¹⁸²Re ε decay (64.2 h) 1977Je02,1980Sp01,1972Ga15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015

Parent: ¹⁸²Re: E=0.0; J^{π}=7⁺; T_{1/2}=64.2 h 5; Q(ε)=2.80×10³ 10; % ε +% β ⁺ decay=100.0

¹⁸²Re-J^{π},T_{1/2}: From ¹⁸²Re Adopted Levels.

¹⁸²Re-Q(ε): From 2012Wa38.

1980Sp01: measured $\gamma(\theta, \text{temp})$, nuclear orientation at low temperature.

1977Je02: measured E γ , I γ , $\gamma\gamma$.

1975We22: measured $\gamma(ce)(\theta)$ and $\gamma(ce)(\theta)$ for $\Delta J=0$, $\Delta PI=no$ transitions to investigate E0 admixtures.

1972Ga15 (also 1971Ga30): Measured E γ , I γ , $\gamma\gamma$. The ce data were used from 1970Ag07 and 1961Ha23.

1971Ga37, 1970Ag07 (from the same group): measured conversion electrons using an iron-free $\pi \sqrt{2} \beta$ spectrometer.

1969Sa25: measured E γ , I γ , $\gamma\gamma$. Deduced conversion coefficients using ce data from 1961Ha23.

1964Ba43: measured ce. Relative electron intensities measured for about 14 transitions from 734 to 1189 keV. No conversion coefficients given.

1961Ha23: measured ce.

1958Ga24: measured $E\gamma$, ce.

Unless otherwise stated, experimental conversion coefficients are from 1972Ga15 who deduced these from their γ -ray intensities and ce data from 1961Ha23, 1964Ba43 and 1970Ag07. The ce data from 1971Ga37 (supplementary to those from their earlier publication 1970Ag07) were probably not available to 1972Ga15.

2008Ya10: measured intensities of L-subshell x rays from ¹⁸²Re decay and photoionization.

¹⁸²W Levels

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi^{\dagger}}$
0.0	0^{+}	1373.81 5	3-	1756.77 6	6+	1971.09 8	$(7)^{+}$
100.11 4	2+	1442.81 5	4+	1768.95 5	(6)-	1978.37 6	$(7)^{-}$
329.44 5	4+	1487.50 <i>5</i>	4-	1809.66 7	5-	2114.43 7	$(8)^{-}$
680.50 10	6+	1510.21 7	4+	1810.89 6	(6)-	2120.53? 8	(8-)
1221.37 5	2^{+}	1553.22 5	4-	1829.53 5	6-	2204.56 8	$(8)^{-}$
1257.52 5	2+	1621.27 5	5-	1916.94 <i>11</i>	$(7)^{-}$		
1289.15 5	2^{-}	1623.54 6	$(5)^{+}$	1960.33 6	$(7)^{-}$		
1331.13 6	3+	1660.37 5	5-	1960.79 8	6-		

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(6.0 \times 10^2 \ 10)$	2204.56	4.5 3	7.5 2	4.5 3	εK=0.795 8; εL=0.155 6; εM+=0.0492 22
$(6.8 \times 10^{2 \ddagger} 10)$	2120.53?	0.47 8	8.6 2	0.47 8	εK=0.800 6; εL=0.152 4; εM+=0.0480 16
$(6.9 \times 10^2 \ 10)$	2114.43	1.03 19	8.2 2	1.03 19	εK=0.800 6; εL=0.152 4; εM+=0.0479 15
$(8.2 \times 10^2 \ 10)$	1978.37	24 5	7.0 2	24 5	εK=0.805 4; εL=0.148 3; εM+=0.0465 10
$(8.3 \times 10^2 \ 10)$	1971.09	1.70 <i>13</i>	8.2 1	1.70 13	εK=0.806 4; εL=0.148 3; εM+=0.0465 10
$(8.4 \times 10^2 \ 10)$	1960.79	2.8 6	8.0 2	2.8 6	εK=0.806 4; εL=0.1477 25; εM+=0.0464 10
$(8.4 \times 10^2 \ 10)$	1960.33	23 5	7.1 2	23 5	εK=0.806 4; εL=0.1477 25; εM+=0.0464 10
$(8.8 \times 10^2 \ 10)$	1916.94	0.46 9	8.8 2	0.46 9	εK=0.807 3; εL=0.1468 22; εM+=0.0461 8
$(9.7 \times 10^2 \ 10)$	1829.53	14 4	7.4 2	14 4	εK=0.8092 24; εL=0.1453 18; εM+=0.0455 7
$(9.9 \times 10^2 \ 10)$	1810.89	0.7 5	8.7 4	0.7 5	εK=0.8096 23; εL=0.1450 17; εM+=0.0454 7
$(9.9 \times 10^2 \ 10)$	1809.66	7.1 23	8.3 ¹ <i>u</i> 3	7.1 23	εK=0.786 6; εL=0.162 5; εM+=0.0521 17
$(1.03 \times 10^{3 \ddagger} 10)$	1768.95	< 0.18	>9.4	< 0.18	εK=0.8104 21; εL=0.1444 16; εM+=0.0452 6
$(1.04 \times 10^3 \ 10)$	1756.77	16.4 8	7.4 1	16.4 8	εK=0.8106 21; εL=0.1442 15; εM+=0.0451 6

Continued on next page (footnotes at end of table)

¹⁸²Re ε decay (64.2 h) 1977Je02,1980Sp01,1972Ga15 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ+ †	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(1.14 \times 10^{3 \ddagger} 10)$	1660.37		<0.6	>9.6 ^{1u}	<0.6	εK=0.792 5; εL=0.158 3; εM+=0.0502 12
$(1.18 \times 10^{3 \ddagger} 10)$	1623.54		< 0.31	>9.3	< 0.31	εK=0.8128 16; εL=0.1427 12; εM+=0.0445 5
$(1.18 \times 10^3 \ 10)$	1621.27		1.9 12	$9.2^{1u} 4$	1.9 12	εK=0.794 4; εL=0.157 3; εM+=0.0498 11
$(2.12 \times 10^3 \ddagger 10)$	680.50	< 0.02	< 0.7	>9.4	< 0.7	av E β =506 44; ε K=0.801 6; ε L=0.1343 14; ε M+=0.0416 5

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

¹⁸²Re ε decay (64.2 h) **1977 Je02, 1980 Sp01, 1972 Ga15** (continued)

$\gamma(^{182}W)$

I γ normalization: normalized assuming I(γ +ce)=100 to the ground state.

A₂ values and $W(0^{\circ})-1$ anisotropies are from low-temperature nuclear orientation study of 1980Sp01.

$\begin{array}{c} \text{L-subshe}\\ \text{L}_{\alpha}/\text{L}_{\beta}\\ \text{L}_{\alpha}/\text{L}_{\gamma}\\ \text{L}_{\alpha}/\text{L}_{1}\\ \text{L}_{\beta}/\text{L}_{\gamma}\\ \text{L}_{1}/\text{L}_{\gamma} \end{array}$	L x. ell ratio	-ray inter ¹⁸² Re 0.6 3.0 21.1 4.6 0.1	nsity 1 dec 525 14 58 5 4 5 58 11 27 11	ratios (2 cay Pl	2008Ya hotoic 0.65 3.21 21.27 4.86 0.15	a10) pnization 5 7 1 7 18 55 13 6 4	-		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^{&}	Comments
18.05 10	0.48 12	1978.37	$(7)^{-}$	1960.33	$(7)^{-}$	M1+E2	0.016 5	128 4	$\alpha(L)=99 \ 3; \ \alpha(M)=22.7 \ 7$
19.85 10	0.14 5	1829.53	6-	1809.66	5-	M1+E2	0.07 2	1.3×10 ² 3	α (N)=5.45 <i>16</i> ; α (O)=0.883 <i>24</i> ; α (P)=0.0612 <i>14</i> α (L)=102 <i>20</i> ; α (M)=24 <i>5</i> α (N)=5.7 <i>12</i> ; α (O)=0.88 <i>15</i> ; α (P)=0.0461 <i>10</i>
31.7 <i>I</i>	1.0 2	1289.15	2^{-}	1257.52	2^{+}	E1		1.63 3	$\alpha(L)=1.263 \ 21; \ \alpha(M)=0.294 \ 5$
39.1 <i>1</i>	1.0 2	1660.37	5-	1621.27	5-	M1+E2	0.061 7	13.6 4	α (N)=0.0677 <i>12</i> ; α (O)=0.00913 <i>15</i> ; α (P)=0.000306 <i>5</i> α (L)=10.53 <i>25</i> ; α (M)=2.42 <i>6</i> α (N)=0.581 <i>15</i> ; α (O)=0.0933 <i>21</i> ; α (P)=0.00618 <i>10</i> L 1/L 2>8.7 (1971Ga37)
42.0		1810.89	$(6)^{-}$	1768.95	(6) ⁻				
42.7 1	1.8 4	1373.81	3-	1331.13	3+	E1		0.721 12	α (L)=0.558 9; α (M)=0.1287 20 α (N)=0.0299 5; α (O)=0.00420 7; α (P)=0.0001588 24
60.65 10	0.4 1	1829.53	6-	1768.95	(6) ⁻	[M1]		3.48	$\alpha(L)=2.694; \alpha(M)=0.6139$
65.8 1	11.2 22	1553.22	4-	1487.50	4-	M1+E2	0.093 6	2.90 5	$\alpha(N)=0.1476\ 22,\ \alpha(O)=0.0240\ 4,\ \alpha(P)=0.00171\ 3$ $\alpha(L)=2.24\ 4;\ \alpha(M)=0.515\ 9$ $\alpha(N)=0.1237\ 21;\ \alpha(O)=0.0199\ 4;\ \alpha(P)=0.001335\ 20$
67.85 10	86 9	1289.15	2-	1221.37	2+	E1		0.201	L1/L2=7.9 7, L1/L3≈16, L2/L3≈2, M1/M2≈8 (1971Ga37). α (L)=0.1556 23; α (M)=0.0357 6 α (N)=0.00837 13; α (O)=0.001229 18; α (P)=5.49×10 ⁻⁵ 8 L1/L2=2.8 4 L1/L2=2.1 4 L2/L2=0.76 14 (1071Ca27)
84.68 <i>5</i>	10.7 6	1373.81	3-	1289.15	2-	M1+E2	+0.326 11	7.66	L1/L2=2.8 4, L1/L3=2.1 4, L2/L3=0.76 14 (1971Ga37). $\alpha(K)=5.84$ 9; $\alpha(L)=1.40$ 3; $\alpha(M)=0.331$ 8 $\alpha(N)=0.0790$ 19; $\alpha(O)=0.0121$ 3; $\alpha(P)=0.000593$ 9 δ : Other: +0.30 2 (1980Sp01). $\alpha(K)\exp\approx6.0$ (1971Ga37), $\alpha(L1)\exp=1.15$ 35; $\alpha(L2)\exp=0.46$ 14; $\alpha(L3)\exp=0.34$ 10. L1/L2=2.40 14, L1/L3=3.2 3, L2/L3=1.36 12, M1/M2=2.3 4, M1/M3=2.5 5 M2/M3=1.1 3 (1971Ga37).
100.10 5	63.8 17	100.11	2^{+}	0.0	0^+	E2		3.89	$\alpha(K)=0.878 \ 13; \ \alpha(L)=2.28 \ 4; \ \alpha(M)=0.577 \ 9$

From ENSDF

 $^{182}_{74}\mathrm{W}_{108}\text{--}3$

					182 Re ε dec	ay (64.2 h) 1	977Je02,198	OSp01,1972Ga15 (continued)
						$\gamma(1)$	⁸² W) (contin	ued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f} .	J_f^{π} Mult.	δ^{\ddagger}	α ^{&}	Comments
			_				- <u> </u>	
107.13 5	5.5 4	1660.37	5-	1553.22	4⁻ M1+E	2 -0.8 2	3.54 13	Additional information 1. $A_2=+3.45$ $\alpha(K)=2.34; \alpha(L)=0.9615; \alpha(M)=0.244$ $\alpha(N)=0.0569; \alpha(O)=0.008112; \alpha(P)=0.000224$ $W(0^{\circ})-1=+0.548.$ $\alpha(K)\exp=2.37$ for 107.1 γ +108.6 γ (1971Ga37). L1/L2=0.748, L1/L3=1.0916, L2/L3=1.63 (1971Ga37).
108.58 5	3.1 2	1768.95	(6)-	1660.37	5- M1+E	2 -0.6 2	3.50 13	δ: -0.56 to -1.3 (1980 Sp01). $ A_2=+3.6 I0 $ α(K)=2.5 3; α(L)=0.78 I4; α(M)=0.19 4 α(N)=0.045 9; α(O)=0.0066 I1; α(P)=0.00025 4 $ W(0^\circ)-1=+0.55 I5. $ $ α(K)\exp=2.3 7 \text{ for } 107.1γ+108.6γ, M1/M2=2.1 9 (1971 \text{Ga37}). $
110.38 5	0.4 4	1553.22	4-	1442.81	4+ [E1]		0.290	$\alpha(K) = 0.238 \ 4; \ \alpha(L) = 0.0409 \ 6; \ \alpha(M) = 0.00932 \ 13 \ \alpha(N) = 0.00220 \ 3; \ \alpha(O) = 0.000335 \ 5; \ \alpha(D) = 1.717 \times 10^{-5} \ 25$
111.07 5	0.81 6	1621.27	5-	1510.21	4+ [E1]		0.286	$\alpha(N)=0.00220$ 5, $\alpha(C)=0.000535$ 5, $\alpha(T)=1.17\times10^{-25}$ $\alpha(K)=0.234$ 4; $\alpha(L)=0.0402$ 6; $\alpha(M)=0.00016$ 13 $\alpha(N)=0.00217$ 3; $\alpha(O)=0.000320$ 5; $\alpha(P)=1.602\times10^{-5}$ 24
113.68 5	18.9 <i>12</i>	1487.50	4-	1373.81	3- M1+E	2 +0.36 1	3.18	$\begin{array}{l} \alpha(1)=0.00217 \ 5, \ \alpha(0)=0.000525 \ 5, \ \alpha(\Gamma)=1.092\times10^{-24} \\ A_2=-0.88 \ 13 \\ \alpha(K)=2.49 \ 4; \ \alpha(L)=0.529 \ 9; \ \alpha(M)=0.1242 \ 22 \\ \alpha(N)=0.0297 \ 6; \ \alpha(O)=0.00462 \ 8; \ \alpha(P)=0.000250 \ 4 \\ \delta: \ +0.36 \ 3 \ (1980Sp01). \\ W(0^\circ)-1=-0.122 \ 15. \\ \alpha(K)\exp=2.7 \ 8 \ (1971Ga37), \ \alpha(L1)\exp=0.32 \ 5; \ \alpha(L2)\exp=0.078 \ 25; \\ \alpha(L3)\exp=0.075 \ 19. \\ L1/L2=4.0 \ 6, \ L1/L3=9.9 \ 13, \ L2/L3=2.1 \ 17, \ M1/M2=3.2 \ 5, \ M1/M3=5.4 \ 10 \\ M2/M3=1.8 \ 6 \ (1971Ga37). \\ Additional information \ 5 \end{array}$
116.23 5	2.0 2	1373.81	3-	1257.52	2 ⁺ E1		0.254	$\alpha(K)=0.208 \ 3; \ \alpha(L)=0.0355 \ 5; \ \alpha(M)=0.00809 \ 12 \ \alpha(N)=0.00191 \ 3; \ \alpha(\Omega)=0.000292 \ 4; \ \alpha(P)=1.516 \times 10^{-5} \ 22$
130.81 5	29.0 20	1960.33	(7) ⁻	1829.53 (6- M1+E	2 -0.51 +6-8	3 2.03 6	$A_{2}=+2.87 \ I4$ $\alpha(K)=1.55 \ 8; \ \alpha(L)=0.369 \ 21; \ \alpha(M)=0.087 \ 6$ $\alpha(N)=0.0208 \ I3; \ \alpha(O)=0.00319 \ I6; \ \alpha(P)=0.000154 \ 8$ Additional information 21. $W(0^{\circ})-1=+0.410 \ 9.$ $\alpha(K)\exp=1.4 \ 4.$

From ENSDF

 $^{182}_{74}W_{108}\text{--}4$

				¹⁸² R €	ε ε decay (6	4.2 h) 1977Je02	2,1980Sp01	1,1972Ga15 (continued)
						$\gamma(^{182}W)$ (e	continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α &	Comments
133.80 5	9.3 6	1621.27	5-	1487.50 4-	M1+E2	+0.39 +4-3	1.96 4	A ₂ =-1.08 13 α (K)=1.55 4; α (L)=0.316 10; α (M)=0.0739 24 α (N)=0.0177 6; α (O)=0.00277 8; α (P)=0.000155 4 Additional information 9. W(0°)-1=-0.153 17.
145.43 5	2.6 2	1768.95	(6)-	1623.54 (5)+	(E1)		0.1420	α (K)exp=1.27 <i>18</i> , K/L3=67 <i>19</i> (1971Ga37). A_2 =+0.4 <i>6</i> α (K)=0.1171 <i>17</i> ; α (L)=0.0193 <i>3</i> ; α (M)=0.00440 <i>7</i> α (N)=0.001043 <i>15</i> ; α (O)=0.0001608 <i>23</i> ; α (P)=8.80×10 ⁻⁶ <i>13</i> δ : +0.08 <i>11</i> (1980Sp01). W(0°)-1=+0.06 <i>9</i> . α (K)exp=0.11 <i>4</i> (1971Ga37)
147.69 <i>5</i>	3.5 3	1768.95	(6)-	1621.27 5-	M1+E2	+0.8 2	1.30 9	$\begin{array}{l} \alpha(\mathbf{K})\exp[-0.114] (19710a37).\\ A_2=-2.15\\ \alpha(\mathbf{K})=0.94\ 12;\ \alpha(\mathbf{L})=0.277\ 24;\ \alpha(\mathbf{M})=0.067\ 7\\ \alpha(\mathbf{N})=0.0159\ 15;\ \alpha(\mathbf{O})=0.00237\ 18;\ \alpha(\mathbf{P})=9.1\times10^{-5}\ 13\\ \delta:\ +0.56\ to\ +2.6\ (1980Sp01).\\ W(0^\circ)-1=-0.31\ 6.\\ \alpha(\mathbf{K})\exp[=0.96\ 30\ for\ 147.6\gamma+148.8\gamma+149.4\gamma,\ L1/L2=1.6\ 4,\\ L1/L2=2.8\ (0.12715)=1.8\ 8\ (10715)=2.7\\ (0.12715)=1.8\ 8\ (10715)=2.7\\ (0.12715)=1.8\ 8\ (10715)=2.7\\ (0.12715)=1.8\ 8\ (10715)=2.7\\ (0.12715)=1.8\ 8\ (10715)=2.7\\ (0.12715)=1.8\ 8\ (10715)=2.7\\ (0.12715)=1.8\ 8\ (1071$
148.86 5	6.8 5	1978.37	(7)-	1829.53 6-	M1+E2	+0.28 +8-6	1.48 4	$A_{2}=-0.7 \ 3$ $\alpha(K)=1.20 \ 5; \ \alpha(L)=0.214 \ 8; \ \alpha(M)=0.0493 \ 22$ $\alpha(N)=0.0118 \ 5; \ \alpha(O)=0.00189 \ 6; \ \alpha(P)=0.000121 \ 5$ Additional information 27. $W(0^{\circ})-1=-0.12 \ 6.$
149.45 5	3.5 3	1960.33	(7)-	1810.89 (6)-	M1+E2	-0.15 +15-18	1.50 6	α (K)exp=0.96 30 for 147.6 γ +148.8 γ +149.4 γ (1971Ga37). A ₂ =+1.6 8 α (K)=1.23 7; α (L)=0.202 14; α (M)=0.046 4 α (N)=0.0111 9; α (O)=0.00180 10; α (P)=0.000124 8 W(0°)-1=+0.23 11. Additional information 22. α (K)exp=0.96 30 for 147.6 γ +148.8 γ +149.4 γ , K/L2=37 25
150.25 ^c 5	2.0 2	1660.37	5-	1510.21 4+	(E1)		0.1305	(1971Ga37). $A_2 = +0.6 \ II$ $\alpha(K) = 0.1077 \ I6; \ \alpha(L) = 0.01770 \ 25; \ \alpha(M) = 0.00403 \ 6$ $\alpha(N) = 0.000956 \ I4; \ \alpha(O) = 0.0001476 \ 21; \ \alpha(P) = 8.13 \times 10^{-6} \ I2$ Additional information 11. $W(0^\circ) = 1 = +0.10 \ I7$
151.15 5	1.7 2	1960.79	6-	1809.66 5-	M1+E2	0.8 3	1.21 13	$ α(K) = 0.88 \ 17; \ α(L) = 0.25 \ 3; \ α(M) = 0.061 \ 9 $ $ α(K) = 0.0146 \ 20; \ α(O) = 0.00218 \ 23; \ α(P) = 8.5 \times 10^{-5} \ 19 $ EKC≈0.32. $ α(K) \exp = 0.17 \ 5 \ for \ 151.1\gamma + 152.4\gamma + 153.9\gamma, \ L1/L2 = 2.1 \ 6, $
152.43 5	33.0 20	1373.81	3-	1221.37 2+	E1		0.1258	$L_1/L_3 > 9.8, L_2/L_3 > 5.0 (19/1Ga37).$ $A_2 = +1.07 \ 25$

S

From ENSDF

 $^{182}_{74}W_{108}\text{--}5$

 $^{182}_{74}\mathrm{W}_{108}$ -5

				182	Re ε d	lecay (64.2	h) 1977J	e02,1980Sj	p01,1972Ga15 (continued)
							$\gamma(^{182}W)$) (continued	<u>d)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^{&}	Comments
									α(K)=0.1038 15; α(L)=0.01703 24; α(M)=0.00387 6 α(N)=0.000919 13; α(O)=0.0001421 20; α(P)=7.85×10-6 11 α(K)exp=0.116 35. $W(0^{\circ})-1=-0.14 3.$ $L1/L2\approx4.3, K/L2\approx28$ (1971Ga37). Additional information 4. δ: +0.035 53 from $γ(θ)$ data consistent with RUL(M2)=1 which
154.10 5	0.9 3	2114.43	(8)-	1960.33	(7)-	M1+E2	0.6 3	1.22 12	suggests δ near zero. $\alpha(K)=0.93 \ I5; \ \alpha(L)=0.22 \ 3; \ \alpha(M)=0.052 \ 8$ $\alpha(N)=0.0124 \ I7; \ \alpha(O)=0.00190 \ I9; \ \alpha(P)=9.2\times10^{-5} \ I7$ $\alpha(K)\exp=0.17 \ 5 \ for \ 151.1\gamma+152.4\gamma+154.0\gamma \ (1971Ga37).$ $1 \ 14 \ 2=2 \ 9 \ 8 \ 1 \ 14 \ 3=3 \ 3 \ I0 \ 1 \ 24 \ 3=1 \ 2 \ 5 \ (1971Ga37).$
156.39 5	28.0 20	1487.50	4-	1331.13	3+	E1		0.1177	$A_{2}=+0.84 \ 8$ $\alpha(K)=0.0972 \ 14; \ \alpha(L)=0.01590 \ 23; \ \alpha(M)=0.00362 \ 5$ $\alpha(N)=0.000858 \ 12; \ \alpha(O)=0.0001328 \ 19; \ \alpha(P)=7.38\times10^{-6} \ 11$ Additional information 6. $W(0^{\circ})-1=+0.119 \ 6.$ $\alpha(L1)\exp=0.0096 \ 36.$
160.20 ^{bc} 5	0.93 ^b 6	1916.94	$(7)^{-}$	1756.77	6+				
160.20 ^{bc} 5	0.93 ^b 6	2120.53?	(8 ⁻)	1960.33	(7) ⁻	(M1)		1.241	$\alpha(K)=1.030 \ 15; \ \alpha(L)=0.1631 \ 23; \ \alpha(M)=0.0371 \ 6$ $\alpha(N)=0.00894 \ 13; \ \alpha(O)=0.001459 \ 21; \ \alpha(P)=0.0001038 \ 15$ $\alpha(K)=x_{D}\approx 0.92 \ (1971Ga37)$
169.15 5	44 3	1829.53	6-	1660.37	5-	M1+E2	+0.094 6	1.060	$\begin{array}{l} A_{2}=+0.31 \ 3 \\ \alpha(K)=0.879 \ 13; \ \alpha(L)=0.1405 \ 20; \ \alpha(M)=0.0320 \ 5 \\ \alpha(N)=0.0071 \ 11; \ \alpha(O)=0.001256 \ 18; \ \alpha(P)=8.85\times10^{-5} \ 13 \\ \mbox{Additional information 19.} \\ W(0^{\circ})-1=+0.051 \ 5. \\ \alpha(K)\exp=0.87 \ 21; \ \alpha(L1)\exp=0.140 \ 17. \\ L1/L2=10 \ 4, \ L1/L3>27, \ L2/L3>2.5, \ M1/M2=9.9 \ 18, \ M1/M3=38 \ 21, \\ M2/M3=4.4 \ 24 \ (1971Ga37). \end{array}$
172.87 5	13.9 9	1660.37	5-	1487.50	4-	M1+E2	+0.26 1	0.971	A ₂ =-0.51 6 $\alpha(K)=0.795 \ 12; \ \alpha(L)=0.1356 \ 20; \ \alpha(M)=0.0312 \ 5$ $\alpha(N)=0.00749 \ 11; \ \alpha(O)=0.001205 \ 17; \ \alpha(P)=7.97\times10^{-5} \ 12$ Additional information 12. W(0°)-1=-0.079 9. $\alpha(K)\exp=0.67 \ 11 \ (1970Ag07).$ L1/L2=7.1 8. L1/L3=17 3. L2/L3=2.4 6. M1/M2=4.9 14 (1971Ga37).
178.47 5	8.8 <i>5</i>	1621.27	5-	1442.81	4+	E1		0.0838	A ₂ =+0.77 <i>15</i> α (K)=0.0693 <i>10</i> ; α (L)=0.01118 <i>16</i> ; α (M)=0.00254 <i>4</i> α (N)=0.000604 <i>9</i> ; α (O)=9.39×10 ⁻⁵ <i>14</i> ; α (P)=5.36×10 ⁻⁶ 8 Additional information 10. W(0°)-1=+0.102 <i>20</i> . α (K)exp=0.010 <i>4</i> (1971Ga37).
179.40 5	11.7 7	1553.22	4-	1373.81	3-	M1+E2	+1.2 3	0.63 7	$A_2 = -2.23 \ 15$

 $^{182}_{74}\mathrm{W}_{108}$ -6

				18	⁸² Re ε	decay (64.	2 h) 1977Je02	,1980Sp01,1	972Ga15 (continued)
							γ ⁽¹⁸² W) (co	ontinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
197 24 5	1.25.12	1010.00	(6)=	1(22.54	(5)+		.0.25 . 27 . 20	0.22.66	$\alpha(K)=0.44 \ 8; \ \alpha(L)=0.147 \ 8; \ \alpha(M)=0.0358 \ 22$ $\alpha(N)=0.0085 \ 5; \ \alpha(O)=0.00125 \ 5; \ \alpha(P)=4.1\times10^{-5} \ 9$ $\delta: \ +0.84 \ to \ +1.8 \ (1980Sp01).$ $W(0^{\circ})-1=-0.299 \ 12.$ $L1/L2=1.99 \ 19, \ L1/L3=3.0 \ 3, \ L2/L3=1.50 \ 19 \ (1971Ga37).$
187.34 3	1.25 12	1810.89	(0)	1023.34	(3)	E1+M2	+0.23 +27-20	0.33 00	A ₂ =-0.5 10 $\alpha(K)=0.25 50; \alpha(L)=0.06 13; \alpha(M)=0.014 30$ $\alpha(N)=0.0033 73; \alpha(O)=5.E-4 12; \alpha(P)=3.3\times10^{-5} 74$ Additional information 17. W(0°)-1=-0.07 14.
188.54 ^{<i>c</i>} 5 189.65 5	0.51 <i>5</i> 1.5 <i>7</i>	1809.66 1810.89	5 ⁻ (6) ⁻	1621.27 1621.27	5- 5-	M1+E2	+0.31 +15-12	0.74 4	A ₂ =-0.8 6 $\alpha(K)$ =0.60 4; $\alpha(L)$ =0.104 3; $\alpha(M)$ =0.0239 10 $\alpha(N)$ =0.00575 22; $\alpha(O)$ =0.000923 21; $\alpha(P)$ =6.0×10 ⁻⁵ 5 Additional information 18. W(0°)-1=-0.10 8. $\alpha(K)$ exp=0.077 19 (1971Ga37).
191.39 <i>5</i>	26.0 20	1960.33	(7) ⁻	1768.95	(6) ⁻	M1+E2	-0.23 +6-8	0.734 18	A ₂ =+0.90 9 α (K)=0.604 19; α (L)=0.1002 18; α (M)=0.0230 5 α (N)=0.00552 11; α (O)=0.000892 14; α (P)=6.05×10 ⁻⁵ 20 δ : -0.017 17 (1980Sp01). W(0°)-1=+0.129 9. α (K)exp=0.66 15; α (L1)exp=0.098 30, 0.077 8; α (L2)exp=0.0081 7; EL3C≈0.002. Additional information 23.
198.34 <i>5</i>	15.7 13	1487.50	4-	1289.15	2-	E2		0.317	α(K)=0.1726 25; α(L)=0.1098 16; α(M)=0.0273 4 α(N)=0.00646 9; α(O)=0.000910 13; α(P)=1.364×10-5 20 W(0°)-1=-0.182 12. α(K)exp=0.20 4. L1/L3=0.66 34 (1970Ag07). Additional information 7. δ: +0.067 10 from γ(θ) data, but RUL(M3)=10 suggests δ near zero.
203.55 <i>5</i>	1.9 2	1960.33	(7)-	1756.77	6+	(E1)		0.0599	A ₂ =+0.5 5 $\alpha(K)=0.0497$ 7; $\alpha(L)=0.00790$ 11; $\alpha(M)=0.00179$ 3 $\alpha(N)=0.000427$ 6; $\alpha(O)=6.68\times10^{-5}$ 10; $\alpha(P)=3.91\times10^{-6}$ 6 W(0°)-1=+0.07 6. δ: from $\gamma(\theta)$, 1980Sp01 give $\delta(Q/D)=-17$ +10-24 or +0.06 +9-4; favoring the former value from δ based on ce data of 1971Ga37. But 1971Ga37 (also 1972Ga15) assigned tentative E2 from $\alpha(K)\exp=0.15$ 3 (1971Ga37) and questioned the placement and mult assignment. $\delta(M2/E1)=-17$ +10-24 is inconsistent with RUL(M2)=1 for T _{1/2} (1960.33 level)<1 ns or so. The evaluators assign tentative E1.

 $^{182}_{74}\mathrm{W}_{108}$ -7

						¹⁸² R €	eεdecay (64.2 h) 1977Je	02,1980Sp01	1,1972Ga15 (continued)
								$\gamma(^{182}W)$	(continued)	
	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^{&}	Comments
	206.00 5	2.0 2	1829.53	6-	1623.54	(5)+	E1		0.0581	A ₂ =+0.9 4 $\alpha(K)=0.0482$ 7; $\alpha(L)=0.00766$ 11; $\alpha(M)=0.001739$ 25 $\alpha(N)=0.000414$ 6; $\alpha(O)=6.48\times10^{-5}$ 9; $\alpha(P)=3.80\times10^{-6}$ 6 $\delta: -0.02$ 7 (1980Sp01). W(0°)-1=+0.14 6.
	208.26 5	2.4 2	1829.53	6-	1621.27	5-	M1+E2	-1.0 5	0.43 10	α (K)exp \approx 0.047 (1971Ga37). $A_2=+3.2.4$ α (K)=0.32 11; α (L)=0.084 4; α (M)=0.0200 14 α (N)=0.0048 3; α (O)=0.000721 18; α (P)=3.1×10 ⁻⁵ 12 Additional information 20. W(0°)-1=+0.52 6. α (L 2)exp \approx 0.024 (1970Ag07); α (K)exp=0.31.4
	209.40 5	1.9 2	1978.37	(7)-	1768.95	(6) ⁻	M1+E2	-0.28 +23-15	0.56 3	$A_{2}=+2.2 7$ $\alpha(K)=0.46 3; \ \alpha(L)=0.0776 \ 15; \ \alpha(M)=0.0178 \ 5$ $\alpha(N)=0.00428 \ 10; \ \alpha(O)=0.000690 \ 11; \ \alpha(P)=4.6\times10^{-5} \ 4$ Additional information 28. $W(0^{\circ})-1=+0.39 \ 10.$ $\alpha(K)\exp=0.53 \ 15, \ 0.35 \ 11; \ \alpha(L1)\exp=0.074 \ 14.$ $L1/L3>3 (19704 \ 07)$
)	214.32 5	4.3 3	1971.09	(7)+	1756.77	6+	M1+E2	+0.25 +8-7	0.532 15	$A_{2}=-0.5 4$ $\alpha(K)=0.439 14; \ \alpha(L)=0.0725 11; \ \alpha(M)=0.0166 3$ $\alpha(N)=0.00399 7; \ \alpha(O)=0.000645 9; \ \alpha(P)=4.39\times10^{-5} 15$ Additional information 26. $W(0^{\circ})-1=-0.07 5.$ $\alpha(K)\exp=0.44 13, \ 0.42 8; \ \alpha(L1)\exp=0.065 19, \ 0.064 9.$ $L1/L 2=87 19 (19716a37)$
	215.73 5	3.0 2	1768.95	(6)-	1553.22	4-	(E2)		0.240	$\alpha(K)=0.1376\ 20;\ \alpha(L)=0.0776\ 11;\ \alpha(M)=0.0192\ 3$ $\alpha(N)=0.00455\ 7;\ \alpha(O)=0.000645\ 9;\ \alpha(P)=1.106\times10^{-5}\ 16$ $W(0^{\circ})-1=-0.17\ 7.$ $\alpha(L)=0.026\ 10\ (19704\ g07)$
	217.55 5	12.7 8	1660.37	5-	1442.81	4+	(E1)		0.0506	$A_{2}=+0.76 I3$ $\alpha(K)=0.0420 6; \alpha(L)=0.00664 I0; \alpha(M)=0.001508 22$ $\alpha(N)=0.000359 5; \alpha(O)=5.63\times10^{-5} 8; \alpha(P)=3.33\times10^{-6} 5$ $\delta: +0.014 25 (1980Sp01).$ $W(0^{\circ})-1=+0.117 20.$ $\alpha(L2)exp=0.0038 I5 (1971Ga37).$ Additional information 13.
	221.61 5	25.0 20	1978.37	(7) ⁻	1756.77	6+	E1		0.0483	A ₂ =+0.72 <i>13</i> α (K)=0.0401 <i>6</i> ; α (L)=0.00633 <i>9</i> ; α (M)=0.001438 <i>21</i> α (N)=0.000342 <i>5</i> ; α (O)=5.37×10 ⁻⁵ <i>8</i> ; α (P)=3.19×10 ⁻⁶ <i>5</i> δ : +0.016 <i>24</i> (1980Sp01). W(0°)-1=+0.122 <i>3</i> for 221.6+222.1. EKC≈0.04, 0.060 <i>20</i> ; α (L1)exp=0.0068 <i>8</i> . α (K)exp=0.050 <i>10</i> for 221.6+222.1 γ , L1/L2>4 (1970Ag07).

 ∞

					¹⁸² Re	ε decay (6	4.2 h) 1977Je	02,1980Sp	01,1972Ga15 (continued)
							$\gamma(^{182}W)$	(continued	<u>1)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α ^{&}	Comments
222.07 5	33 3	1553.22	4-	1331.13	3+	E1		0.0480	α (K)=0.0399 6; α (L)=0.00630 9; α (M)=0.001430 20 α (N)=0.000341 5; α (O)=5.34×10 ⁻⁵ 8; α (P)=3.17×10 ⁻⁶ 5 W(0°)-1=+0.122 3 for 221.6+222.1. α (K)exp=0.050 10 for 221.6 γ +222.1 γ (1970Ag07).
226.19 5	11.9 8	2204.56	(8)-	1978.37	(7)-	M1+E2	+0.15 2	0.468	L1/L2>4 (1970Ag07). $A_2=-0.02 \ 9$ $\alpha(K)=0.388 \ 6; \ \alpha(L)=0.0620 \ 9; \ \alpha(M)=0.01414 \ 20$ $\alpha(N)=0.00341 \ 5; \ \alpha(O)=0.000554 \ 8; \ \alpha(P)=3.89\times10^{-5} \ 6$ Additional information 29. $W(0^\circ)-1=-0.004 \ 15.$
229.32 5	100.0	329.44	4+	100.11	2+	E2		0.196	α (K)exp=0.50 <i>15</i> , 0.41 <i>6</i> ; α (L1)exp=0.059 <i>18</i> , 0.058 <i>5</i> . L1/L2=7.8 <i>8</i> , L1/L3>24, L2/L3>3 (1971Ga37). α (K)=0.1167 <i>17</i> ; α (L)=0.0605 <i>9</i> ; α (M)=0.01497 <i>21</i> α (N)=0.00354 <i>5</i> ; α (O)=0.000505 <i>7</i> ; α (P)=9.50×10 ⁻⁶ <i>14</i> α (K)exp=0.117 <i>30</i> , 0.124 <i>16</i> . W(0°)-1=-0.154 <i>3</i> .
247.46 5	19.6 <i>13</i>	1621.27	5-	1373.81	3-	E2		0.1538	L1/L2=0.55 13, L1/L3=0.080 20, L2/L3=1.5 3 (1970Ag07). Additional information 2. $\alpha(K)=0.0951$ 14; $\alpha(L)=0.0447$ 7; $\alpha(M)=0.01101$ 16 $\alpha(N)=0.00261$ 4; $\alpha(O)=0.000374$ 6; $\alpha(P)=7.86\times10^{-6}$ 11 W(0°)-1=-0.183 4.
256.45 5	37 3	1809.66	5-	1553.22	4-	M1+E2	+0.037 +6-7	0.336	α (K)exp=0.088 22, L1/L2=0.66 13, L1/L3=1.04 23, L2/L3=1.6 3 (1970Ag07). A ₂ =+0.64 3 α (K)=0.279 4; α (L)=0.0438 7; α (M)=0.00996 14 α (N)=0.00240 4; α (O)=0.000392 6; α (P)=2.79×10 ⁻⁵ 4 Additional information 16.
264.07 5	13.9 9	1553.22	4-	1289.15	2-	E2		0.1254	W(0°)-1=+0.099 3. α (L1)exp=0.040 7, L1/L2>7.7, L1/L3>38 (1970Ag07). α (K)=0.0799 12; α (L)=0.0347 5; α (M)=0.00852 12 α (N)=0.00202 3; α (O)=0.000291 4; α (P)=6.69×10 ⁻⁶ 10 W(0°)-1=-0.182 7. α (K)exp=0.076 16 (1970Ag07).
276.31 5	34.0 20	1829.53	6-	1553.22	4-	E2		0.1090	L1/L2=0.50 11, M1/M2=0.8 4, M1/M3=1.1 7, M2/M3=1.5 8 (1971Ga37). $\alpha(K)=0.0708 10; \alpha(L)=0.0291 4; \alpha(M)=0.00714 10$ $\alpha(N)=0.001693 24; \alpha(O)=0.000245 4; \alpha(P)=5.98\times10^{-6} 9$ W(0°)-1=-0.194 4. $\alpha(K)=x_{P}=0.078 24, 0.073 6; \alpha(L_1)=x_{P}=0.0105 11; \alpha(L_2)=x_{P}=0.0127 11;$
281.45 5	22.1 15	1768.95	(6)-	1487.50	4-	E2		0.1031	$\begin{array}{l} \alpha(L3)\exp = 0.0082 \ I, \ \alpha(L3)\exp = 0.0163 \ I, \ \alpha(L2)\exp = 0.0127 \ II, \ \alpha(L3)\exp = 0.0080 \ I0. \\ L1/L2 = 0.74 \ 6, \ L1/L3 = 1.10 \ I0, \ L2/L3 = 1.49 \ I3 \ (1970Ag07). \\ \alpha(K) = 0.0674 \ I0; \ \alpha(L) = 0.0272 \ 4; \ \alpha(M) = 0.00665 \ I0 \\ \alpha(N) = 0.001577 \ 23; \ \alpha(O) = 0.000228 \ 4; \ \alpha(P) = 5.71 \times 10^{-6} \ 8 \end{array}$

From ENSDF

 $^{182}_{74}W_{108}\text{-}9$

					¹⁸² Re	ε decay (6-	4.2 h) 1977	/Je02,198(Sp01,1972Ga15 (continued)
							$\gamma(^{182}N)$	W) (contin	ued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	α &	Comments
286.56 5	27.4 18	1660.37	5-	1373.81	3-	E2		0.0976	$ \begin{split} & W(0^{\circ}) - 1 = -0.188 \ 5. \\ & \alpha(K) \exp[= 0.064 \ 13, \ L2/L3 = 1.9 \ 3 \ (1971Ga37, 1970Ag07). \\ & \alpha(K) = 0.0643 \ 9; \ \alpha(L) = 0.0254 \ 4; \ \alpha(M) = 0.00621 \ 9 \\ & \alpha(N) = 0.001472 \ 21; \ \alpha(O) = 0.000213 \ 3; \ \alpha(P) = 5.47 \times 10^{-6} \ 8 \\ & W(0^{\circ}) - 1 = -0.193 \ 4. \end{split} $
295.67 10	0.8 3	1916.94	(7)-	1621.27	5-	(E2)		0.0888	α (K)exp=0.069 <i>19</i> (19/0Ag07). L1/L2=0.77 <i>15</i> , L1/L3=1.23 <i>23</i> , L2/L3=1.6 <i>3</i> (1971Ga37). α (K)=0.0592 <i>9</i> ; α (L)=0.0226 <i>4</i> ; α (M)=0.00551 <i>8</i> α (D)=0.001307 <i>10</i> ; α (C)=0.000100 <i>3</i> ; α (D)=5.06×10 ⁻⁶ 7
299.90 10	4.9 10	1960.33	(7) ⁻	1660.37	5-	E2		0.0851	$\alpha(N)=0.001307$ <i>P</i> ; $\alpha(O)=0.000190$ <i>S</i> ; $\alpha(P)=3.00\times10^{-7}$ $\alpha(K)=0.0570$ <i>B</i> ; $\alpha(L)=0.0214$ <i>S</i> ; $\alpha(M)=0.00522$ <i>B</i> $\alpha(N)=0.001239$ <i>IB</i> ; $\alpha(O)=0.000180$ <i>S</i> ; $\alpha(P)=4.89\times10^{-6}$ <i>T</i> $W(0^{\circ})=1=-0.064$ <i>B</i> for 299 9+300 4
300.36 10	6.6 15	1960.79	6-	1660.37	5-	M1+E2	+0.048 26	0.218	$ \begin{array}{l} \text{L1/L3=1.35 } 6 \ (1970\text{Ag07}). \\ \text{A}_2 = +0.56 \ 14 \\ \alpha(\text{K}) = 0.181 \ 3; \ \alpha(\text{L}) = 0.0284 \ 4; \ \alpha(\text{M}) = 0.00646 \ 9 \\ \alpha(\text{N}) = 0.001555 \ 22; \ \alpha(\text{O}) = 0.000254 \ 4; \ \alpha(\text{P}) = 1.81 \times 10^{-5} \ 3 \\ \text{Additional information 24.} \end{array} $
313.98 10	3.1 2	1756.77	6+	1442.81	4+	E2		0.0743	W(0°)-1=-0.064 8 for 300.4+299.9. α (K)exp=0.23 6. α (K)=0.0506 7; α (L)=0.0181 3; α (M)=0.00440 7 α (N)=0.001044 15; α (O)=0.0001524 22; α (P)=4.37×10 ⁻⁶ 7 W(0°)-1=-0.18 3. α (L)=0.080 25 L14 2=0.82 20 L14 2=2.2 8 L24 2=2.7 10
323.40 10	6.8 5	1810.89	(6)-	1487.50	4-	E2		0.0681	α (L2)exp=0.0090 23, L1/L2=0.83 20, L1/L3=2.2 8, L2/L3=2.7 10 (1971Ga37). α (K)=0.0469 7; α (L)=0.01621 23; α (M)=0.00394 6 α (N)=0.000936 14; α (O)=0.0001371 20; α (P)=4.07×10 ⁻⁶ 6
339.06 10	21.6 14	1960.33	(7)-	1621.27	5-	E2		0.0594	W(0°)-1=-0.165 14. α (K)exp=0.059 10; α (L1)exp=0.0067 10; α (L3)exp=0.0058 10. α (L1)exp=0.007 2, L1/L2=0.97 18, L1/L3=1.6 5, L2/L3=1.7 5 (1970Ag07). α (K)=0.0415 6; α (L)=0.01368 20; α (M)=0.00332 5 α (N)=0.000788 11; α (O)=0.0001159 17; α (P)=3.63×10 ⁻⁶ 5 W(0°)-1=-0.173 5. α (K)exp=0.058 20, 0.038 8; α (L1)exp=0.0052 8; α (L2)exp=0.0069 10;
342.03 10	4.1 <i>3</i>	1829.53	6-	1487.50	4-	E2		0.0579	α (L3)exp=0.0036 13, 0.0033 6. L1/L2=0.82 15, L1/L3=1.6 3, L2/L3=2.0 4 (1970Ag07). α (K)=0.0406 6; α (L)=0.01326 19; α (M)=0.00321 5 α (N)=0.000764 11; α (O)=0.0001124 16; α (P)=3.55×10 ⁻⁶ 5 W(0°)-1=-0.20 4.
345.46 10	1.9 2	2114.43	(8)-	1768.95	(6)-	E2		0.0563	α (K)exp=0.038 5. α (K)=0.0395 6; α (L)=0.01280 18; α (M)=0.00310 5 α (N)=0.000737 11; α (O)=0.0001085 16; α (P)=3.47×10 ⁻⁶ 5 W(0°)-1=-0.28 18. α (K)exp=0.053 19 (1971Ga37).

				¹⁸² Re <i>e</i>	e decay (64.2 h)	1977Je02,198	0 <mark>Sp01,1972G</mark>	a15 (continued)
						$\gamma(^{182}W)$ (contin	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α &	Comments
351.07 10	40 3	680.50	6+	329.44 4+	E2		0.0538	$\begin{aligned} \alpha(K) = 0.0379 \ 6; \ \alpha(L) = 0.01210 \ 17; \ \alpha(M) = 0.00293 \ 5\\ \alpha(N) = 0.000696 \ 10; \ \alpha(O) = 0.0001026 \ 15; \ \alpha(P) = 3.34 \times 10^{-6} \ 5\\ \alpha(K) \exp = 0.038 \ 12, \ 0.045 \ 7; \ \alpha(L1) \exp = 0.0050 \ 5; \\ \alpha(L2) \exp = 0.0057 \ 7; \ \alpha(L3) \exp = 0.0028 \ 7, \ 0.0032 \ 5. \\ L1/L2 = 0.99 \ 11, \ L1/L3 = 1.82 \ 25, \ L2/L3 = 1.85 \ 25 \ (1970 \text{Ag07}). \\ W(0^{\circ}) - 1 = -0.154 \ 4. \end{aligned}$
357.04 10	2.1 2	1978.37	(7)-	1621.27 5-	E2		0.0513	$\alpha(K)=0.0364 5; \alpha(L)=0.01140 16; \alpha(M)=0.00276 4$ $\alpha(N)=0.000656 10; \alpha(O)=9.68\times10^{-5} 14; \alpha(P)=3.20\times10^{-6} 5$ $W(0^{\circ})-1=-0.22 3.$ $\alpha(K)=0.032 13 (1970Ag07).$
891.9 <i>1</i>	0.13 2	1221.37	2+	329.44 4+	E2		0.00569	$\alpha(K)=0.00464\ 7;\ \alpha(L)=0.000810\ 12;\ \alpha(M)=0.000187\ 3$ $\alpha(N)=4.47\times10^{-5}\ 7;\ \alpha(Q)=7.09\times10^{-6}\ 10;\ \alpha(P)=4.31\times10^{-7}\ 6$
928.0 <i>1</i>	1.44 15	1257.52	2+	329.44 4+	E2		0.00524	$\alpha(K)=0.00429\ 6;\ \alpha(L)=0.000738\ 11;\ \alpha(M)=0.0001698\ 24$ $\alpha(N)=4.07\times10^{-5}\ 6;\ \alpha(O)=6.47\times10^{-6}\ 9;\ \alpha(P)=3.98\times10^{-7}\ 6$ $\alpha(K)=x_{0}=0.0036\ 10,\ 0.0047\ 13,\ 0.011\ 5.$
943.2 <i>3</i>	0.88 14	1623.54	(5)+	680.50 6+	E2		0.00507	$\alpha(K) = 0.00415 6; \alpha(L) = 0.000711 10; \alpha(M) = 0.0001634 23$ $\alpha(N) = 3.92 \times 10^{-5} 6; \alpha(O) = 6.23 \times 10^{-6} 9; \alpha(P) = 3.86 \times 10^{-7} 6$ $\alpha(K) = x_{0} = 0.0044 15$
959.7 1	0.78 15	1289.15	2-	329.44 4+	M2+E3	-5.5 +19-10	0.0116 7	$\alpha(K) \approx p = 0.0044 \ 13.$ $\alpha(K) = 0.0090 \ 6; \ \alpha(L) = 0.00196 \ 8; \ \alpha(M) = 0.000463 \ 17$ $\alpha(N) = 0.000111 \ 4; \ \alpha(O) = 1.73 \times 10^{-5} \ 7; \ \alpha(P) = 9.3 \times 10^{-7} \ 6$ $\alpha(K) \approx p = 0.0060 \ 24, \ 0.012 \ 3, \ \approx 0.012.$
1001.7 <i>I</i>	9.6 <i>3</i>	1331.13	3+	329.44 4+	E2+M1	-8.9 +21-18	0.00455 8	A ₂ =+0.84 <i>14</i> α (K)=0.00374 7; α (L)=0.000627 <i>11</i> ; α (M)=0.0001438 <i>24</i> α (N)=3.45×10 ⁻⁵ 6; α (O)=5.51×10 ⁻⁶ 9; α (P)=3.48×10 ⁻⁷ 7 δ : >+22 or <-35 (1980Sp01). α (K)exp=0.0046 5, 0.0046 6, 0.0047 <i>10</i> . W(0°)-1=+0.102 9
1044.4 <i>1</i>	1.11 4	1373.81	3-	329.44 4+	E1+M2(+E3)	0.46 9	0.0051 12	$\alpha(K)=0.0042 \ 10; \ \alpha(L)=0.00067 \ 16; \ \alpha(M)=0.00015 \ 4$ $\alpha(N)=3.7\times10^{-5} \ 9; \ \alpha(O)=6.0\times10^{-6} \ 14; \ \alpha(P)=4.2\times10^{-7} \ 10$ $\alpha(K)\exp=0.0053 \ 10, \ 0.0061 \ 12, \ \approx 0.0057.$
1076.2 2	41.0 12	1756.77	6+	680.50 6+	E2+M1	+2.56 +9-8	0.00444	A ₂ =+0.11 <i>3</i> α (K)=0.00368 <i>6</i> ; α (L)=0.000592 <i>10</i> ; α (M)=0.0001351 <i>21</i> α (N)=3.24×10 ⁻⁵ <i>5</i> ; α (O)=5.22×10 ⁻⁶ <i>8</i> ; α (P)=3.46×10 ⁻⁷ <i>6</i> Additional information 15. W(0°)-1=-0.001 <i>3</i> . α (K)exp=0.0037 <i>4</i> , 0.0036 <i>4</i> , 0.0041 <i>8</i> . α (K)exp=0.00399 <i>13</i> , α (L)exp=0.00060 <i>3</i> (1975We22). L1/L2=7.8 <i>9</i> , L1/L3=23 <i>5</i> , L2/L3=3.1 <i>9</i> (1970Ag07). Mult.: no E0 admixture found in γ (ce)(θ) and ce work of 1975We22.
1088.5 <i>3</i>	0.77 8	1768.95	(6) ⁻	680.50 6+	E1+M2	0.4 2	0.0040 23	α (K)=0.0033 <i>19</i> ; α (L)=5.1×10 ⁻⁴ <i>31</i> ; α (M)=1.17×10 ⁻⁴ <i>70</i>

From ENSDF

 $^{182}_{74}\mathrm{W}_{108}\text{--}11$

				¹⁸² R	$\varepsilon \text{ decay } (64.2 \text{ h})$) 1977Je02,198	0Sp01,1972G	a15 (continued)
						γ ⁽¹⁸² W) (contin	nued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α &	Comments
1113.3 <i>I</i>	18.3 4	1442.81	4+	329.44 4+	E2+M1(+E0)	+5.6 +13-10	0.00376	$\begin{aligned} \alpha(N) &= 2.8 \times 10^{-5} \ 17; \ \alpha(O) &= 4.6 \times 10^{-6} \ 28; \\ \alpha(P) &= 3.3 \times 10^{-7} \ 20 \\ \alpha(K) &= p = 0.0034 \ 6 \ (1971 \text{Ga}37, 1970 \text{Ag}07). \\ \text{A}_2 &= +0.26 \ 6 \\ \alpha(K) &= 0.00311 \ 7; \ \alpha(L) &= 0.000504 \ 10; \\ \alpha(M) &= 0.0001151 \ 22 \\ \alpha(N) &= 2.76 \times 10^{-5} \ 6; \ \alpha(O) &= 4.43 \times 10^{-6} \ 9; \\ \alpha(P) &= 2.89 \times 10^{-7} \ 7; \ \alpha(\text{IPF}) &= 3.52 \times 10^{-7} \ 6 \end{aligned}$
1121.3 <i>I</i>	85.5 25	1221.37	2+	100.11 2+	E2+M1(+E0)	+30 +6-4	0.00360	 δ: +4.7 +6-5 (1980Sp01). Mult.: E0 admixture is measured and discussed in 1975We22 from ce and γ(ce)(θ) data with q(E0/E2)=0.41 9. W(0°)-1=+0.029 4. α(K)exp=0.0035 4, 0.0036 7. α(K)exp=0.00359 13 (1975We22). L1/L2=6.7 15, L1/L3>16, L2/L3>2.3 (1970Ag07). A₂=+0.16 12
								$\begin{aligned} &\alpha(K) = 0.00297 \ 5; \ \alpha(L) = 0.000483 \ 7; \ \alpha(M) = 0.0001104 \\ &16 \\ &\alpha(N) = 2.65 \times 10^{-5} \ 4; \ \alpha(O) = 4.25 \times 10^{-6} \ 6; \\ &\alpha(P) = 2.76 \times 10^{-7} \ 4; \ \alpha(IPF) = 4.74 \times 10^{-7} \ 7 \\ &\delta: \ + 21 \ + 92 - 9 \ (1980 \text{Sp}01). \\ &\alpha(K) \exp = 0.00302 \ 14, \ 0.0030 \ 3, \ 0.0032 \ 5. \\ &\text{L1/L2} = 6.8 \ 6, \ \text{L1/L3} = 11.8 \ 12, \ \text{L2/L3} = 1.8 \ 2 \\ &(1970 \text{Ag}07). \\ &\text{Mult.: E0 admixture is measured and discussed in} \\ &1975 \text{We22 from ce and} \ \gamma(\text{ce})(\theta) \ \text{data with} \\ &\alpha(\text{E0/E2}) = 0.16 \ 9. \\ &\text{W}(0^\circ) - 1 = + 0.004 \ 6. \end{aligned}$
1157.3 [@] I	1.44 [#] 15	1257.52	2+	100.11 2+	E2+M1	-9 +3-6	0.00342 7	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00283 \ 6; \ \alpha(\mathbf{L}) = 0.000455 \ 9; \ \alpha(\mathbf{M}) = 0.0001040 \\ &20 \\ &\alpha(\mathbf{N}) = 2.49 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 4.01 \times 10^{-6} \ 8; \\ &\alpha(\mathbf{P}) = 2.63 \times 10^{-7} \ 6; \ \alpha(\mathbf{IPF}) = 1.592 \times 10^{-6} \ 25 \\ &\alpha(\mathbf{K}) \exp = 0.0061 \ 12. \\ &W(0^{\circ}) - 1 = -0.12 \ 3 \ \text{for} \ 1157.3 + 1158.1. \end{aligned}$
1158.1 [@] I	3.43 [#] <i>17</i>	1487.50	4-	329.44 4+	E1		1.38×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) = 0.001159 \ 17; \ \alpha(\text{L}) = 0.0001632 \ 23; \\ &\alpha(\text{M}) = 3.66 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 8.79 \times 10^{-6} \ 13; \ \alpha(\text{O}) = 1.432 \times 10^{-6} \ 20; \\ &\alpha(\text{P}) = 1.021 \times 10^{-7} \ 15; \ \alpha(\text{IPF}) = 7.59 \times 10^{-6} \ 11 \\ \text{A}_2 = -1.35 \ 24. \ \text{Contribution from another component} \\ &\text{was considered.} \\ &W(0^\circ) - 1 = -0.12 \ 3 \ \text{for } 1158.1 + 1157.3. \end{aligned}$

From ENSDF

 $^{182}_{74}\mathrm{W}_{108}\text{--}12$

				1	¹⁸² Re	ε ε decay (64.2 h)	1977Je02,1980	Sp01,1972Ga1	5 (continued)
							$\gamma(^{182}W)$ (continu	ied)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α ^{&}	Comments
1180.8 <i>3</i>	2.15 10	1510.21	4+	329.44	4+	E2+M1	-2.8 10	0.0036 4	δ: -0.047 to +1.1 (1980Sp01). α(K)exp=0.0021 7. $ A_2=+1.22 16 $ α(K)=0.0030 4; α(L)=0.00047 5; α(M)=0.000108 11 $ α(\text{N})=2.59\times10^{-5} 25; α(\text{O})=4.2\times10^{-6} 5; α(\text{P})=2.8\times10^{-7} 4; $
1189.0 <i>1</i>	35.1 10	1289.15	2-	100.11	2+	E1+M2+E3		0.00146 <i>14</i>	α (IPF)=3.11×10 ⁻⁶ 16 Additional information 8. W(0°)-1=+0.156 18. α (K)exp \approx 0.0018 (1970Ag07). δ (M2/E1)=+0.48 3; δ (E3/E1)=-0.67 5 A ₂ =+2.13 15 α (K)=0.00122 12; α (L)=0.000174 19; α (M)=3.9×10 ⁻⁵ 5 α (N)=9.4×10 ⁻⁶ 11; α (O)=1.53×10 ⁻⁶ 17; α (P)=1.09×10 ⁻⁷ 12; α (IPF)=1.54×10 ⁻⁵ 3 Mult. α : 59% 4 E1, 14% 1 M2 and 27% 3 E3. Conversion
1221.4 <i>I</i>	67.7 14	1221.37	2+	0.0	0+	E2		0.00305	coefficient deduced for this admixture. $\alpha(K)\exp=0.0043 5, 0.0041 8, 0.0047 9.$ $W(0^{\circ})-1=-0.243 9.$ L1/L2=6.1 8, L1/L3=32 5, L2/L3=5.3 12 (1970Ag07). $\alpha(K)=0.00252 4; \alpha(L)=0.000402 6; \alpha(M)=9.15\times10^{-5} 13$ $\alpha(N)=2.20\times10^{-5} 3; \alpha(O)=3.53\times10^{-6} 5; \alpha(P)=2.34\times10^{-7} 4;$ $\alpha(IPF)=6.75\times10^{-6} 10$ $W(0^{\circ})-1=-0.103 6.$ L1/L2=6.7 7, L1/L3=20 2, L2/L3=3.1 5 (1970Ag07). $\alpha(K)\exp=0.00248 25, 0.0026 5.$
1223.9 [@] 1	1.02 [#] 13	1553.22	4-	329.44	4+	E1+M2(+E3)	-0.15 +10-25	0.0016 15	$\alpha(\text{K})=0.0013 \ I3; \ \alpha(\text{L})=1.9\times10^{-4} \ 20; \ \alpha(\text{M})=4.2\times10^{-5} \ 46 \ \alpha(\text{N})=1.0\times10^{-5} \ I1; \ \alpha(\text{O})=1.6\times10^{-6} \ I8; \ \alpha(\text{P})=1.2\times10^{-7} \ I3; \ \alpha(\text{PE})=2 \ 7\times10^{-5} \ 3$
1231.0 <i>I</i>	57.9 11	1331.13	3+	100.11	2+	E2+M1	-33 +6-9	0.00301	$A_{2}=-0.25 4$ $\alpha(K)=0.00249 4; \alpha(L)=0.000395 6; \alpha(M)=9.01\times10^{-5} 13$ $\alpha(N)=2.16\times10^{-5} 3; \alpha(O)=3.48\times10^{-6} 5; \alpha(P)=2.31\times10^{-7} 4;$ $\alpha(IPF)=7.86\times10^{-6} 11$ $\delta: -72 + 28 - 120 (1980Sp01).$ $\alpha(K)\exp=0.0025 3 (1971Ga37).$ $W(O)=2.46\times10^{-6} 10^$
1257.5 1	4.14 12	1257.52	2+	0.0	0+	E2		0.00289	W(0')-1=-0.020 4. $\alpha(K)=0.00239 4; \alpha(L)=0.000378 6; \alpha(M)=8.60\times10^{-5} 12$ $\alpha(N)=2.06\times10^{-5} 3; \alpha(O)=3.32\times10^{-6} 5; \alpha(P)=2.21\times10^{-7} 3;$ $\alpha(IPF)=1.121\times10^{-5} 16$ $\alpha(K)\exp\approx0.0049.$
1273.8 <i>1</i>	3.67 17	1373.81	3-	100.11	2+	E1+M2+E3		0.0029 5	W(0°)-1=-0.095 <i>19</i> . δ (M2/E1)=+0.36 <i>10</i> ; δ (E3/E1)=-0.28 <i>12</i> Mult., α : 81% 5 E1, 12% 4 M2 and 7% 2 E3. Conversion

From ENSDF

 $^{182}_{74}\mathrm{W}_{108}\text{--}13$

 $^{182}_{74}\mathrm{W}_{108}\text{--}13$

					¹⁸² R	eε decay (6	4.2 h) 19	977Je02,1980S	p01,1972Ga15 (continued)		
γ ⁽¹⁸² W) (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments		
1279.8 [°] 3 1289.2 2	0.24 <i>3</i> 2.94 <i>6</i>	1960.79 1289.15	6^{-} 2 ⁻	680.50 0.0	6^+ 0^+	M2		0.01230	coefficient deduced for this admixture from BrIcc code. $\alpha(K)$ exp=0.0052 24. $\alpha(K)$ =0.01019 15; $\alpha(L)$ =0.001630 23; $\alpha(M)$ =0.000372 6		
									$\begin{aligned} &\alpha(N) = 8.97 \times 10^{-5} \ 13; \ \alpha(O) = 1.466 \times 10^{-5} \ 21; \ \alpha(P) = 1.047 \times 10^{-6} \ 15; \\ &\alpha(IPF) = 5.97 \times 10^{-6} \ 9 \\ &\alpha(K) \exp = 0.0114 \ 18, \ \approx 0.012. \\ &W(0^{\circ}) - 1 = -0.172 \ 18. \end{aligned}$		
1291.8 4	0.91 9	1621.27	5-	329.44	4+	E1+M2	0.4 2	0.0027 14	$\alpha(K)=0.0022 \ I2; \ \alpha(L)=3.4\times10^{-4} \ I9; \ \alpha(M)=7.7\times10^{-5} \ 44 \\ \alpha(N)=1.9\times10^{-5} \ I1; \ \alpha(O)=3.0\times10^{-6} \ I7; \ \alpha(P)=2.2\times10^{-7} \ I3; \\ \alpha(IPF)=5.0\times10^{-5} \ 7 \\ \alpha(K)\exp=0.00205 \ I9.$		
1294.0 <i>3</i>	6.27 12	1623.54	(5)+	329.44	4+	E2(+M1)	>30	0.00274	A ₂ =-0.04 <i>I</i> 3 $\alpha(K)=0.00226 4; \alpha(L)=0.000356 5; \alpha(M)=8.10\times10^{-5} I2 \alpha(N)=1.94\times10^{-5} 3; \alpha(O)=3.13\times10^{-6} 5; \alpha(P)=2.10\times10^{-7} 3; \alpha(PF)=1.654\times10^{-5} 24W(0°)-1=+0.038 I4.\alpha(K)\exp=0.00210 I9.\delta_{12} \Rightarrow \pm 30 \text{ or } <-60 (1980\text{Sp01})$		
1330.9 2	1.46 <i>13</i>	1660.37	5-	329.44	4+	E1+M2	0.5 2	0.0032 14	$\alpha(K)=0.0026 \ 11; \ \alpha(L)=4.0\times10^{-4} \ 18; \ \alpha(M)=9.1\times10^{-5} \ 41$ $\alpha(N)=2.19\times10^{-5} \ 98; \ \alpha(O)=3.6\times10^{-6} \ 16; \ \alpha(P)=2.6\times10^{-7} \ 12;$ $\alpha(IPF)=6.3\times10^{-5} \ 9$ $\alpha(K)\exp\approx0.0014 \ (1971Ga37)$		
1342.7 <i>I</i>	10.0 25	1442.81	4+	100.11	2+	E2		0.00256	$\begin{aligned} \alpha(\mathbf{K}) &= 0.00211 \ 3; \ \alpha(\mathbf{L}) &= 0.000329 \ 5; \ \alpha(\mathbf{M}) = 7.49 \times 10^{-5} \ 11 \\ \alpha(\mathbf{N}) &= 1.80 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 2.90 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 1.95 \times 10^{-7} \ 3; \\ \alpha(\mathbf{IPF}) &= 2.56 \times 10^{-5} \ 4 \\ W(0^{\circ}) - 1 &= -0.190 \ 11. \\ \alpha(\mathbf{K}) &= 0.0024 \ 4 \ 0.0021 \ 8. \end{aligned}$		
1373.8 <i>I</i>	1.15 4	1373.81	3-	0.0	0+	E3		0.00496	$\alpha(K) \exp = 0.0024 4, 0.0021 6.$ $\alpha(K) = 0.00400 6; \alpha(L) = 0.000728 11; \alpha(M) = 0.0001685 24$ $\alpha(N) = 4.05 \times 10^{-5} 6; \alpha(O) = 6.44 \times 10^{-6} 9; \alpha(P) = 3.97 \times 10^{-7} 6;$ $\alpha(IPF) = 1.251 \times 10^{-5} 18$ $\alpha(K) \exp = 0.011 5$		
1387.4 <i>1</i>	1.03 10	1487.50	4-	100.11	2+	E3+M2	2.6 4	0.00554 24	$\alpha(K) = 0.00450 \ 21; \ \alpha(L) = 0.00079 \ 3; \ \alpha(M) = 0.000183 \ 7$ $\alpha(N) = 4.39 \times 10^{-5} \ 16; \ \alpha(O) = 7.0 \times 10^{-6} \ 3; \ \alpha(P) = 4.50 \times 10^{-7} \ 21;$ $\alpha(IPF) = 1.426 \times 10^{-5} \ 22$ $\alpha(K) \exp = 0.0030 \ 11.$		
1410.1 <i>I</i>	1.08 7	1510.21	4+	100.11	2+	E2		0.00235	$\alpha(K)=0.00193 \ 3; \ \alpha(L)=0.000298 \ 5; \ \alpha(M)=6.76\times10^{-5} \ 10 \ \alpha(N)=1.624\times10^{-5} \ 23; \ \alpha(O)=2.62\times10^{-6} \ 4; \ \alpha(P)=1.783\times10^{-7} \ 25; \ \alpha(IPF)=4.20\times10^{-5} \ 6 \ W(0^{\circ})-1=-0.18 \ 5. \ \alpha(K)\exp=0.0019 \ 6.$		
1427.3 2	38.1 7	1756.77	6+	329.44	4+	E2		0.00231	$\alpha(K)=0.00188$ 3; $\alpha(L)=0.000291$ 4; $\alpha(M)=6.60\times10^{-5}$ 10		

					182 R	e ε decay (6	64.2 h)	1977Je02,19	80Sp01,1972Ga15 (continued)
								γ ⁽¹⁸² W) (cont	inued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
1439.3 <i>3</i>	0.62 4	1768.95	(6)-	329.44	4+	(M2)		0.00930	$\alpha(N)=1.584\times10^{-5} 23; \ \alpha(O)=2.56\times10^{-6} 4; \ \alpha(P)=1.743\times10^{-7} 25; \\ \alpha(IPF)=4.68\times10^{-5} 7 \\ W(0^{\circ})-1=-0.203 3. \\ \alpha(K)\exp=0.00169 15, \ 0.0018 6. \\ \alpha(K)=0.00770 11; \ \alpha(L)=0.001217 17; \ \alpha(M)=0.000277 4 \\ \alpha(N)=6.69\times10^{-5} 10; \ \alpha(O)=1.093\times10^{-5} 16; \ \alpha(P)=7.84\times10^{-7} 11; \\ \alpha(N)=6.69\times10^{-5} 10; \ \alpha(O)=1.093\times10^{-5} 16; \ \alpha(P)=7.84\times10^{-7} 11; \\ \alpha(N)=6.69\times10^{-5} 10; \ \alpha(O)=1.093\times10^{-5} 16; \ \alpha(P)=7.84\times10^{-7} 11; \\ \alpha(N)=6.69\times10^{-5} 10; \ \alpha(O)=1.093\times10^{-5} 16; \ \alpha(P)=7.84\times10^{-7} 11; \\ \alpha(N)=0.007\times10^{-5} 10; \ \alpha(O)=1.093\times10^{-5} 10; \ \alpha(P)=7.84\times10^{-7} 11; \\ \alpha(N)=0.007\times10^{-5} 10; \ \alpha(O)=1.093\times10^{-5} 10; \ \alpha(P)=7.84\times10^{-7} 11; \\ \alpha(P)=0.001\times10^{-7} 10; \ \alpha(P)=0.001\times10^{-7} 10; \\ \alpha(P)=0.001\times10^{-7} 10; \ \alpha(P)=0.001\times10^{-7} 10; \\ \alpha(P)=0.000\times10^{-7} 10; \ \alpha(P)=0.000\times10^{-7} 10; \\ \alpha(P)=0.00\times10^{-7} 10; \ \alpha(P)=0.00\times10^{-7} 10; \\ \alpha(P)=0.00\times10^{-7} 10; \ \alpha(P)=0.00\times10^{-7} 10; \ \alpha(P)=0.00\times10^{-7} 10; \\ \alpha(P)=0.00\times10^{-7} 10; \ \alpha(P)=0.00\times10^{-7} 10; \ \alpha(P)=0.00\times10^{-7} 10; \\ \alpha(P)=0.00\times10^{-7} 10; \ \alpha(P)=0.00\times10^{-7} 10;$
1453 1 1	0.15.3	1553 22	4-	100 11	2+	F3(+M2)		0 0067 24	α (IPF)=2.33×10 ⁻⁵ 4 α (K)exp=0.0016 4 (1971Ga37,1970Ag07). Mult.: α (K)exp gives E1+M2 or E2, but ΔJ^{π} requires M2. α (K)=0.0055 20; α (L)=9.1×10 ⁻⁴ 28; α (M)=2.08×10 ⁻⁴ 62
1433.17	0.15 5	1353.22	+	100.11	2	E3(+WI2)		0.0007 24	$\begin{aligned} \alpha(\text{N}) = 0.0035 \ 20, \ \alpha(\text{L}) = 9.1 \times 10^{-2} \ 20, \ \alpha(\text{M}) = 2.08 \times 10^{-0} \ 02 \\ \alpha(\text{N}) = 5.0 \times 10^{-5} \ 15; \ \alpha(\text{O}) = 8.1 \times 10^{-6} \ 26; \ \alpha(\text{P}) = 5.6 \times 10^{-7} \ 21; \\ \alpha(\text{IPF}) = 2.41 \times 10^{-5} \ 15 \\ \alpha(\text{K}) \exp = 0.0043 \ 13 \ (1971\text{Ga37}). \end{aligned}$
1521.3 4	0.37 4	1621.27	5-	100.11	2+	(E3)		0.00402	$\alpha(K)=0.00325 \ 5; \ \alpha(L)=0.000568 \ 8; \ \alpha(M)=0.0001309 \ 19$ $\alpha(N)=3.15\times10^{-5} \ 5; \ \alpha(O)=5.03\times10^{-6} \ 7; \ \alpha(P)=3.20\times10^{-7} \ 5;$ $\alpha(IPF)=3.37\times10^{-5} \ 5$ $\alpha(K)=n=0.0032 \ 6, \ 0.0050 \ 15$
1560.4 <i>4</i>	0.28 3	1660.37	5-	100.11	2+	(E3)		0.00382	$\begin{aligned} &\alpha(\mathbf{K}) \approx \mathbf{P}^{-0.0052} \ 6, \ 0.0050 \ 10. \\ &\alpha(\mathbf{K}) = 0.00309 \ 5; \ \alpha(\mathbf{L}) = 0.000534 \ 8; \ \alpha(\mathbf{M}) = 0.0001231 \ 18 \\ &\alpha(\mathbf{N}) = 2.96 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 4.74 \times 10^{-6} \ 7; \ \alpha(\mathbf{P}) = 3.03 \times 10^{-7} \ 5; \\ &\alpha(\mathbf{IPF}) = 4.10 \times 10^{-5} \ 6 \\ &\alpha(\mathbf{K}) \exp = 0.0055 \ 17, \ \approx 0.0028. \end{aligned}$
1631.4 ^c 5	0.049 9	1960.79	6-	329.44	4+	M2+E3	≈2.5	≈0.00396	Additional information 14. $\alpha(K) \approx 0.00321; \ \alpha(L) \approx 0.000536; \ \alpha(M) \approx 0.0001230$ $\alpha(N) \approx 2.96 \times 10^{-5}; \ \alpha(O) \approx 4.77 \times 10^{-6}; \ \alpha(P) \approx 3.17 \times 10^{-7}; \ \alpha(IPF) \approx 5.70 \times 10^{-5}$ $\alpha(K) \exp = 0.0054 \ 20, \ \approx 0.0016.$ Additional information 25.

[†] For $E\gamma < 84$, values are from ce data of 1961Ha23 normalized assuming using E2 for the 100.1 γ , energy uncertainty of 0.1 keV is assumed by the evaluators. For $E\gamma = 85-357$ from 1977Je02, and for $E\gamma > 357$ from 1972Ga15. For $\Delta I\gamma$ (absolute) combine 5.5% in quadrature with $\Delta I\gamma$ (relative), except as noted.

[‡] From ¹⁸²Ta β^- decay; ce data in 1971Ga37, 1970Ag07 and 1961Ha23; and $\gamma(\theta, \text{temp})$ data of 1980Sp01. The conversion data were normalized to 100.1 γ with E2 multipolarity.

[#] Calculated from adopted branching ratios.

[@] Not observed in this decay.

[&] Theoretical values from BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" approximation. If mixing ratio δ is not given, it was assumed as 1.0 for E2/M1 and E3/M2 and 0.10 for others.

^{*a*} For absolute intensity per 100 decays, multiply by 0.258 7.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

¹⁸²Re ε decay (64.2 h) 1977Je02,1980Sp01,1972Ga15

¹⁸²Re ε decay (64.2 h) 1977Je02,1980Sp01,1972Ga15

 $^{182}_{74}\mathrm{W}_{108}\text{--}18$

 $^{182}_{74}\mathrm{W}_{108}\text{--}18$

From ENSDF