 8$ Mult: $\alpha(K)=xp(521\ 3+522\ 8)=0.096\ 10$
522.8 2	3.4 5	1236.76	(7/2)+	714.01	9/2+	(M1) ^b		0.0590	$ α(K) = 0.0490 7; α(L) = 0.00770 11; α(M) = 0.001762 25 α(N) = 0.000430 6; α(O) = 7.44 \times 10^{-5} 11; α(P) = 5.60 \times 10^{-6} 8 Mult.: α(K) exp(521.3 + 522.8) = 0.096 10. $

9

From ENSDF

 $^{183}_{76}\mathrm{Os}_{107}\text{-}9$

					1	⁸³ Ir ε decay	1988Ro13 (continued)	
						$\gamma(^{183}$	Os) (continued	<u>l)</u>	
${\rm E_{\gamma}}^{\ddagger}$	Ι _γ #e	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Mult.@	δ ^{&}	α^{\dagger}	Comments
544.6 2 551.5 2 552.2 2	0.88 <i>13</i> 0.85 <i>13</i> 1.20 <i>18</i>	1054.34 944.31 1039.19	$(5/2,7/2,9/2)^{-}$ $(3/2,5/2)^{-}$ $(5/2,7/2,9/2)^{-}$	509.88 392.48 486.99	9/2 ⁻ (7/2) ⁻ 7/2 ⁻	M1		0.0512	α (K)=0.0425 6; α (L)=0.00667 10; α (M)=0.001525 22 α (N)=0.000372 6; α (O)=6.44×10 ⁻⁵ 9; α (P)=4.85×10 ⁻⁶ 7
558.4 ^g 2	3.0 5	558.15	(9/2)-	0.0	9/2+	E1		0.00607	Mult.: α (K)exp=0.058 <i>12</i> . α (K)=0.00508 <i>8</i> ; α (L)=0.000762 <i>11</i> ; α (M)=0.0001731 <i>25</i> α (N)=4.20×10 ⁻⁵ <i>6</i> ; α (O)=7.16×10 ⁻⁶ <i>10</i> ; α (P)=5.00×10 ⁻⁷ 7 Mult.: α (K)exp<0.013 <i>3</i> .
x559.3 2 567.2 2	0.93 <i>14</i> 1.80 <i>27</i>	1054.34	(5/2,7/2,9/2)-	486.99	7/2-	M1		0.0477	α (K)=0.0397 6; α (L)=0.00622 9; α (M)=0.001422 20 α (N)=0.000347 5; α (O)=6.00×10 ⁻⁵ 9; α (P)=4.52×10 ⁻⁶ 7
573.8 2	5.2 8	832.03	(3/2,5/2,7/2)-	258.32	3/2-	(E2)		0.01637	Mult.: α (K)exp=0.050 <i>11</i> . α (K)=0.01260 <i>18</i> ; α (L)=0.00288 <i>4</i> ; α (M)=0.000686 <i>10</i> α (N)=0.0001663 <i>24</i> ; α (O)=2.72×10 ⁻⁵ <i>4</i> ; α (P)=1.346×10 ⁻⁶ <i>19</i> Mult : α (K)exp=0.0077 <i>16</i>
581.4 ^g 2 ^x 585.3 2	0.58 <i>9</i> 2.0 <i>3</i>	1295.46	(5/2,7/2)+	714.01	9/2+	E2+M1	1.4 +8-4	0.025 5	$\alpha(K)=0.020 \ 4; \ \alpha(L)=0.0037 \ 5; \ \alpha(M)=0.00087 \ 11 \\ \alpha(N)=0.00021 \ 3; \ \alpha(O)=3.6\times10^{-5} \ 5; \ \alpha(P)=2.3\times10^{-6} \ 5$
592.0 2	3.5 5	850.20	(3/2,5/2,7/2) ⁻	258.32	3/2-	E2(+M1)	1.9 +24-6	0.021 5	Mult.: $\alpha(K) \exp=0.020 \ 4$. $\alpha(K)=0.017 \ 4$; $\alpha(L)=0.0033 \ 5$; $\alpha(M)=0.00077 \ 11$ $\alpha(N)=0.00019 \ 3$; $\alpha(O)=3.1\times10^{-5} \ 5$; $\alpha(P)=1.9\times10^{-6} \ 5$ Mult.: $\alpha(K) \exp=0.017 \ 4$
617.7 2	18.0 27	714.01	9/2+	96.23	11/2+	M1(+E2)	0.4 +5-4	0.035 8	Mult.: α (K)exp=0.017 4. α (K)=0.029 7; α (L)=0.0046 9; α (M)=0.00106 18 α (N)=0.00026 5; α (O)=4.4×10 ⁻⁵ 8; α (P)=3.3×10 ⁻⁶ 8 Mult.: α (K)exp=0.029 6.
^x 620.2 2 ^x 622.8 2	1.8 <i>3</i> 2.1 <i>3</i>					E2+M1	2.2 +45-8	0.018 4	$\alpha(K)=0.014 4; \alpha(L)=0.0027 5; \alpha(M)=0.00064 10$ $\alpha(N)=0.000156 24; \alpha(O)=2.6\times10^{-5} 5; \alpha(P)=1.5\times10^{-6} 4$
635.2 2	2.2 3	731.58	7/2+	96.23	11/2+	[E2]		0.01295	Mult.: α (K)exp=0.014 3. α (K)=0.01012 15; α (L)=0.00217 3; α (M)=0.000513 8 α (N)=0.0001246 18; α (O)=2.05×10 ⁻⁵ 3; α (P)=1.084×10 ⁻⁶ 16
^x 637.2 2 ^x 639.0 2 655.4 2	3.7 6 0.79 <i>12</i> 14.0 <i>21</i>	655.32	(7/2) ⁻	0.0	9/2+	E1		0.00437	$\alpha(K)=0.00367 \ 6; \ \alpha(L)=0.000544 \ 8; \ \alpha(M)=0.0001233 \ 18 \ \alpha(N)=3.00\times10^{-5} \ 5; \ \alpha(O)=5.12\times10^{-6} \ 8; \ \alpha(P)=3.64\times10^{-7} \ 5 \ Mult.: \ \alpha(K)exp=0.0043 \ 9.$
^x 661.6 2 ^x 663.8 2 671.2 2	0.96 <i>14</i> 0.89 <i>13</i> 6.7 <i>10</i>	944.31	(3/2,5/2) ⁻	273.04	5/2-	E2+M1	1.2 +6-4	0.019 4	$\alpha(K)=0.016 \ 4; \ \alpha(L)=0.0027 \ 5; \ \alpha(M)=0.00064 \ 10$ $\alpha(N)=0.000155 \ 24; \ \alpha(O)=2.6\times10^{-5} \ 5; \ \alpha(P)=1.8\times10^{-6} \ 4$
^x 678.3 2 ^x 679.9 2	2.6 <i>4</i> 4.3 7								Mult $\alpha(\mathbf{x}) \exp(-0.010)$ 3.

From ENSDF

 $^{183}_{76}\mathrm{Os}_{107}\text{--}10$

					183	Ir ε decay	1988Ro13	(continued)	
						$\gamma(^{183})$	Os) (continue	ed)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#e}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.@	δ ^{&}	α^{\dagger}	$I_{(\gamma+ce)}^{e}$	Comments
682.5 2	1.9 <i>3</i>	1977.95	$(3/2)^+$	1295.46	(5/2,7/2)+	M1		0.0296		α (K)=0.0247 4; α (L)=0.00384 6; α (M)=0.000877
										13 $\alpha(N)=0.000214 \ 3; \ \alpha(O)=3.71\times10^{-5} \ 6; \ \alpha(P)=2.80\times10^{-6} \ 4$ Mult : $\alpha(K)\exp=0.026 \ 6.$
685.8 2	2.5 4	944.31	(3/2,5/2)-	258.32	3/2-					
691.9 2	6.5 <i>10</i>	964.83	(3/2,5/2) ⁻	273.04	5/2-	E2+M1	1.2 +7-4	0.018 4		α (K)=0.015 3; α (L)=0.0025 4; α (M)=0.00059 9 α (N)=0.000143 22; α (O)=2.4×10 ⁻⁵ 4; α (P)=1.6×10 ⁻⁶ 4
696.9 2	4.6 7	792.93	(11/2)+	96.23	11/2+	E2		0.01054		Mult.: $\alpha(K)\exp=0.015$ 3. $\alpha(K)=0.00833$ 12; $\alpha(L)=0.001694$ 24; $\alpha(M)=0.000399$ 6
										α (N)=9.68×10 ⁻⁵ <i>14</i> ; α (O)=1.603×10 ⁻⁵ <i>23</i> ; α (P)=8.94×10 ⁻⁷ <i>13</i>
706.4 2	2.3 3	964.83	(3/2,5/2)-	258.32	3/2-	M1		0.0271		Mult.: α (K)exp=0.0065 <i>14</i> . α (K)=0.0226 <i>4</i> ; α (L)=0.00351 <i>5</i> ; α (M)=0.000802 <i>12</i>
										α (N)=0.000196 3; α (O)=3.39×10 ⁻⁵ 5; α (P)=2.56×10 ⁻⁶ 4
714.1 2	6.1.9	714.01	$9/2^{+}$	0.0	$9/2^{+}$	E2+M1	1.0 +6-4	0.018 4		Mult.: α (K)exp=0.026 5. α (K)=0.015 4: α (L)=0.0025 5: α (M)=0.00058 10
			~ / -		~/-					α (N)=0.000141 24; α (O)=2.4×10 ⁻⁵ 5; α (P)=1.7×10 ⁻⁶ 4
^x 718.7 2	2.1 3					E2+M1	1.1 +7-4	0.017 4		Mult.: α (K)exp=0.015 3. α (K)=0.014 3; α (L)=0.0024 4; α (M)=0.00055 9
										α (N)=0.000134 22; α (O)=2.3×10 ⁻⁵ 4; α (P)=1.6×10 ⁻⁶ 4
724.9.2	8.5.13	1977.95	$(3/2)^+$	1252.96	5/2+	M1+E2	0.8 + 5 - 4	0.019 4		Mult.: α (K)exp=0.014 3. α (K)=0.016 4: α (L)=0.0026 5: α (M)=0.00060 10
121.92	0.5 15	1777.95	(3/2)	1252.90	5/2	1111 1 122	0.0 15 7	0.017 7		$\alpha(N)=0.000146\ 25;\ \alpha(O)=2.5\times10^{-5}\ 5;\alpha(P)=1.8\times10^{-6}\ 4$
777 0 2	1 40 21	1180.87	$(3/2 5/2)^{-}$	453.05	3/2-					Mult.: α (K)exp=0.016 3.
731.6 2	1.40 21 28 4	731.58	(3/2,3/2) 7/2 ⁺	455.05 0.0	9/2 ⁺	E2+M1	1.0 +7-4	0.017 4		$\alpha(K)=0.014 \ 4; \ \alpha(L)=0.0024 \ 5; \ \alpha(M)=0.00054 \ 10$ $\alpha(N)=0.000132 \ 23; \ \alpha(O)=2.3\times10^{-5} \ 4;$ $\alpha(P)=1.6\times10^{-6} \ 4$ Mult : $\alpha(K)$ exp=0.014 3
^x 747.3 2	1.4 2		(11)(7-)	~ ~	0.12+			0.00000		
748.9 ⁸ 2	0.36 5	748.76	$(11/2^{-})$	0.0	9/2+	[E1]		0.00336		$\alpha(K)=0.00282 \ 4; \ \alpha(L)=0.000414 \ 6; \ \alpha(M)=9.39\times10^{-5} \ 14$

 $^{183}_{76}\mathrm{Os}_{107}\text{--}11$

L

From ENSDF

					1	183 Ir ε decay	1988Ro13 (cont	tinued)	
						γ (¹⁸³ Os	s) (continued)		
E _γ ‡	$I_{\gamma}^{\#e}$	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^{π}	Mult.@	$\delta^{\&}$	α^{\dagger}	Comments
									$\alpha(N)=2.28\times10^{-5} 4; \ \alpha(O)=3.91\times10^{-6} 6; \ \alpha(P)=2.81\times10^{-7} 4$
x753.1 2 x754.2 2 x757.8 2 x759.9 2	1.4 2 0.79 <i>12</i> 0.73 <i>11</i> 1.3 2								
766.1 ^{<i>g</i>} 2 ^{<i>x</i>} 769.0 2	1.8 <i>3</i> 0.73 <i>11</i>	1039.19	(5/2,7/2,9/2)-	273.04	5/2-	d			Mult.: $\alpha(K) \exp = 0.111 \ 23$.
773.8 ^g 2 781.3 2	1.60 24 13.0 20	944.31 1054.34	(3/2,5/2) ⁻ (5/2,7/2,9/2) ⁻	170.70 273.04	1/2 ⁻ 5/2 ⁻	E2(+M1)	≥1.7	0.0099 17	α (K)=0.0080 <i>14</i> ; α (L)=0.00145 <i>19</i> ; α (M)=0.00034 <i>5</i> α (N)=8.2×10 ⁻⁵ <i>11</i> ; α (O)=1.38×10 ⁻⁵ <i>19</i> ; α (P)=8.7×10 ⁻⁷ <i>17</i>
785.6 2	2.0 3	1180.87	(3/2,5/2) ⁻	395.19	1/2-	E2		0.00814	Mult.: $\alpha(K)\exp=0.007/76.$ $\alpha(K)=0.00652 \ 10; \ \alpha(L)=0.001248 \ 18; \ \alpha(M)=0.000292$ 4 $\alpha(N)=7.09\times10^{-5} \ 10; \ \alpha(O)=1.183\times10^{-5} \ 17;$ $\alpha(P)=7.00\times10^{-7} \ 10$
^x 790.8 2 792.6 ^g 2 794.2 2 800.3 2	1.1 2 2.8 4 1.5 14 27 4	792.93 964.83 800.56	$(11/2)^+$ $(3/2,5/2)^-$ $(5/2)^+$	0.0 170.70 0.0	9/2 ⁺ 1/2 ⁻ 9/2 ⁺	E2		0.00783	$\alpha(K) = 0.00628 \ 9; \ \alpha(L) = 0.001192 \ 17; \ \alpha(M) = 0.000279 \ 4$ $\alpha(K) = 6.77 \times 10^{-5} \ 10; \ \alpha(O) = 1.131 \times 10^{-5} \ 16;$
^x 806.3 2	3.7 6					E2(+M1)	2.0 +47-7	0.0100 21	$\alpha(P)=6.74\times10^{-7} \ 10$ Mult.: $\alpha(K)\exp=0.0048 \ 10.$ $\alpha(K)=0.0082 \ 18; \ \alpha(L)=0.00144 \ 24; \ \alpha(M)=0.00033 \ 6$ $\alpha(N)=8.1\times10^{-5} \ 13; \ \alpha(O)=1.37\times10^{-5} \ 24;$ $\alpha(P)=9.0\times10^{-7} \ 21$
^x 818.4 2	1.5 2					M1(+E2)	0.6 6	0.016 4	Mult.: $\alpha(K) \exp=0.0081$ 17. $\alpha(K) = 0.013$ 4; $\alpha(L) = 0.0021$ 5; $\alpha(M) = 0.00047$ 10 $\alpha(N) = 0.000115$ 23; $\alpha(O) = 2.0 \times 10^{-5}$ 4; $\alpha(P) = 1.5 \times 10^{-6}$ 4
x835.0 2 x837.0 2 x838.8 2	1.7 <i>3</i> 1.1 2 2.4 <i>4</i>							0.0005	Mult.: $\alpha(K) \exp = 0.013 \ 3.$
*853.8 2	3.1 5					E2(+M1)	≥1.6	0.0082 14	$\alpha(K)=0.0067 \ 12; \ \alpha(L)=0.00118 \ 16; \ \alpha(M)=0.00027 \ 4$ $\alpha(N)=6.6\times10^{-5} \ 9; \ \alpha(O)=1.12\times10^{-5} \ 16; $ $\alpha(P)=7.3\times10^{-7} \ 14$ Mult.: $\alpha(K)\exp=0.0065 \ 14.$
^x 868.9 2	3.5 5					M1+E2+E0 ^d		0.011 5	$\alpha(K)=0.009$ 4; $\alpha(L)=0.0015$ 6; $\alpha(M)=0.00035$ 13

12

From ENSDF

 $^{183}_{76}\mathrm{Os}_{107}$ -12

							183 Ir ε	decay 1988	BRo13 (contin	nued)	
								$\gamma(^{183}\text{Os})$ (co	ontinued)		
	E_{γ}^{\ddagger}	$I_{\gamma}^{\#e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ ^{&}	α^{\dagger}	$I_{(\gamma+ce)}^{e}$	Comments
	^X 880 1 2	162				¥					α (N)=9.E-5 3; α (O)=1.5×10 ⁻⁵ 6; α (P)=1.0×10 ⁻⁶ 5 Mult.: α (K)exp=0.029 6.
	x892.0 2	2.8 4					M1		0.01499		$\alpha(K)=0.01250 \ 18; \ \alpha(L)=0.00193 \ 3; \ \alpha(M)=0.000440$
	896.8 2	15.0 <i>23</i>	896.76	7/2+	0.0	9/2+	M1+E2	1.5 +14-5	0.0088 18		$\alpha(N)=0.0001074 \ 15; \ \alpha(O)=1.86\times10^{-5} \ 3; \\ \alpha(P)=1.411\times10^{-6} \ 20 \\ Mult.: \ \alpha(K)exp=0.014 \ 3. \\ \alpha(K)=0.0073 \ 15; \ \alpha(L)=0.00121 \ 21; \ \alpha(M)=0.00028 \ 5 \\ \alpha(N)=6.8\times10^{-5} \ 11; \ \alpha(O)=1.16\times10^{-5} \ 20; \\ \alpha(P)=8.0\times10^{-7} \ 18 \\ Mult.: \ \alpha(K)exp=0.0073 \ 15. \\ \end{cases}$
	x899.5 2 x901.8 2 x906.7 2 x911.9 2 x917.1 2 931.9 2	1.2 2 1.1 2 1.9 3 1.1 2 1.7 3 6.0 9	1977.95	(3/2)+	1045.95	(5/2+)	M1+E2	1.5 +15-5	0.0081 16		$\alpha(K)=0.0067$ 14; $\alpha(L)=0.00110$ 19; $\alpha(M)=0.00025$ 5
•	^x 936.6 2	1.0 2									$\alpha(N)=6.2\times10^{-5} \ 11; \ \alpha(O)=1.06\times10^{-5} \ 19; \alpha(P)=7.3\times10^{-7} \ 16 Mult.: \ \alpha(K)exp=0.0067 \ 14.$
	x940.9 2 x942.0 2 x948.5 2 x950.1 2 x955.7 2	0.96 <i>14</i> 2.3 <i>3</i> 2.3 <i>3</i> 1.7 <i>3</i> 3.4 5					E2+M1	1.8 +28-6	0.0071 14		$\alpha(K)=0.0059.12; \ \alpha(L)=0.00098.16; \ \alpha(M)=0.00023.4$
	x0(1.2.2	1.0.2						10 120 0			$\alpha(N) = 5.5 \times 10^{-5} \ 9; \ \alpha(O) = 9.4 \times 10^{-6} \ 16; \alpha(P) = 6.4 \times 10^{-7} \ 14 Mult.: \ \alpha(K) exp = 0.0059 \ 12.$
	x901.2 2 x971.0 2 x978.3 2 x1008.2 3 x1024.1 3 x1029.5 3 x1032 9 3	1.9 5 1.2 2 1.4 2 2.6 4 3.9 6 2.3 3 3 7 6									
	x1037.2 3	1.8 3					M1		0.01026		α (K)=0.00856 <i>12</i> ; α (L)=0.001314 <i>19</i> ; α (M)=0.000300 <i>5</i> α (N)=7.32×10 ⁻⁵ <i>11</i> ; α (O)=1.268×10 ⁻⁵ <i>18</i> ; α (P)=9.64×10 ⁻⁷ <i>14</i> Mult.: α (K)exp=0.0111 <i>23</i> .
	^x 1039.7 3	1.4 2									

 $^{183}_{76}\mathrm{Os}_{107}\text{--}13$

From ENSDF

¹⁸³₇₆Os₁₀₇-13

					¹⁸³ Iı	ε decay	1988Ro13 (continued)	
						$\gamma(^{183}$	Ds) (continued	<u>l)</u>	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#e}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	$lpha^{\dagger}$	Comments
1045.9 3	10.0 15	1045.95	(5/2 ⁺)	0.0	9/2+	(E2)		0.00454	$\begin{aligned} &\alpha(\text{K}) = 0.00372 \ 6; \ \alpha(\text{L}) = 0.000637 \ 9; \\ &\alpha(\text{M}) = 0.0001472 \ 21 \\ &\alpha(\text{N}) = 3.58 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 6.06 \times 10^{-6} \ 9; \\ &\alpha(\text{P}) = 3.98 \times 10^{-7} \ 6 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0020 \ 4. \end{aligned}$
*1057.8 3	$1.2\ 2$ $2.7\ 4$	1332.58	$(1/2 \ 3/2 \ 5/2)^{-}$	273.04	5/2-				
1063.2 3	9.5 14	2300.03	$(5/2)^{-}$	1236.76	(7/2) ⁺	E1		1.74×10 ⁻³	$\alpha(K)=0.001468 \ 21; \ \alpha(L)=0.000211 \ 3; \alpha(M)=4.78\times10^{-5} \ 7 \alpha(N)=1.161\times10^{-5} \ 17; \ \alpha(O)=2.00\times10^{-6} \ 3; \alpha(P)=1.480\times10^{-7} \ 21 Mult: \ \alpha(K)=0.0021 \ 4$
1074.1 3	5.1 8	1332.58	(1/2,3/2,5/2) ⁻	258.32	3/2-	M1+E2	0.9 +7-5	0.0071 <i>16</i>	$\alpha(\mathbf{K})=0.0059 \ 14; \ \alpha(\mathbf{L})=0.00093 \ 19; \alpha(\mathbf{M})=0.00021 \ 5 \alpha(\mathbf{N})=5.2\times10^{-5} \ 11; \ \alpha(\mathbf{O})=9.0\times10^{-6} \ 19; \alpha(\mathbf{P})=6.6\times10^{-7} \ 16 Mult: \ \alpha(\mathbf{K})=0.0059 \ 12$
^x 1093.7 3	1.2 2								Mata: a(1)exp 0.0009 12.
^x 1096.0 3	3.3 5								
x1112.7 3	2.1 <i>3</i>					(M1) ^b		0.00829	$\alpha(K)=0.00692 \ 10; \ \alpha(L)=0.001060 \ 15; \ \alpha(M)=0.000242 \ 4 \ \alpha(N)=5.90\times10^{-5} \ 9; \ \alpha(O)=1.022\times10^{-5} \ 15; \ \alpha(P)=7.78\times10^{-7} \ 11; \ \alpha(IPF)=9.00\times10^{-7} \ 16 \ Mult: \ \alpha(K)exp(1129.3+1131.5)=0.0098 \ 20.$
^x 1131.5 3	2.0 3					(M1) ^b		0.00825	$\alpha(K)=0.00689 \ 10; \ \alpha(L)=0.001055 \ 15; \alpha(M)=0.000240 \ 4 \alpha(N)=5.87 \times 10^{-5} \ 9; \ \alpha(O)=1.017 \times 10^{-5} \ 15; \alpha(P)=7.74 \times 10^{-7} \ 11; \ \alpha(IPF)=9.74 \times 10^{-7} \ 18 Mult: \ \alpha(K) \approx 0.008 \ 20 $
1140.2 3 x1177.4 3 x1254.2 3 x1260.7 3 x1291.1 3 x1308.4 3 x1310.9 3 x1354 1 3	1.7 <i>16</i> 2.5 <i>4</i> 3.0 <i>5</i> 3.1 <i>5</i> 1.6 2 2.0 <i>3</i> 2.4 <i>4</i> 2.0 <i>3</i>	1236.76	(7/2)+	96.23	11/2+				wunt α(κ)exp(1129.5+1151.5)=0.0098 20.
1377.0 <i>3</i> 1399.1 <i>3</i> 1403.4 <i>3</i>	2.0 <i>S</i> 1.00 <i>IS</i> 4.6 <i>7</i> 2.0 <i>3</i>	2273.79 1911.52 2300.03	(7/2) ⁻ (3/2 ⁻ ,5/2,7/2 ⁻) (5/2) ⁻	896.76 512.54 896.76	7/2 ⁺ 7/2 ⁻ 7/2 ⁺				

14

From ENSDF

					183 Ir ε decay	1988Ro1	3 (continued	<u>d)</u>
					$\gamma(^{183}$	Os) (contin	ued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#e}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [@]	α^{\dagger}	Comments
1404.4 <i>3</i> ^x 1419.7 <i>3</i>	1.50 23 2.0 3	2254.58	3/2 ⁽⁻⁾ ,5/2,7/2 ⁽⁻⁾	850.20	(3/2,5/2,7/2) ⁻			
^x 1422.5 3	1.6 2							
1424.1 <i>3</i>	1.30 20	1911.52	$(3/2^{-}, 5/2, 7/2^{-})$	486.99	7/2-			
1441.7 <i>3</i>	3.0 5	2273.79	$(7/2)^{-}$	832.03	$(3/2, 5/2, 7/2)^{-}$			
1455.0 <i>3</i>	1.00 15	2219.11	$(5/2^{-},7/2)$	763.82	$(7/2)^{-}$			
1458.8 <i>3</i>	1.75 11	1911.52	$(3/2^{-}, 5/2, 7/2^{-})$	453.05	3/2-			
1468.0 3	5.4 8	1921.03	1/2,3/2,5/2-	453.05	3/2-			
14/3./ 3	1.70 26	2273.79	(7/2)	800.56	$(5/2)^{+}$			
~14/8.8 <i>3</i>	3.80	2259 21	(7/2)	762 02	(7/2) =			
1494.5 5	$1.00\ 24$	2238.31	(1/2) $(5/2)^{-}$	/03.82	(1/2) $(5/2)^+$			
x1500.8.3	2.1.3	2300.03	(3/2)	800.50	(3/2)			
1509.8 3	2.1 J 4 5 7	2273 79	$(7/2)^{-}$	763 82	$(7/2)^{-}$			
1517.5 3	1.60 24	2249.34	$(5/2^+, 7/2)$	731.58	$7/2^+$			
1519.0 3	1.70 26	1911.52	$(3/2^{-}, 5/2, 7/2^{-})$	392.48	$(7/2)^{-}$			
^x 1523.7 3	1.6 2							
1525.8 <i>3</i>	0.85 13	1921.03	1/2,3/2,5/2-	395.19	1/2-			
^x 1532.1 3	1.8 <i>3</i>							
1542.4 <i>3</i>	1.40 21	2273.79	$(7/2)^{-}$	731.58	7/2+			
1544.4 <i>3</i>	2.3 3	2258.31	(7/2)	714.01	9/2+			
1559.5 <i>3</i>	11.0 17	2273.79	$(7/2)^{-}$	714.01	9/2+			
1568.5 <i>3</i>	4.8 7	2300.03	$(5/2)^{-}$	731.58	7/2+			
*1598.7 3	2.3 3	2272 70	(7/0)-	((0.00	(5/2)-			
1604.5 5	2.4 4	2273.79	(1/2) $(7/2)^{-}$	655 22	(3/2) $(7/2)^{-}$			
1010.95	2.94	2213.19	(1/2)	055.52	(1/2)	d		
1630.87 3	≈3.0 ⁹ ^u	2083.43	(1/2,3/2,5/2)	453.05	3/2	u		Mult.: $\alpha(K)\exp(doublet)=0.0025 5$ for doublet which primarily deexcites the 2300 level.
1630.8 ^{<i>f</i>} 3	≈17 ^{<i>f</i> a}	2300.03	(5/2)-	669.09	(5/2)-	(E2)	0.00206	$\alpha(K)=0.001625\ 23;\ \alpha(L)=0.000251\ 4;\ \alpha(M)=5.74\times10^{-5}\ 8$ $\alpha(N)=1.398\times10^{-5}\ 20;\ \alpha(O)=2.40\times10^{-6}\ 4;\ \alpha(P)=1.730\times10^{-7}\ 25;$ $\alpha(IPF)=0.0001134\ 16$ Mult: $\alpha(K)exp=0.0025\ 5$ for doublet for which this is dominant
1629.0.2	1 40 21	2259 21	(7/2)	(20.79	7/0-			placement.
1644.8.2	$1.40\ 21$	2238.31	(1/2) $(5/2)^{-}$	020.78 655.22	1/2			
1652 8 2	2.0 5	2300.03	(3/2) $(7/2)^{-}$	620.78	(1/2)	E2	0.00202	$\alpha(K) = 0.001586.22; \alpha(L) = 0.000245.4; \alpha(M) = 5.50\times 10^{-5}.8$
1032.8 3	15.0 25	2215.19	(1/2)	020.78	1/2	E2	0.00202	$\alpha(\mathbf{N})=0.001586\ 25;\ \alpha(\mathbf{L})=0.000243\ 4;\ \alpha(\mathbf{M})=5.59\times10^{-8}\ 8$ $\alpha(\mathbf{N})=1.361\times10^{-5}\ 19;\ \alpha(\mathbf{O})=2.34\times10^{-6}\ 4;\ \alpha(\mathbf{P})=1.688\times10^{-7}\ 24;$ $\alpha(\mathbf{IPF})=0.0001219\ 18$ Mult.: $\alpha(\mathbf{K})\exp=0.0013\ 3.$
^x 1673.4 3	2.9 4							
^x 1678.2 3	2.6 4							
1687.8 <i>3</i> ^x 1691.9 <i>3</i>	2.4 <i>4</i> 2.1 <i>3</i>	2083.43	(1/2,3/2,5/2 ⁻)	395.19	1/2-			

15

From ENSDF

 $^{183}_{76}\mathrm{Os}_{107}$ -15

				¹⁸³ Ir	ε decay 1988Ro13 (continued)
					$\gamma(^{183}\text{Os})$ (continued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\#e}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Comments
1700.0 <i>3</i>	5.7 9	2258.31	(7/2)	558.15 (9/2)-	
1705.3 3	4.7 7	1977.95	$(3/2)^+$	273.04 5/2-	
1709.5 3	1.30 20	2219.11	$(5/2^{-},7/2)$	509.88 9/2-	
1717.8 3	4.2 6	2300.03	$(5/2)^{-}$	582.21 (3/2)	
1728.6 <i>3</i>	2.5 4	2310.49	$3/2, 5/2, 7/2^{(-)}$	$582.21 (3/2)^{-}$	
$x_{1745,2}^{x_{1745,2}}$	3.80				
1745.2 5	5.4 J	2258 21	(7/2)	500 88 0/2-	
1747.9 3	11.0.17	2230.31	(1/2) $(5/2)^{-}$	$509.88 \ 9/2$ $544.38 \ 5/2^{-1}$	
1760.3.3	8913	2273 79	$(3/2)^{-}$	513.09 5/2	
1763.6.3	2.3 3	2273.79	$(7/2)^{-}$	509.88 9/2-	
1787.0 <i>3</i>	10.0 15	2300.03	(5/2)-	513.09 5/2-	
1797.1 <i>3</i>	2.2 3	2511.21	$(5/2^+, 7/2)$	714.01 9/2+	
1801.3 <i>3</i>	2.6 4	2254.58	$3/2^{(-)}, 5/2, 7/2^{(-)}$	453.05 3/2-	
1806.9 <i>3</i>	1.5 14	1977.95	$(3/2)^+$	170.70 1/2-	
1812.8 <i>3</i>	3.4 5	2300.03	$(5/2)^{-}$	486.99 7/2-	
^x 1815.4 3	2.2 3				
1820.9 3	2.7 4	2273.79	$(7/2)^{-}$	453.05 3/2-	
1848.0 3	2.5 4	2300.03	$(5/2)^{-}$	453.05 3/2-	E_{γ} : reported as 1848 keV. Missing precision assumed by the evaluator.
1857.1 ^J 3	3.5 Ja 5	2249.34	$(5/2^+,7/2)$	392.48 (7/2)-	
1857.1 ^J 3	3.0 ^{f a} 5	2310.49	3/2,5/2,7/2(-)	453.05 3/2-	
1862.3 <i>3</i>	4.5 7	2254.58	$3/2^{(-)}, 5/2, 7/2^{(-)}$	392.48 (7/2) ⁻	
1866.1 3	2.6 4	2258.31	(7/2)	392.48 (7/2) ⁻	
^18/5.4 3	2.5 4	0070 70	(7/2)	202 49 (7/2)=	
1881.8 3	$1.50\ 23$	22/3./9	(1/2) (5/2+7/2)	392.48 (7/2)	
1890.5 5	2.5 4	2311.21	$(5/2^{+}, 7/2)$	020.78 7/2 $205.10 1/2^{-1}$	
1904.7 3	5.5 5 11 0 <i>17</i>	2300.03	$(5/2)^{-}$	393.19 1/2 $392.48 (7/2)^{-1}$	
x1959.6.3	335	2300.03	(3/2)	572.40 (1/2)	
x1976.7 3	7.9 12				
^x 1985.4 3	2.4 4				
^x 1994.0 3	1.9 <i>3</i>				
2000.6 3	18 <i>3</i>	2273.79	$(7/2)^{-}$	273.04 5/2-	
^x 2015.6 3	8.7 <i>13</i>				
x2035.7 3	2.2 3				
^x 2041.9 3	5.2 8				
*2192.0 <i>3</i>	2.74				
~2223.5 <i>3</i>	5.10	2240.24	(5/2 + 7/2)	0.0 0/2+	
2249.8° 3	0.82 I2	2249.34	$(5/2^+, 1/2)$	$0.0 \frac{9}{2^+}$	
2238.19 3 2273 68 2	3.80 315	2238.31 2273 70	(1/2) $(7/2)^{-}$	$0.0 9/2^{+}$	
2213.0° J	5.15	2213.17	(1/2)	$0.0 \ \frac{9}{2}$	

From ENSDF

¹⁸³Ir ε decay **1988Ro13** (continued)

γ (¹⁸³Os) (continued)

[†] Additional information 1.

- [±] From 1988Ro13; uncertainty is 0.1 keV for E γ <500 and I γ >100, 0.3 keV for E γ >1000 and 0.2 keV otherwise.
- [#] 15% uncertainty estimated by authors, except where noted.
- [@] From I(ce) and I γ , normalized by authors assuming E2 theory value for 102.2 γ consistent with experimental L1:L2:L3 subshell ratios. The authors estimate approximately 15% uncertainty in I(ce), resulting In \approx 21% uncertainty In the calculated conversion coefficients.
- [&] From measured ce data, except As noted.
- ^{*a*} From authors' coincidence analysis; assumed by the evaluator to be approximate.
- ^b $\alpha(K)$ exp for doublet requires both components to have the admixture indicated.
- ^c Possible E1 assignment ruled out by level parities.
- ^d Conversion coefficient too large for E1,E2 or M1; possible E0 admixture.
- ^e For absolute intensity per 100 decays, multiply by 0.098 11.
- ^f Multiply placed with intensity suitably divided.
- ^g Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

$^{183} {\rm Ir} \ \varepsilon \ {\rm decay}$ 1988Ro13

Decay Scheme (continued)

 $^{183}_{76}\mathrm{Os}_{107}$

 $^{183}_{76}\mathrm{Os}_{107}$

Decay Scheme (continued)

 $^{183}_{76}\mathrm{Os}_{107}$