¹⁵⁵Gd(³²S,4nγ) E=160 MeV 1995Sh04,1993Bi17

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Coral M. Baglin	NDS 134, 149 (2016)	15-Apr-2015			

1995Sh04: E=160 MeV; ¹⁵⁵Gd enriched self-supporting target; 10 Compton-suppressed Ge detectors, one low-energy photon spectrometer, multiplicity filter with 28 BGO detectors; θ =35°, 90°, 145°; measured E γ , I γ , $\gamma\gamma$ coin, γ (K x ray) coin, DCO ratios (90°, 35 (or 145) °); $\gamma\gamma$ coin matrix added to that from 1993Bi17.

1993Bi17: E=160 MeV; fragment mass analyzer for identification of evaporation residues; Compton-suppressed Ge-detector array; measured E γ , I γ (unstated), residue- γ coin, residue- $\gamma\gamma$ coin; identified 9/2[624] and 7/2[514] bands.

The level scheme is taken from 1995Sh04; this is similar to, and presumably supersedes, that from 1993Bi17 for the 9/2[624] and 7/2[514] bands, and also includes the 1/2[521] band. The proposed 1/2[521] band structure differs from that shown in Adopted Levels in several respects (see comments on that band), but is included in the present dataset for completeness.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0#	1/2-	585.10+x ^a 24	(15/2 ⁻)	1718.7+x ^{&} 4	(25/2 ⁻)	3027.3 [@] 12	31/2-
0.0+x ^{<i>a</i>}	$(7/2^{-})$	700.05+y ^d 20	$(19/2^+)$	1807.2+y ^C 4	$(29/2^+)$	3101.0 [#] 9	33/2-
0.0+y ^b	$(13/2^+)$	778.4+x ^{&} 3	$(17/2^{-})$	1866.6 [@] 9	$23/2^{-}$	3211.5+x ^a 9	$(35/2^{-})$
86.4 [@] 4	3/2-	832.32+y ^C 23	$(21/2^+)$	1921.2 [#] 6	$25/2^{-}$	3514.2+x ^{&} 9	$(37/2^{-})$
89.0 [#] 4	5/2-	924.7 [@] 6	$15/2^{-}$	1995.4+x ^{<i>a</i>} 5	$(27/2^{-})$	3563.8+y ^d 9	$(39/2^+)$
104.90+x ^{&} 16	(9/2-)	954.0 [#] 5	$17/2^{-}$	2229.6+y ^d 5	$(31/2^+)$	3649.2 [@] 13	$(35/2^{-})$
251.30+x ^{<i>a</i>} 16	$(11/2^{-})$	991.8+x ^a 3	(19/2 ⁻)	2274.0+x ^{&} 5	$(29/2^{-})$	3710.0+y ^c 5	$(41/2^+)$
280.5 [@] 4	7/2-	1135.36+y ^d 24	$(23/2^+)$	2389.9+y ^C 4	$(33/2^+)$	3727.3 [#] 11	$(37/2^{-})$
287.8 [#] 5	9/2-	1217.9+x ^{&} 4	$(21/2^{-})$	2425.5 [@] 11	$27/2^{-}$	3880.3+x ^a 9	(39/2 ⁻)
353.78+y ^b 18	$(15/2^+)$	1286.3+y ^c 3	$(25/2^+)$	2491.4 [#] 8	29/2-	4285.8? [@] 14	(39/2 ⁻)
406.40+x ^{&} 23	$(13/2^{-})$	1363.2 [@] 8	19/2-	2580.0+x ^a 7	$(31/2^{-})$	4292.8+y ^d 10	$(43/2^+)$
429.02+y ^c 18	$(17/2^+)$	1404.9 [#] 6	$21/2^{-}$	2870.9+y ^d 7	$(35/2^+)$	4367.2? [#] 12	$(41/2^{-})$
561.0 [@] 5	$11/2^{-}$	1464.0+x ^{<i>a</i>} 4	$(23/2^{-})$	2876.2+x ^{&} 7	$(33/2^{-})$	4433.1+y ^c 7	$(45/2^+)$
578.6 [#] 5	$13/2^{-}$	1648.2+y ^d 3	$(27/2^+)$	3026.9+y ^C 5	$(37/2^+)$		

¹⁸³Hg Levels

[†] From least-squares fit to $E\gamma$. from Adopted Levels, Gammas, the energy offset y=266 20.

[‡] From 1995Sh04, based on measured γ multipolarity data and deduced band structure.

[#] Band(A): 1/2[521], $\alpha = +1/2$ band. This band differs from that in Adopted Levels primarily because 1995Sh04 assign an 88.9 γ (rather than the 86.5 γ) as the 5/2 to 1/2 transition.

^(a) Band(a): 1/2[521], $\alpha = -1/2$ band. This signature partner differs significantly from that in Adopted Levels. Here, the J=3/2 to 1/2 transition has E γ =86.5 instead of the adopted value of 67.1 and the other three transitions connecting to the the 1/2[521] $\alpha = +1/2$ band also differ from the adopted ones; so does the J=31/2 to 27/2 in-band transition (E γ =601.8 here but 613.6 in Adopted Gammas).

[&] Band(B): 7/2[514], $\alpha = +1/2$ band.

^{*a*} Band(b): 7/2[514], $\alpha = -1/2$ band.

^{*b*} Band(C): $i_{13/2}$ band.

^c Band(D): 9/2[624], $\alpha = +1/2$ band.

^d Band(d): 9/2[624], $\alpha = -1/2$ band.

155 Gd(32 S,4n γ) E=160 MeV 1995Sh04,1993Bi17 (continued) $\gamma(^{183}\text{Hg})$ I_{γ}^{\ddagger} Mult.[†] E_{γ}^{\ddagger} E_i(level) J_i^{π} E_f J_{f}^{π} Comments 86.5 5 1.3 2 $3/2^{-}$ 0.0 $1/2^{-1}$ 86.4 5/2- $1/2^{-}$ 88.9.5 3.8 6 89.0 0.0 Q DCO=1.1 3. 104.9 2 29 3 104.90 + x $(9/2^{-})$ $(7/2^{-})$ E_γ: 105.7 in 1993Bi17. 0.0+xDCO=0.8 3. 146.4 2 51 251.30+x $(11/2^{-})$ $104.90 + x (9/2^{-})$ DCO=0.8 4. 251.30+x (11/2⁻) 155.1 5 1.5 2 406.40 + x $(13/2^{-})$ DCO=0.7 2. 178.7 5 406.40+x (13/2⁻) 1.0 1 585.10+x $(15/2^{-})$ DCO=0.7 3. 191.4 5 42 280.5 $7/2^{-}$ 89.0 $5/2^{-}$ DCO=0.8 3, but γ is not well separated from 194.1 γ . 1.2 2 $(17/2^{-})$ 193.3 5 778.4+x 585.10+x (15/2⁻) DCO=0.7 3. 194.1 2 10 2 280.5 86.4 $3/2^{-}$ DCO=0.8 2, but γ is not well separated from 191.4 γ . $7/2^{-}$ $9/2^{-}$ $5/2^{-}$ 198.9 2 13 2 287.8 89.0 Q DCO=1.0 *1*. 251.3 2 20 2 251.30 + x $(11/2^{-})$ $(7/2^{-})$ DCO=0.9 3. 0.0 + x700.05+y $(19/2^+)$ 429.02+y (17/2⁺) E_γ: 271.8 in 1993Bi17. 271.02 13 *I* D DCO=0.4 1. I_{γ} : weak. Absent In (³²S,4n γ) E=159 MeV; omitted 273.2 5 561.0 $11/2^{-}$ $9/2^{-}$ 287.8 from Adopted Gammas. 280.4 2 6.9 4 561.0 $11/2^{-}$ 280.5 $7/2^{-}$ Q DCO=1.0 2. 290.8 2 11.4 5 578.6 $13/2^{-}$ 287.8 $9/2^{-}$ DCO=0.8 2. DCO=0.9 1. $(13/2^{-})$ 0 301.5 2 193 406.40 + x $104.90+x (9/2^{-})$ $(23/2^+)$ E_γ: 303.9 in 1993Bi17. 303.0 2 1135.36+y 832.32+y (21/2⁺) 7.8 8 D DCO=0.6 2. 585.10+x 333.8 2 17 *1* $(15/2^{-})$ 251.30+x (11/2⁻) Q DCO=1.0 2. I_{γ} : weak. Absent In (³²S,4n γ) E=159 MeV; omitted 346.1 5 924.7 $15/2^{-}$ 578.6 $13/2^{-1}$ from Adopted Gammas. 346.3 2 700.05+y $(19/2^+)$ DCO=1.0 3. 13 *I* 353.78+y (15/2⁺) $(15/2^+)$ DCO=0.5 2. 353.8 2 20 2 353.78+y 0.0 + y $(13/2^+)$ D $(27/2^+)$ $(25/2^+)$ 361.9 5 3.6 6 1648.2+y 1286.3+y D E_γ: 362.6 in 1993Bi17. DCO=0.4 2. 363.7 5 4.5 4 924.7 $15/2^{-}$ 561.0 $11/2^{-}$ DCO=1.1 3. Q 13.0 5 DCO=0.9 2. 372.02 778.4+x $(17/2^{-})$ $406.40 + x (13/2^{-})$ 375.4 2 $17/2^{-}$ DCO=1.1 2. 10.8 5 954.0 578.6 $13/2^{-1}$ 0 403.3 2 66 3 832.32+y $(21/2^+)$ 429.02+y (17/2⁺) Q DCO=1.0 2. 406.7 2 10.7 7 991.8+x $(19/2^{-})$ 585.10+x (15/2⁻) DCO=0.9 2. (31/2+) $(29/2^+)$ DCO=0.6 2. 422.6 5 32 2229.6+y 1807.2+y D 429.02 100 429.02+y $(17/2^+)$ $(13/2^+)$ DCO=1.1 2. 0.0 + yQ 435.3 2 10 3 1135.36+y $(23/2^+)$ 700.05+y (19/2⁺) DCO=1.0 4. 438.5 5 3.9 4 $15/2^{-1}$ DCO=1.1 4. 1363.2 $19/2^{-}$ 924.7 9.1 5 439.5 2 1217.9+x $(21/2^{-})$ 778.4+x $(17/2^{-})$ DCO=0.8 2. 6.7 5450.9 2 1404.9 $21/2^{-}$ 954.0 $17/2^{-1}$ DCO=1.0 3. $(25/2^+)$ 1286.3+y 832.32+y (21/2⁺) 454.0 2 47 2 DCO=0.9 2. $(23/2^{-1})$ $(19/2^{-1})$ 472.2 2 8.7 7 1464.0+x991.8+x DCO=1.1 4. 500.8 2 7.0 5 1718.7+x $(25/2^{-})$ 1217.9+x $(21/2^{-})$ DCO=1.1 3. 503.4 5 2.6 3 1363.2 DCO=1.2 4. 1866.6 $23/2^{-}$ $19/2^{-}$ $(27/2^+)$ $(23/2^+)$ 512.8 2 5.5 5 1648.2+y 1135.36+y DCO=0.8 4. 516.3 2 5.4 5 1921.2 $25/2^{-}$ 1404.9 $21/2^{-}$ DCO=1.1 3. 521.0 2 29 2 1807.2+y $(29/2^+)$ 1286.3+y $(25/2^+)$ DCO=1.2 3. 7.8 7 531.4 2 1995.4+x $(27/2^{-})$ 1464.0+x $(23/2^{-})$ E_v: 532.2 in 1993Bi17. DCO=1.0 3. 555.3 2 5.6 5 2274.0+x $(29/2^{-})$ $(25/2^{-})$ DCO=0.8 3. 1718.7+x 558.9 5 2.1 3 2425.5 $27/2^{-}$ 1866.6 $23/2^{-}$ DCO=1.1 5. $29/2^{-}$ 570.2 5 3.9 4 2491.4 1921.2 $25/2^{-}$ DCO=1.0 4. $(31/2^+)$ 581.1 5 2.8 4 2229.6+y 1648.2+y $(27/2^+)$ DCO=0.9 5. 582.7 2 2389.9+y $(33/2^+)$ 1807.2+y $(29/2^+)$ 25 2 DCO=1.0 4. 584.6 5 3.5 6 2580.0+x $(31/2^{-})$ 1995.4+x $(27/2^{-})$ DCO=1.0 5. 601.8 5 1.1 2 3027.3 $31/2^{-}$ 2425.5 $27/2^{-1}$ DCO=1.3 9.

Continued on next page (footnotes at end of table)

	155 Gd(32 S,4n γ) E=160 MeV 1995Sh04,1993Bi17 (continued)						
γ ⁽¹⁸³ Hg) (continued)							
E _γ ‡	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π		Comments
602.2 5	2.3 4	2876.2+x	$(33/2^{-})$	2274.0+x	$(29/2^{-})$	DCO=1.0 5.	
609.6 5	2.6 4	3101.0	33/2-	2491.4	$29/2^{-}$	DCO=0.8 4.	
621.9 5	0.7 2	3649.2	$(35/2^{-})$	3027.3	31/2-		
626.3 5	2 1	3727.3	$(37/2^{-})$	3101.0	$33/2^{-}$		
631.5 5	1.7 8	3211.5+x	(35/2 ⁻)	2580.0+x	(31/2 ⁻)	E _γ : 630.6 in 1993Bi17. DCO=1.2 <i>9</i> .	
636.6 [#] 5		4285.8?	$(39/2^{-})$	3649.2	$(35/2^{-})$	I_{γ} : weak.	
637.0 2	13 2	3026.9+y	$(37/2^+)$	2389.9+y	$(33/2^+)$	DCO=1.1 5.	
638.0 5	1.0 3	3514.2+x	$(37/2^{-})$	2876.2+x	$(33/2^{-})$	E_{γ} : 640.0 in 1993Bi17.	
639.9 [#] 5	11	4367.2?	$(41/2^{-})$	3727.3	$(37/2^{-})$		
641.3 5	1.1 3	2870.9+y	$(35/2^+)$	2229.6+y	$(31/2^+)$	DCO=1.0 7.	
668.8 5	0.3 <i>3</i>	3880.3+x	$(39/2^{-})$	3211.5+x	$(35/2^{-})$		
683.1 2	8 <i>3</i>	3710.0+y	$(41/2^+)$	3026.9+y	$(37/2^+)$		
692.9 5	0.6 3	3563.8+y	$(39/2^+)$	2870.9+y	$(35/2^+)$		
723.1 5	4 1	4433.1+y	$(45/2^+)$	3710.0+y	$(41/2^+)$		
729.0 5	0.6 3	4292.8+y	$(43/2^+)$	3563.8+y	$(39/2^+)$		

[†] Assigned by evaluator based on measured DCO ratios. 1995Sh04 expect DCO ratios of≈1.0 and 0.6 for stretched Q (or D ΔJ=0) transitions and pure stretched D transitions, respectively. They assign Q transitions As E2, D transitions As M1; see 1995Sh04 for authors' suggested assignments based on DCO ratio, if available, and on deduced level scheme.

[‡] From 1995Sh04. $\Delta E_{\gamma}=0.5$ keV for weak lines, 0.2 keV for all others (1995Sh04); for the purpose of assigning energy

uncertainties, the evaluator designates as "weak" all lines with $I\gamma < 5$. 1993Bi17 do not state $I\gamma$ data or energy uncertainties.

[#] Placement of transition in the level scheme is uncertain.

¹⁵⁵Gd(³²S,4nγ) E=160 MeV 1995Sh04,1993Bi17

<u>Level Scheme</u> Intensities: Relative I_{γ}

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$

 $^{183}_{80}\text{Hg}_{103}$

 $^{183}_{80} Hg_{103}$

¹⁵⁵Gd(³²S,4nγ) E=160 MeV 1995Sh04,1993Bi17

 $^{183}_{80}\text{Hg}_{103}$

¹⁵⁵Gd(³²S,4nγ) E=160 MeV 1995Sh04,1993Bi17 (continued)

 $^{183}_{80} Hg_{103}$