152 Sm(35 Cl,4n γ) 1999Mu05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 134, 149 (2016)	15-Apr-2015

Others: 1986CaZW, 1987CaZR (E=170 MeV). 1999Mu05: E=170 MeV; 98% ¹⁵²Sm target; HHIRF spin spectrometer array (11 HPGe detectors, 61 NaI(Tl) detectors); θ=24.7°, 63.4°, 92.7°, 116.6°, 155.3°; measured E γ , I γ , $\gamma(\theta)$, DCO ratios, $\gamma\gamma$ coin, γ -K x ray coin.

¹⁸³ Au	Levels
110	Levens

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0 [@]	5/2-	
12.4 [@]	9/2-	E(level): from Adopted Levels.
69.1 ^{&} 3	7/2-	
231.22 [@] 18	$13/2^{-}$	
273.49 ^{&} 18	$11/2^{-}$	
565.27 [@] 24	$17/2^{-}$	
599.58 <mark>&</mark> 22	$15/2^{-}$	
701.78 <mark>b</mark> 24	$13/2^{+}$	
865.37 <mark>b</mark> 24	$17/2^{+}$	
989.1 [@] 3	$21/2^{-}$	
1022.9 ^{&} 3	$19/2^{-}$	
1054.5 ^{<i>a</i>} 4	19/2-	
1148.50 4	$21/2^+$	
$1487.5^{\circ} 3$	23/2	
1491.9 - 4 1527 7 <i>b</i> 1	25/2 25/2+	
$1527.7 + 1544.7 \times 4$	23/2	
1944.7 + 7 1981 1 ^b 5	29/2+	
1986.3 ^{<i>a</i>} 4	$\frac{29}{2}^{-}$	
2063.4 [@] 4	29/2-	
2096.7 ^{#& 4}	27/2-	
2490.9 ^b 5	$33/2^{+}$	
2541.4 ^{<i>a</i>} 4	31/2-	
2685.7 ^{#&} 6	31/2-	
2691.0 ^{^w} 5	33/2-	
3048.7° 5	$37/2^+$	
$3149.3^{\circ\circ}$ 3	35/2 (25/2-)	
$3310.77^{a} = 0$	(33/2)	
3656 7 <mark>b</mark> 6	$\frac{31/2}{41/2^+}$	
3798.8 ^{<i>a</i>} 5	$(39/2^{-})$	
4053.0 [@] 6	41/2-	
4309.6 <mark>b</mark> 6	$45/2^{+}$	
4461.0 ^{<i>a</i>} 6	$(43/2^{-})$	
4765.5 ^{^w} 6	45/2-	
4989.2 ⁰ 7	49/2+	
5129.0? ⁴ 8	$(4^{-}/2)$	
SSU0.5 € 8	(49/2)	

¹⁵²Sm(³⁵Cl,4nγ) **1999Mu05** (continued)

¹⁸³Au Levels (continued)

E(level) [†]	Jπ‡
5681.3 ^b 7	53/2+
6276.5? [@] 9	$(53/2^{-})$
6381.5 ^b 7	$57/2^{+}$
7110.5 ^b 9	$(61/2^+)$
7879.5? ^b 10	$(65/2^+)$

[†] From least-squares fit to $E\gamma$.

[‡] Authors' values, based on measured DCO ratios and/or $\gamma(\theta)$, assuming $J^{\pi}=5/2^{-}$ and $9/2^{-}$, respectively, for the g.s. and 12.4 level. [#] Level omitted from Adopted Levels because deexciting γ was absent In a subsequent (²⁹Si,5n γ) study (2005So01) In which

double-gated spectra clearly showed a different γ In cascade with 327 γ and 423 γ In same band.

^(a) Band(A): $(\pi h_{9/2}), \alpha = +1/2$ band.

& Band(B): possible (π f_{7/2}), α =-1/2 band. Prolate orbital; energetically favored signature.

^{*a*} Band(C): possible (π h_{9/2}), α =-1/2 band. Prolate orbital; unfavored signature.

^b Band(D): 1/2[660], $\alpha = +1/2$ band.

γ ⁽¹⁸³Au)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
(12.4)		12.4	$9/2^{-}$	0.0	$5/2^{-}$		
163.6 2	33 <i>3</i>	865.37	$17/2^{+}$	701.78	$13/2^{+}$	Q	Mult.: DCO=1.12 14; A ₂ =+0.21 27, A ₄ =+0.1 4.
204.4 2	80.6 20	273.49	$11/2^{-}$	69.1	$7/2^{-}$	Q	Mult.: DCO=1.0 3; $A_2 = +0.35$ 7, $A_4 = -0.27$ 14.
218.8 2	103.0 25	231.22	$13/2^{-}$	12.4	9/2-	Q	Mult.: DCO=1.00 7; \tilde{A}_2 =+0.39 7, A_4 =-0.150 9.
261.1 2	35.1 11	273.49	$11/2^{-}$	12.4	9/2-	Ď	Mult.: DCO=0.74 22; \tilde{A}_2 =-0.08 7, A_4 =-0.05 11.
265.8 2	48 5	865.37	$17/2^{+}$	599.58	$15/2^{-}$	D	Mult.: DCO=0.58 9; A ₂ =-0.32 17, A ₄ =+0.23 26.
283.1 2	100	1148.5	$21/2^{+}$	865.37	$17/2^{+}$	(Q)	Mult.: DCO=1.02 11; A_2 =+0.32 17, A_4 =-0.38 9.
300.0 5	11 <i>3</i>	865.37	$17/2^{+}$	565.27	$17/2^{-}$		
326.1 2	58.6 10	599.58	$15/2^{-}$	273.49	$11/2^{-}$	Q	Mult.: DCO=1.02 14; A ₂ =+0.38 6, A ₄ =+0.12 9.
334.1 2	59.6 7	565.27	$17/2^{-}$	231.22	$13/2^{-}$	Q	Mult.: DCO=1.07 13.
368.0 5	10.9 7	599.58	$15/2^{-}$	231.22	$13/2^{-}$	D	Mult.: DCO=0.51 8.
379.2 2	85.0 <i>23</i>	1527.7	$25/2^{+}$	1148.5	$21/2^{+}$	Q	Mult.: DCO=0.99 15.
423.2 2	26 6	1022.9	$19/2^{-}$	599.58	$15/2^{-}$	Q	Mult.: DCO=0.92 25; A ₂ =+0.51 6, A ₄ =-0.10 8.
423.9 2	51.6 10	989.1	$21/2^{-}$	565.27	$17/2^{-}$	Q	Mult.: $A_2 = +0.51 6$, $A_4 = -0.10 8$.
428.3 2	36 4	701.78	$13/2^{+}$	273.49	$11/2^{-}$	D+Q	Mult.: DCO=0.8 4; A ₂ =-0.74 7, A ₄ =+0.19 10.
433.0 2	7.3 7	1487.5	$23/2^{-}$	1054.5	19/2-	(Q)	Mult.: $A_2 = +0.64 \ 24$, $A_4 = +0.2 \ 4$.
441.0 5	17 5	1986.3	$27/2^{-}$	1544.7	$23/2^{-}$		Mult.: DCO=1.4 4.
453.4 2	75 <i>5</i>	1981.1	$29/2^{+}$	1527.7	$25/2^+$	Q	Mult.: DCO=1.05 15; A_2 =+0.49 6, A_4 =+0.03 9.
455.0 5	73	1054.5	$19/2^{-}$	599.58	$15/2^{-}$		Mult.: DCO=1.3 6.
464.0 5	13.3 20	1487.5	$23/2^{-}$	1022.9	$19/2^{-}$	(Q)	Mult.: DCO=1.0 3; A ₂ =+0.46 12, A ₄ =-0.02 19.
498.5 2	14 <i>3</i>	1487.5	$23/2^{-}$	989.1	$21/2^{-}$		Mult.: $A_2 = +0.17 4$, $A_4 = +0.28 8$.
498.9 2	25.9 10	1986.3	$27/2^{-}$	1487.5	$23/2^{-}$		Mult.: DCO=0.89 18; A ₂ =+0.17 4, A ₄ =+0.3 8.
502.8 2	38 4	1491.9	$25/2^{-}$	989.1	$21/2^{-}$	(Q)	Mult.: $A_2 = +0.42 \ 11$, $A_4 = +0.015 \ 19$.
509.8 2	73 6	2490.9	$33/2^{+}$	1981.1	$29/2^{+}$	Q	Mult.: DCO=0.99 20; A ₂ =+0.69 9, A ₄ =+0.05 13.
522.0 5	15 4	1544.7	$23/2^{-}$	1022.9	19/2-		
552.0 5	52	2096.7	$27/2^{-}$	1544.7	$23/2^{-}$		Mult.: DCO=2.20 11.
555.0 5	1.8 <i>3</i>	1544.7	$23/2^{-}$	989.1	$21/2^{-}$		
555.1 2	14.3 18	2541.4	$31/2^{-}$	1986.3	$27/2^{-}$	Q	Mult.: $A_2 = +0.32 \ 11$, $A_4 = -0.13 \ 15$.
557.8 2	59 6	3048.7	$37/2^{+}$	2490.9	$33/2^{+}$	(Q)	Mult.: DCO=1.2 4; A ₂ =+0.56 9, A ₄ =+0.08 12.
571.5 2	19 4	2063.4	29/2-	1491.9	$25/2^{-}$	(Q)	Mult.: DCO=1.0 4; A ₂ =+0.53 10, A ₄ =+0.08 15.
589.0 5	6 <i>3</i>	2685.7	$31/2^{-}$	2096.7	$27/2^{-}$		

152 Sm(35 Cl,4n γ) 1999Mu05 (continued)

$\gamma(^{183}\text{Au})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.
607.9 2	6.2 5	3149.3	35/2-	2541.4	31/2-	0
608.0 2	27 4	3656.7	$41/2^{+}$	3048.7	$37/2^{+}$	
609.2 2	52	2096.7	27/2-	1487.5	$\frac{23}{2^{-}}$	
625.0 [#] 5	11	3310.7?	$(35/2^{-})$	2685.7	$31/2^{-}$	
627.6 2	16 4	2691.0	33/2-	2063.4	$29/2^{-}$	Q
649.5 2	5.5 20	3798.8	$(39/2^{-})$	3149.3	35/2-	
652.9 2	14.3 18	4309.6	$45/2^{+}$	3656.7	$41/2^{+}$	
662.2 2	3.4 20	4461.0	$(43/2^{-})$	3798.8	$(39/2^{-})$	
668.0 [#] 5	11	5129.0?	$(47/2^{-})$	4461.0	$(43/2^{-})$	
668.9 2	13 4	3359.9	$37/2^{-}$	2691.0	$33/2^{-}$	Q
679.6 2	12 <i>1</i>	4989.2	$49/2^{+}$	4309.6	$45/2^{+}$	(Q)
692.1 2	6.5 10	5681.3	$53/2^{+}$	4989.2	$49/2^{+}$	(Q)
693.1 2	84	4053.0	$41/2^{-}$	3359.9	37/2-	
700.2 2	32	6381.5	$57/2^{+}$	5681.3	$53/2^{+}$	
712.5 2	52	4765.5	$45/2^{-}$	4053.0	$41/2^{-}$	
729.0 5	11	7110.5	$(61/2^+)$	6381.5	$57/2^{+}$	
735.0 5	21	5500.5	$(49/2^{-})$	4765.5	$45/2^{-}$	
769.0 [#] 5	11	7879.5?	$(65/2^+)$	7110.5	$(61/2^+)$	
776.0 [#] 5	11	6276.5?	$(53/2^{-})$	5500.5	$(49/2^{-})$	

	Comments
Mult.:	DCO=0.90 <i>17</i> ; A ₂ =+0.76 <i>10</i> , A ₄ =-0.22 <i>17</i> .
Mult.:	DCO=0.90 <i>17</i> ; A ₂ =+0.39 <i>8</i> , A ₄ =+0.25 <i>13</i> .
Mult.:	DCO=0.91 <i>14</i> ; A ₂ =+0.58 <i>14</i> , A ₄ =-0.08 <i>21</i> .
Mult.:	DCO=0.9 <i>3</i> ; A ₂ =+0.58 <i>14</i> , A ₄ =+0.28 <i>23</i> .
Mult.:	DCO=0.7 <i>3</i> ; A ₂ =+1.0 <i>3</i> , A ₄ =+0.29 <i>25</i> .
Mult.:	DCO=1.2 3; A_2 =+1.02 23, A_4 =+0.05 28.
Mult.:	A_2 =+0.56 23, A_4 =+0.16 31.
Mult.:	A_2 =+0.72 20, A_4 =-0.37 36.
Mult.:	DCO=1.2 6; A_2 =+0.72 20, A_4 =-0.4 4.

[†] From 1999Mu05. [‡] From measured DCO ratio (24°, 63°) and/or $\gamma(\theta)$; expected DCO ratios are 1.0 for stretched Q (or D, $\Delta J=0$) transitions and 0.6 for stretched D transitions. Note that A₄ coefficients for Q gammas deexciting the higher spin states are more positive than expected; 1999Mu05 attribute this to measurable correlations between individual γ detectors.

[#] Placement of transition in the level scheme is uncertain.

 $^{183}_{79}\mathrm{Au}_{104}$

 $^{183}_{79}\rm{Au}_{104}$

 $^{183}_{79}\mathrm{Au}_{104}$