¹⁸⁷**Pb** α **decay** (15.2 s) **1981Mi12**

Type Author Citation Literature Cutoff Date
Full Evaluation Coral M. Baglin NDS 134, 149 (2016)

Literature Cutoff Date
15-Apr-2015

Parent: ¹⁸⁷Pb: E=33 13; $J^{\pi}=(3/2^{-})$; $T_{1/2}=15.2$ s 3; $Q(\alpha)=6393$ 6; % α decay=7 2

¹⁸⁷Pb-E: $3/2^-$ g.s., 33 keV 13 below $13/2^+$ state In ¹⁸⁷Pb from mass measurements (2005We11), or $3/2^-$ level 2 keV 15 above a $13/2^+$ ¹⁸⁷Pb g.s. from ¹⁹¹Po α decay (2002An19), implying E(13/2⁺) level In ¹⁸³Hg at 216 16 or 185 18. The former is preferred by 2013Sa43 because the ¹⁸³Hg 13/2⁺ level presumably must deexcite to the 9/2 7/2[514] level known from Adopted Levels, Gammas to lie 105 keV above the 7/2 7/2[514] level whose energy is estimated from systematics to be 120 10 (2013Sa43); thus, E(13/2⁺) In ¹⁸³Hg should exceed≈225 keV.

¹⁸⁷Pb-%α decay: From α -α correlation data of 1999An36.

Decay scheme based on $\alpha \gamma$ coincidence measurements on a mass separated source. Substantial ε decay branch could not be quantified by 1981Mi12 due to similar ¹⁸⁷Pb g.s.+isomer half-lives and unknown α branching ratios of the ¹⁸⁷Tl daughters. For this decay, OxBR=450 *129*.

¹⁸³Hg Levels

E(level) † J^{π} ‡ $T_{1/2}$ $^{\#}$ Comments

No α branch observed to this level. 1981Mi12 estimate an upper limit of 1.5% of all parent α decays for such a branch; the implied lower limit for its hindrance factor (790 240) is surprisingly high compared with that for the branch to the 67-keV level (13 4) which has been postulated to be a member of the same rotational band.

67.43 25 $3/2^ \leq 16$ ns other E: 44 19 from Q(α) and E α if parent level energy is 33 13 and 65 19 if E(parent)=2 15.

α radiations

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\dagger \#}$	HF [‡]	
5993 10	275.47	40.3 24	2.6 8	
6194 10	67.43	59.7 24	13 4	

[†] From 1981Mi12. Intensities are given per 100 parent α decays, based on I(6194 α):I(5993 α)=21.5 15:14.5 10 (1981Mi12).

γ ⁽¹⁸³Hg)

E_γ E_i(level) J_i^{π} E_f J_f^{π} Mult. α^{\dagger} Comments $\frac{E_{\gamma}}{67.43} = \frac{E_i(\text{level})}{3/2^{-}} = \frac{J_i^{\pi}}{0.0} = \frac{J_i^{\pi}}{1/2^{-}} = \frac{M_i}{32.19} = \frac{\Delta^{\dagger}}{32.19} = \frac{\Delta^{\dagger}}{32.19} = \frac{\Delta^{\dagger}}{\alpha(\text{L}) = 24.07} = \frac{(\text{L}) = 24.07}{\alpha(\text{M}) = 6.2617} = \frac{(\text{L}) = 24.07}{\alpha(\text{M}$

Continued on next page (footnotes at end of table)

[†] From least-squares fit to E γ .

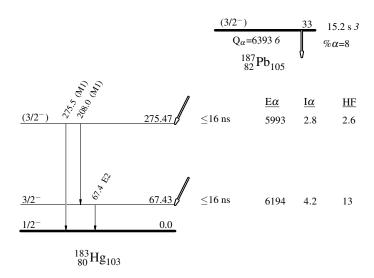
[‡] From Adopted Levels.

[#] Based on observation of prompt α - γ coin (FWHM=16 ns time distribution) (1981Mi12).

[‡] If r_0 =1.496 15 (based on r_0 (¹⁸²Hg)=1.50 2, r_0 (¹⁸⁴Hg)=1.491 14 in 1998Ak04), % α =7 2, Q(α)=6395 7 and $T_{1/2}$ =15.2 s 3 for ¹⁸⁷Pb parent.

[#] For absolute intensity per 100 decays, multiply by 0.07 2.

187 Pb α decay (15.2 s) 1981Mi12 (continued)


γ ⁽¹⁸³Hg) (continued)

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
^x 195 208.0 3	275.47	(3/2 ⁻)	67.43	3/2-	(M1)	0.991	Coincident with 5993 α . $\alpha(K)$ =0.813 $I2$; $\alpha(L)$ =0.1366 20 ; $\alpha(M)$ =0.0318 5 $\alpha(N)$ =0.00797 $I2$; $\alpha(O)$ =0.001509 22 ; $\alpha(P)$ =0.0001155 $I7$ Mult.: $0.87 \le \alpha(\exp) \le 5.3$ from intensity balance at the 67 level. D,E2 from RUL.
275.5 3	275.47	(3/2 ⁻)	0.0	1/2-	(M1)	0.455	$\alpha(K)$ =0.374 6; $\alpha(L)$ =0.0625 9; $\alpha(M)$ =0.01454 21 $\alpha(N)$ =0.00365 6; $\alpha(O)$ =0.000690 10; $\alpha(P)$ =5.29×10 ⁻⁵ 8 Mult.: M1 favored based on strength of 5993 α -(K x ray) coin (1981Mi12).

 $^{^{\}dagger}$ Additional information 1. x γ ray not placed in level scheme.

187 Pb α decay (15.2 s) 1981Mi12

Decay Scheme

