¹⁸²Re ε decay (14.14 h) 1971Ga37,1969Ga23,1969Sa25

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015

Parent: ¹⁸²Re: E=0+x; $J^{\pi}=2^+$; $T_{1/2}=14.14$ h 45; $Q(\varepsilon)=2.80\times10^3$ 10; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁸²Re-J^π,T_{1/2}: From ¹⁸²Re Adopted Levels. Half-life is based on new measurement reported in 2014Ma43 and 2011Bo01.

¹⁸²Re-E: x=60 100 (2012Au07) from beta decay results.

¹⁸²Re-Q(ε): From 2012Wa38.

1971Ga37, 1970Ag07 (both papers from the same group): measured conversion electrons using an iron-free $\pi \sqrt{2} \beta$ spectrometer.

1969Ga23: Measured E γ , I γ , $\gamma\gamma$ and γ (ce) coin. Deduced conversion coefficients from their γ -ray data and ce data of 1961Ha23 and 1964Ba43.

1969Sa25: Measured E γ , I γ , $\gamma\gamma$. Deduced conversion coefficients from their γ -ray data and ce data from 1961Ha23.

1980Sp01: Measured $\gamma(\theta, \text{temp})$, nuclear orientation at low temperature.

1961Ha23: Measured ce.

Others:

1964Ba43: Measured ce. Relative electron intensities measured for about 14 transitions from 734 to 1189 keV. No conversion coefficients given.

1963Ba37: Measured Eβ.

1959Ga15: Measured $E\gamma$, $I\gamma$.

The decay scheme is primarily proposed by 1971Ga37.

¹⁸²W Levels

E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^π ‡
0.0	0^{+}	1373.91 5	3-	2057.47 7	1^{+}	2208.94 18	3-
100.11 4	2^{+}	1442.83 11	4^{+}	2109.80 21	$(2^{-},3^{-})$	2240.83 15	(3^{+})
329.42 5	4+	1487.61 5	4-	2116.4 3		2274.73 6	(3)-
1221.49 5	2^{+}	1553.33 5	4-	2147.98 17	(3 ⁻)	2316.1 22	
1257.45 5	2+	1856.02 7	(2^{+})	2173.3 3			
1289.24 5	2^{-}	1871.17 <i>15</i>	1-	2184.12 6	$(2^{-},3^{-})$		
1331.24 6	3+	2023.66 5	3-	2207.17 15	(3 ⁻)		

[†] From least-squares fit to $E\gamma$ data. The 1857.3 γ was not used in the fitting procedure due to poor agreement in energy.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^\ddagger$	Comments
$(4.8 \times 10^2 \ 10)$	2316.1	0.0304 22	8.9 <i>3</i>	0.0304 22	εK=0.793 13; εL=0.157 9; εM+=0.050 4
$(5.3 \times 10^2 \ 10)$	2274.73	0.72 10	7.6 <i>3</i>	0.72 10	εK=0.796 11; εL=0.155 8; εM+=0.049 3
$(5.6 \times 10^2 \ 10)$	2240.83	0.083 11	8.6 2	0.083 11	εK=0.798 9; εL=0.153 7; εM+=0.0485 25
$(5.9 \times 10^2 \ 10)$	2208.94	0.20 8	8.3 <i>3</i>	0.20 8	εK=0.800 8; εL=0.152 6; εM+=0.0481 22
$(5.9 \times 10^2 \ 10)$	2207.17	0.31 8	8.1 <i>3</i>	0.31 8	εK=0.800 8; εL=0.152 6; εM+=0.0481 22
$(6.2 \times 10^2 \ 10)$	2184.12	2.59 22	7.19 20	2.59 22	εK=0.801 8; εL=0.151 6; εM+=0.0478 20
$(6.3 \times 10^2 \ 10)$	2173.3	0.042 7	9.0 2	0.042 7	εK=0.801 7; εL=0.151 5; εM+=0.0477 19
$(6.5 \times 10^2 \ 10)$	2147.98	0.250 20	8.3 2	0.250 20	εK=0.802 7; εL=0.150 5; εM+=0.0474 18
$(6.8 \times 10^2 \ 10)$	2116.4	0.80 11	7.8 2	0.80 11	εK=0.803 6; εL=0.149 5; εM+=0.0471 16
$(6.9 \times 10^2 \ 10)$	2109.80	0.35 9	8.2 2	0.35 9	εK=0.804 6; εL=0.149 4; εM+=0.0470 15
$(7.4 \times 10^2 \ 10)$	2057.47	2.01 15	7.5 2	2.01 15	εK=0.805 5; εL=0.148 4; εM+=0.0465 13
$(7.8 \times 10^2 \ 10)$	2023.66	3.10 21	7.3 2	3.10 21	εK=0.806 5; εL=0.147 4; εM+=0.0463 12
$(9.3 \times 10^2 \ 10)$	1871.17	0.63 5	8.2 2	0.63 5	εK=0.810 3; εL=0.1447 22; εM+=0.0453 8
$(9.4 \times 10^2 \ 10)$	1856.02	0.50 6	8.3 2	0.50 6	εK=0.810 3; εL=0.1445 21; εM+=0.0452 8

Continued on next page (footnotes at end of table)

1971Ga37,1969Ga23,1969Sa25 (continued)

				ϵ, β^+ radi	ations (conti	nued)
E(decay)	E(level)	Iβ ⁺ ‡	I ε^{\ddagger}	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
$(1.31 \times 10^3 \ 10)$	1487.61		2.1 4	8.8 ¹ <i>u</i> 2	2.1 4	εK=0.800 4; εL=0.1521 25; εM+=0.0481 10
$(1.36 \times 10^{3#} 10)$	1442.83		< 0.42	>8.7	< 0.42	εK=0.8153 10; εL=0.1404 11; εM+=0.0437 4
$(1.43 \times 10^3 \ 10)$	1373.91	0.03 5	29 3	6.9 1	29 3	av Eβ=236 58; εK=0.8155 6; εL=0.1399 10; εM+=0.0435 4
$(1.47 \times 10^3 \ 10)$	1331.24	0.0003 5	0.21 14	9.0 <i>3</i>	0.21 14	av Eβ=255 58; εK=0.8154 8; εL=0.1396 10; εM+=0.0434 4
$(1.51 \times 10^3 \ 10)$	1289.24	0.08 9	37 4	6.8 1	37 4	av Eβ=274 58; εK=0.8153 12; εL=0.1393 10; εM+=0.0433 4
$(1.54 \times 10^3 \ 10)$	1257.45	0.002 3	0.93 17	8.4 1	0.93 17	av Eβ=288 57; εK=0.8151 15; εL=0.1391 10; εM+=0.0432 4
$(1.58 \times 10^{3#} 10)$	1221.49	< 0.01	<4	>7.8	<4	av Eβ=304 57; εK=0.8148 19; εL=0.1388 11; εM+=0.0431 4
$(2.70 \times 10^3 \ 10)$	100.11	1.6 6	14 5	7.7 2	16 5	av Eβ=798 57; εK=0.738 18; εL=0.122 4; εM+=0.0378 10

[†] Energy of the isomer was assumed as 80 keV 80 for the purpose of deducing log *ft* values.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

¹⁸²Re ε decay (14.14 h)

 $\gamma(^{182}\mathrm{W})$

I γ normalization: $\Sigma(I(\gamma+ce) \text{ of } \gamma \text{ s to } g.s.)=100.$

 $q_{K}(E0/E2)$ =ratios of K-conversion intensities of E0 and E2 transitions.

Additional unplaced transitions were reported by all authors. Only those unplaced transitions are listed here which are reported by more than one author. For A₂ values from $\gamma(\theta, \text{temp})$, see ¹⁸²Re ε decay (64.0 h).

E_{γ} ‡	I_{γ} [#] <i>c</i>	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments
(67.75)	120 5	1289.24	2-	1221.49 2+	E1		0.202	$\alpha(L)=0.1563\ 22;\ \alpha(M)=0.0358\ 5$
								α (N)=0.00840 12; α (O)=0.001234 18; α (P)=5.51×10 ⁻⁵ 8
								E_{γ} , I_{γ} , Mult.: based on values in Adopted Levels, Gammas dataset. This
			_					most intense but lowest-energy transition is not reported in this decay.
84.68 5	8.4 7	1373.91	3-	1289.24 2-	M1+E2	+0.326 11	7.66	$\alpha(K) = 5.84 \ 9; \ \alpha(L) = 1.40 \ 3; \ \alpha(M) = 0.331 \ 8$
100 12 5	45 2	100 11	2+	0.0 0+	E2		2.90	$\alpha(N)=0.0790$ 19; $\alpha(O)=0.0121$ 3; $\alpha(P)=0.000593$ 9
100.12 5	43 3	100.11	Z	0.0 0	E2		5.69	$\alpha(\mathbf{K}) = 0.578 \ 15; \ \alpha(\mathbf{L}) = 2.28 \ 4; \ \alpha(\mathbf{M}) = 0.576 \ 9$
								$\alpha(\mathbf{N})=0.1557/20, \alpha(\mathbf{O})=0.0180/5, \alpha(\mathbf{P})=7.07\times10^{-5}10$
113 70 5	132	1487 61	4-	1373 91 3-	M1+E2	+0.36.1	3 18	$\alpha(K) = 2.49.4$; $\alpha(L) = 0.529.9$; $\alpha(M) = 0.1241.22$
110.700	1.5 2	1107.01		1575.91 5	1011 1 22	10.50 1	5.10	$\alpha(\mathbf{N}) = 0.0297 \ 6; \ \alpha(\mathbf{O}) = 0.00462 \ 8; \ \alpha(\mathbf{P}) = 0.000250 \ 4$
116.40 5	1.1 3	1373.91	3-	1257.45 2+	E1		0.253	$\alpha(K)=0.208 \ 3; \ \alpha(L)=0.0353 \ 5; \ \alpha(M)=0.00806 \ 12$
								$\alpha(N)=0.00191 \ 3; \ \alpha(O)=0.000291 \ 4; \ \alpha(P)=1.510\times10^{-5} \ 22$
152.43 5	22.0 19	1373.91	3-	1221.49 2+	E1		0.1258	$\alpha(K)=0.1038\ 15;\ \alpha(L)=0.01703\ 24;\ \alpha(M)=0.00387\ 6$
								α (N)=0.000919 13; α (O)=0.0001421 20; α (P)=7.85×10 ⁻⁶ 11
								α (K)exp=0.17 5 for 151.1 γ +152.4 γ +154.0 γ (1971Ga37).
156.38 5	1.7 3	1487.61	4-	1331.24 3+	E1		0.1177	α (K)=0.0972 14; α (L)=0.01590 23; α (M)=0.00362 5
								α (N)=0.000858 <i>12</i> ; α (O)=0.0001328 <i>19</i> ; α (P)=7.38×10 ⁻⁶ <i>11</i>
179.38 5	0.92 17	1553.33	4-	1373.91 3-	M1+E2	+1.3 2	0.62 4	$\alpha(K)=0.425; \alpha(L)=0.1495; \alpha(M)=0.036313$
								$\alpha(N)=0.0086 \ 3; \ \alpha(O)=0.00127 \ 4; \ \alpha(P)=3.9\times10^{-5} \ 5$
198.36 5	0.55 8	1487.61	4-	1289.24 2	E2		0.317	$\alpha(\mathbf{K})=0.1725\ 25;\ \alpha(\mathbf{L})=0.1097\ 16;\ \alpha(\mathbf{M})=0.0273\ 4$
222.08.5	0 17 17	1552.22	4-	1221.24.2+	T 1		0.0400	$\alpha(N)=0.00646 \ 9; \ \alpha(O)=0.000910 \ 13; \ \alpha(P)=1.363\times10^{-5} \ 20$
222.08 5	2.1/1/	1555.55	4	1331.24 3	EI		0.0480	$\alpha(\mathbf{K}) = 0.0399 \ 0; \ \alpha(\mathbf{L}) = 0.00030 \ 9; \ \alpha(\mathbf{M}) = 0.001430 \ 20$
220 22 5	9 1	220 42	<u>4</u> +	100 11 2+	E2		0.106	$\alpha(N) = 0.000340 \ S; \ \alpha(O) = 5.34 \times 10^{\circ} \ S; \ \alpha(P) = 5.1 / \times 10^{\circ} \ S$
229.32 5	0 1	329.42	4	100.11 2	E2		0.190	$\alpha(\mathbf{X}) = 0.0107 17, \alpha(\mathbf{L}) = 0.0005 9, \alpha(\mathbf{N}) = 0.01497 21$ $\alpha(\mathbf{N}) = 0.00354 5; \alpha(\mathbf{O}) = 0.000505 7; \alpha(\mathbf{D}) = 0.50\times 10^{-6} 14$
264 08 5	0.90.12	1553 33	4-	1289 24 2-	E2		0 1254	$\alpha(\mathbf{K}) = 0.00334.3, \alpha(\mathbf{C}) = 0.000303.7, \alpha(\mathbf{L}) = 9.50 \times 10^{-114}$ $\alpha(\mathbf{K}) = 0.0799.12; \alpha(\mathbf{L}) = 0.0347.5; \alpha(\mathbf{M}) = 0.00852.12$
201.00 5	0.90 12	1000.00		1209.21 2	22		0.1201	$\alpha(N) = 0.00202 3; \alpha(O) = 0.000291 4; \alpha(P) = 6.69 \times 10^{-6} 10$
470.26 5	6.3 <i>3</i>	2023.66	3-	1553.33 4-	M1+E2	0.6 1	0.055 3	$\alpha(\mathbf{K}) = 0.0455 \ 25; \ \alpha(\mathbf{L}) = 0.0075 \ 3; \ \alpha(\mathbf{M}) = 0.00171 \ 6$
								$\alpha(N)=0.000412$ 15: $\alpha(O)=6.6\times10^{-5}$ 3: $\alpha(P)=4.5\times10^{-6}$ 3
								$\alpha(K)\exp=0.051 \ I4 \ (1970Ag07).$
								L1/L2≈13 (1971Ga37).
536.04 5	0.65 10	2023.66	3-	1487.61 4-	M1+E2	0.7 2	0.037 4	$\alpha(K)=0.031$ 4; $\alpha(L)=0.0051$ 4; $\alpha(M)=0.00116$ 9
								α (N)=0.000279 21; α (O)=4.5×10 ⁻⁵ 4; α (P)=3.0×10 ⁻⁶ 4
								α (K)exp=0.044 <i>13</i> (1970Ag07).

ω

				182 Re $arepsilon$ dec	ay (14.14 h)	1971Ga37,19	69Ga23,1969S	a25 (continued)
						$\gamma(^{182}W)$ (contin	nued)	
${\rm E_{\gamma}}^{\ddagger}$	Ι _γ # <i>c</i>	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α b	Comments
555 1	0.35 10	2109.80	(2 ⁻ ,3 ⁻)	1553.33 4-	(E2)		0.01627	$\alpha(K)=0.01264$ 19; $\alpha(L)=0.00279$ 5; $\alpha(M)=0.000658$ 10 $\alpha(N)=0.0001571$ 24; $\alpha(O)=2.41\times10^{-5}$ 4; $\alpha(P)=1.161\times10^{-6}$ 17 $\alpha(K)=x_{D}=0.018$ (1970A 207)
598.56 5	1.23 13	1856.02	(2 ⁺)	1257.45 2+	(M1)		0.0354	$\alpha(K) = 0.0296 5; \ \alpha(L) = 0.00453 7; \ \alpha(M) = 0.001027 15$ $\alpha(N) = 0.000247 4; \ \alpha(O) = 4.04 \times 10^{-5} 6; \ \alpha(P) = 2.92 \times 10^{-6} 4$ $\alpha(K) = x_{0} = 0.035 13 (1970 \text{ go7})$
649.73 5	1.06 15	2023.66	3-	1373.91 3-	M1+E2	0.8 2	0.0219 23	$\begin{array}{l} \alpha(\text{K}) \approx p = 0.053 \ 13 \ (1510 \text{ Ag}(7)). \\ \alpha(\text{K}) = 0.0181 \ 19; \ \alpha(\text{L}) = 0.00293 \ 24; \ \alpha(\text{M}) = 0.00067 \ 6 \\ \alpha(\text{N}) = 0.000161 \ 13; \ \alpha(\text{O}) = 2.60 \times 10^{-5} \ 22; \ \alpha(\text{P}) = 1.76 \times 10^{-6} \ 20 \\ \alpha(\text{K}) \approx p = 0.028 \ 12 \ (1500 \text{ g}(7)). \end{array}$
734.53 5	1.18 14	2023.66	3-	1289.24 2-	M1+E2	1.0 3	0.0148 22	$\alpha(\text{K}) \exp[-0.026 12 (19)(\text{Ag0})].$ $\alpha(\text{K}) = 0.0122 19; \alpha(\text{L}) = 0.00199 24; \alpha(\text{M}) = 0.00045 6$ $\alpha(\text{N}) = 0.000109 13; \alpha(\text{O}) = 1.76 \times 10^{-5} 22; \alpha(\text{P}) = 1.18 \times 10^{-6} 19$
787.11 5	0.95 18	2274.73	(3)-	1487.61 4-	(M1)		0.01763	α (K)exp=0.026 12 (1970Ag07). α (K)=0.01474 21; α (L)=0.00224 4; α (M)=0.000506 7 α (N)=0.0001219 17; α (O)=2.00×10 ⁻⁵ 3; α (P)=1.446×10 ⁻⁶ 21 α (K)exp=0.019 13 (1970Ag07).
800 ^{&} 1 810.24 5	0.47 ^{&} 12 1.20 14	2057.47 2184.12	1 ⁺ (2 ⁻ ,3 ⁻)	1257.45 2 ⁺ 1373.91 3 ⁻	(M1)		0.01639	$\alpha(K)=0.01371\ 20;\ \alpha(L)=0.00208\ 3;\ \alpha(M)=0.000470\ 7$ $\alpha(N)=0.0001132\ 16;\ \alpha(O)=1.85\times10^{-5}\ 3;\ \alpha(P)=1.343\times10^{-6}\ 19$ $\alpha(K)=0.014\ 7\ (1970A\ 907)$
835.98 5	1.45 <i>15</i>	2057.47	1+	1221.49 2+	(M1+E2)	≈0.8	≈0.01177	$\alpha(\mathbf{K}) \approx 0.0079; \ \alpha(\mathbf{L}) \approx 0.001538; \ \alpha(\mathbf{M}) \approx 0.000350$ $\alpha(\mathbf{N}) \approx 8.42 \times 10^{-5}; \ \alpha(\mathbf{O}) \approx 1.366 \times 10^{-5}; \ \alpha(\mathbf{P}) \approx 9.48 \times 10^{-7}$ $\alpha(\mathbf{K}) \approx 0.001538; \ \alpha(\mathbf{O}) \approx 1.366 \times 10^{-5}; \ \alpha(\mathbf{O}) \approx 1.366 \times 10^{-7}; \ \alpha(\mathbf{O}) \approx 1.366 \times 1$
894.85 <i>5</i>	6.6 5	2184.12	(2 ⁻ ,3 ⁻)	1289.24 2-	(M1)		0.01276	$\alpha(K) \exp = 0.013 \ 8 \ (1971 \text{GaS}), 1970 \text{AgO}).$ $\alpha(K) = 0.01068 \ 15; \ \alpha(L) = 0.001613 \ 23; \ \alpha(M) = 0.000365 \ 6$ $\alpha(N) = 8.79 \times 10^{-5} \ 13; \ \alpha(O) = 1.440 \times 10^{-5} \ 21; \ \alpha(P) = 1.045 \times 10^{-6} \ 15 \ \alpha(K) = 0.013 \ 2 \ (1971 \text{GaS}).$
900.80 5	1.11 <i>19</i>	2274.73	(3)-	1373.91 3-	(M1+E2)	≈0.5	≈0.01116	Additional information 1. $\alpha(K) \approx 0.00932; \ \alpha(L) \approx 0.001427; \ \alpha(M) \approx 0.000324$ $\alpha(N) \approx 7.79 \times 10^{-5}; \ \alpha(O) \approx 1.271 \times 10^{-5}; \ \alpha(P) \approx 9.06 \times 10^{-7}$ $\alpha(K) \approx 0.00155; \ \alpha(P) \approx 0.025; \ M \approx 0.000324$
927.99 5	1.62 17	1257.45	2+	329.42 4+	E2		0.00524	$\alpha(K) = 0.00429 \ 6; \ \alpha(L) = 0.000738 \ 11; \ \alpha(M) = 0.0001698 \ 24 \ \alpha(N) = 4.07 \times 10^{-5} \ 6; \ \alpha(Q) = 6.47 \times 10^{-6} \ 9; \ \alpha(P) = 3.98 \times 10^{-7} \ 6$
959.81 <i>5</i>	1.7 4	1289.24	2-	329.42 4+	E3+M2	-5.5 +19-10	0.0116 7	$\alpha(N) = 0.0090 \ 6; \ \alpha(L) = 0.00196 \ 8; \ \alpha(M) = 0.000463 \ 17$ $\alpha(N) = 0.00910 \ 6; \ \alpha(L) = 0.00196 \ 8; \ \alpha(M) = 0.000463 \ 17$
1001.8 <i>I</i>	≈0.7	1331.24	3+	329.42 4+	E2+M1	-8.9 +18-21	0.00455 8	$\alpha(N)=0.0001114; \ \alpha(O)=1.75\times10^{-7}; \ \alpha(P)=9.5\times10^{-7} 6$ $\alpha(K)=0.003746; \ \alpha(L)=0.00062710; \ \alpha(M)=0.000143723$ $\alpha(N)=3.45\times10^{-5}6; \ \alpha(O)=5.50\times10^{-6}9; \ \alpha(P)=3.48\times10^{-7}6$

4

From ENSDF

				¹⁸² Re	ε decay (14.14 h) 1971Ga37,19	69Ga23,1969S	Sa25 (continued)
						γ ⁽¹⁸² W) (contin	nued)	
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments
1044.5 <i>1</i>	0.55 7	1373.91	3-	329.42 4+	E1+M2(+E3)	0.46 9	0.0051 12	$\alpha(K)=0.0042$ 10; $\alpha(L)=0.00067$ 16; $\alpha(M)=0.00015$ 4
1113.4 ^{<i>a</i>} 1	1.1 ^{<i>a</i>} 2	1442.83	4+	329.42 4+	E2+M1(+E0)	+5.6 +13-10	0.00376 8	$\begin{aligned} \alpha(N) &= 3.7 \times 10^{-5} \ 9; \ \alpha(O) &= 6.0 \times 10^{-6} \ 14; \ \alpha(P) &= 4.2 \times 10^{-7} \ 10 \\ \alpha(K) &= 0.00311 \ 7; \ \alpha(L) &= 0.000504 \ 10; \ \alpha(M) &= 0.0001150 \ 22 \\ \alpha(N) &= 2.76 \times 10^{-5} \ 6; \ \alpha(O) &= 4.43 \times 10^{-6} \ 9; \ \alpha(P) &= 2.89 \times 10^{-7} \ 7; \\ \alpha(IPF) &= 3.53 \times 10^{-7} \ 6 \end{aligned}$
1121.4 <i>1</i>	100	1221.49	2+	100.11 2+	E2+M1+E0	+30 +6-4	0.00359	E0 admixture: $q_{K}(E0/E2)=0.41 \ 9 \ (1975We22)$. $\alpha(K)=0.00297 \ 5; \ \alpha(L)=0.000483 \ 7; \ \alpha(M)=0.0001104 \ 16$ $\alpha(N)=2.65\times10^{-5} \ 4; \ \alpha(O)=4.25\times10^{-6} \ 6; \ \alpha(P)=2.76\times10^{-7} \ 4; \ \alpha(IPF)=4.75\times10^{-7} \ 7$ E0 admixture: $q_{K}(E0/E2)=0.19 \ 6 \ (1975We22)$, also
1189.2 <i>1</i>	47.3 19	1289.24	2-	100.11 2+	E1+M2+E3		0.0047 3	1990Ka35. $\delta(M2/E1) = +0.48 \ 3; \ \delta(E3/E1) = -0.67 \ 5$ Mult., α : 59% 4 E1, 14% 1 M2 and 27% 3 E3. Conversion
1221.5 <i>I</i>	78 <i>3</i>	1221.49	2+	0.0 0+	E2		0.00305	$\alpha(K)=0.00252 \ 4; \ \alpha(L)=0.000402 \ 6; \ \alpha(M)=9.15\times10^{-5} \ 13$ $\alpha(N)=2.20\times10^{-5} \ 3; \ \alpha(O)=3.53\times10^{-6} \ 5; \ \alpha(P)=2.34\times10^{-7} \ 4;$ $\alpha(IPF)=6.76\times10^{-6} \ 10$
1231.1 <i>I</i>	4.11 20	1331.24	3+	100.11 2+	E2+M1	-33 +6-9	0.00300	$ \Delta I\gamma(absolute)=1.4 \text{ per } 100 \text{ decays.} \alpha(K)=0.00249 \ 4; \ \alpha(L)=0.000395 \ 6; \ \alpha(M)=9.01\times10^{-5} \ 13 \alpha(N)=2.16\times10^{-5} \ 3; \ \alpha(O)=3.48\times10^{-6} \ 5; \ \alpha(P)=2.31\times10^{-7} \ 4; \alpha(IPF)=7.87\times10^{-6} \ 11 $
1257.3 <i>1</i>	4.39 19	1257.45	2+	0.0 0+	E2		0.00289	α (K)exp=0.0025 3 (1971Ga37). α (K)=0.00239 4; α (L)=0.000378 6; α (M)=8.60×10 ⁻⁵ 12 α (N)=2.07×10 ⁻⁵ 3; α (O)=3.33×10 ⁻⁶ 5; α (P)=2.21×10 ⁻⁷ 3; α (IPE)=1.118×10 ⁻⁵ 16
1273.8 <i>1</i>	1.66 <i>14</i>	1373.91	3-	100.11 2+	E1+M2+E3		0.00132 12	$\delta(M2/E1) = +0.36 \ 10; \ \delta(E3/E1) = -0.28 \ 12$ $\alpha(K) = 0.00107 \ 10; \ \alpha(L) = 0.000153 \ 16; \ \alpha(M) = 3.4 \times 10^{-5} \ 4$ $\alpha(N) = 8.2 \times 10^{-6} \ 9; \ \alpha(O) = 1.34 \times 10^{-6} \ 14; \ \alpha(P) = 9.6 \times 10^{-8} \ 10; \ \alpha(IPF) = 4.83 \times 10^{-5} \ 8$ Mult., α : 81% 5 E1, 12% 4 M2 and 7% 2 E3. Conversion
1289.3 <i>1</i>	3.85 17	1289.24	2-	0.0 0+	M2		0.01230	coefficient deduced for this admixture from BrIcc code. $\alpha(K)=0.01019 \ 15; \ \alpha(L)=0.001630 \ 23; \ \alpha(M)=0.000372 \ 6$ $\alpha(N)=8.97\times10^{-5} \ 13; \ \alpha(O)=1.465\times10^{-5} \ 21;$ $\alpha(P)=1.047\times10^{-6} \ 15; \ \alpha(IPF)=5.97\times10^{-6} \ 9$
1373.9 <i>1</i>	0.56 6	1373.91	3-	0.0 0+	E3		0.00496	$\Delta I\gamma$ (absolute)=0.08 per 100 decays. α (K)=0.00400 6; α (L)=0.000728 11; α (M)=0.0001685 24 α (N)=4.05×10 ⁻⁵ 6; α (O)=6.44×10 ⁻⁶ 9; α (P)=3.97×10 ⁻⁷ 6; α (IPF)=1 252×10 ⁻⁵ 18
x1410.4 3 x1523 2 x1537 2 1543 2	$0.12\ 2 \approx 0.05 \ \approx 0.05 \ \approx 0.05 \ \approx 0.05$	1871.17	1-	329.42 4+	[E3]		0.00391	$\alpha(K)=0.00316\ 5;\ \alpha(L)=0.000549\ 8;\ \alpha(M)=0.0001265\ 19$

S

 $^{182}_{74}\mathrm{W}_{108}$ -5

L

				¹⁸² Re ε ά	lecay (14.14 h	n) 1971G a	a37,1969Ga23	,1969Sa25 (continued)
						$\gamma(^{182}W)$	(continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α ^b	Comments
				<u> </u>				α (N)=3.04×10 ⁻⁵ 5; α (O)=4.86×10 ⁻⁶ 7; α (P)=3.11×10 ⁻⁷ 5; α (IPF)=3.77×10 ⁻⁵ 7
x1558 2 1756.0 2	0.24 <i>3</i> 0.19 <i>4</i>	1856.02	(2+)	100.11 2+				$\alpha(K) \exp > 0.0012 (1971Ga37).$
1771.0 2	1.01 10	1871.17	1-	100.11 2+	E1		1.04×10^{-3}	α (K)exp>0.00046 (19/10457). α (K)=0.000562 8; α (L)=7.77×10 ⁻⁵ 11; α (M)=1.740×10 ⁻⁵ 25 α (N)=4.18×10 ⁻⁶ 6; α (O)=6.84×10 ⁻⁷ 10; α (P)=4.98×10 ⁻⁸ 7; α (IPF)=0.000383 6
1818.8 2	0.33 3	2147.98	(3 ⁻)	329.42 4+	(E1)		1.05×10^{-3}	$\alpha(K) \exp = 0.00055 \ 16 \ (1971Ga37).$ $\alpha(K) = 0.000537 \ 8; \ \alpha(L) = 7.43 \times 10^{-5} \ 11; \ \alpha(M) = 1.664 \times 10^{-5} \ 24$ $\alpha(N) = 4.00 \times 10^{-6} \ 6; \ \alpha(O) = 6.54 \times 10^{-7} \ 10; \ \alpha(P) = 4.76 \times 10^{-8} \ 7;$
1857.3 2	0.099 7	1856.02	(2 ⁺)	0.0 0+	(E2)		1.59×10^{-3}	α (IPF)=0.000418 <i>6</i> α (K)exp=0.00054 24 (1971Ga37). α (K)=0.001162 17; α (L)=0.0001723 25; α (M)=3.89×10 ⁻⁵ 6 α (N)=9.35×10 ⁻⁶ 13; α (O)=1.522×10 ⁻⁶ 22; α (P)=1.073×10 ⁻⁷
1871.2 2	0.91 7	1871.17	1-	$0.0 0^+$	E1		1.06×10 ⁻³	15; α (IPF)=0.000210 3 α (K)exp=0.0014 8 (1971Ga37). E_{γ} : poor fit in the level scheme, deviates by 1 keV. α (K)=0.000513 8; α (L)=7.09×10 ⁻⁵ 10; α (M)=1.587×10 ⁻⁵ 23
								α (N)=3.81×10 ⁻⁶ 6; α (O)=6.24×10 ⁻⁷ 9; α (P)=4.55×10 ⁻⁸ 7; α (IPF)=0.000457 7 α (K)exp=0.00054 20 (1971Ga37).
1877.6 2	0.19 6	2207.17	(3 ⁻)	329.42 4+	(E1+M2)	0.8 +4-3	0.00256 77	$\alpha(K)=0.00186\ 70;\ \alpha(L)=2.8\times10^{-4}\ 11;\ \alpha(M)=6.4\times10^{-5}\ 25$ $\alpha(N)=1.54\times10^{-5}\ 60;\ \alpha(O)=2.52\times10^{-6}\ 98;\ \alpha(P)=1.83\times10^{-7}$ $71;\ \alpha(IPF)=0.00034\ 7$
1879.6 2	0.17 5	2208.94	3-	329.42 4+	E1		1.06×10^{-3}	α (K)exp=0.0021 <i>13</i> (1971Ga37). α (K)=0.000509 <i>8</i> ; α (L)=7.04×10 ⁻⁵ <i>10</i> ; α (M)=1.575×10 ⁻⁵ <i>22</i> α (N)=3.78×10 ⁻⁶ <i>6</i> ; α (O)=6.19×10 ⁻⁷ <i>9</i> ; α (P)=4.52×10 ⁻⁸ <i>7</i> ;
1911.8 2	0.139 24	2240.83	(3 ⁺)	329.42 4+	(M1)		0.00230	α (IPF)=0.000463 7 α (K)exp=0.0005 3 (1971Ga37). α (K)=0.001659 24; α (L)=0.000245 4; α (M)=5.52×10 ⁻⁵ 8 α (K)=1.330×10 ⁻⁵ 10; α (Q)=2.18×10 ⁻⁶ 3; α (P)=1.602×10 ⁻⁷
1957 4 2	1 43 10	2057 47	1+	100 11 2+	(M1+E2)	10+6-4	0.00186.77	$\alpha(N)=1.550\times10^{-17}$, $\alpha(O)=2.18\times10^{-5}$, $\alpha(1)=1.002\times10^{-2}$ 23; $\alpha(IPF)=0.000322$ 5 $\alpha(K)=0.0021$ 8 (1971Ga37). $\alpha(K)=0.00131$ 13: $\alpha(L)=0.000193$ 18: $\alpha(M)=4.4\times10^{-5}$ 4
1757.7 2	1.15 10	2001.71	1	100.11 2	(1111 122)	1.0 10 7	5.00100 1/	$\alpha(N) = 1.05 \times 10^{-5} \ 10; \ \alpha(O) = 1.72 \times 10^{-6} \ 17; \ \alpha(P) = 1.24 \times 10^{-7} \ 13; \ \alpha(IPF) = 0.000303 \ 23 \ \alpha(K) \exp = 0.0022 \ 7 \ (1971Ga37)$
2010.1 3	0.30 4	2109.80	(2-,3-)	100.11 2+	(E1+M2)	0.9 +7-4	0.00250 85	$\alpha(\mathbf{K}) = 0.00122 \ (19710a37).$ $\alpha(\mathbf{K}) = 0.00176 \ 80; \ \alpha(\mathbf{L}) = 2.7 \times 10^{-4} \ 13; \ \alpha(\mathbf{M}) = 6.0 \times 10^{-5} \ 28$ $\alpha(\mathbf{N}) = 1.45 \times 10^{-5} \ 68; \ \alpha(\mathbf{O}) = 2.4 \times 10^{-6} \ 11; \ \alpha(\mathbf{P}) = 1.73 \times 10^{-7}$ $81; \ \alpha(\mathbf{PE}) = 3.0 \times 10^{-4} \ 10$
2016.3 <i>3</i>	2.5 3	2116.4		100.11 2+				$\alpha(K) \exp[=0.0019 \ 11 \ (1971Ga37).$ $\alpha(K) \exp[=0.0020 \ 6 \ (1971Ga37).$

6

L

				¹⁸² Re ε decay (14.14 h)			1971Ga37,1969Ga23,1969Sa25 (continued)			
							$\gamma(^{182}W)$ (cont	inued)		
E_{γ}^{\ddagger}	I_{γ} #c	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	$\alpha^{\boldsymbol{b}}$	Comments	
^x 2033.3 3	≈0.07								<i>α</i> (K)exp≈0.00066 (1971Ga37).	
2047.3 <i>3</i>	0.36 <i>3</i>	2147.98	(3 ⁻)	100.11	2^{+}	(E1+M2)	1.0 + 10 - 5	0.00258 89	$\alpha(K)=0.00183 \ 84; \ \alpha(L)=2.8\times 10^{-4} \ 13; \ \alpha(M)=6.3\times 10^{-5}$	
									30 $\alpha(N)=1.51\times10^{-5}$ 72; $\alpha(O)=2.5\times10^{-6}$ 12; $\alpha(P)=1.80\times10^{-7}$ 85; $\alpha(IPF)=3.9\times10^{-4}$ 12 $\alpha(K)\exp=0.0020$ 8 (1971Ga37).	
2057.4 3	2.90 23	2057.47	1^{+}	0.0	0^+				$\alpha(K) \exp = 0.0044 \ I3 \ (1971Ga37).$ %Iy=0.93 9 (intensity per 100 decays).	
2073.2 3	0.13 2	2173.3		100.11	2^{+}				$\alpha(K)\exp \approx 0.002$ (1971Ga37).	
2084.0 3	0.204 21	2184.12	$(2^-, 3^-)$	100.11	2^{+}				α (K)exp=0.0008 4 (1971Ga37).	
×2099 3	≈0.08								α (K)exp<0.00039 (1971Ga37).	
2106.8 [®] 5	<0.82	2207.17	(3 ⁻)	100.11	2+				α (K)exp>0.00050 (1971Ga37).	
2108.6 5	<0.82	2208.94	3-	100.11	2+				α (K)exp>0.0004 (1971Ga37).	
2109.3 [®] 5	<0.82 [@]	2109.80	(2 ⁻ ,3 ⁻)	0.0	0+	[M2,E3]		0.00303 80	α (K)=0.00235 66; α (L)=3.64×10 ⁻⁴ 95; α (M)=8.3×10 ⁻⁵ 22	
									$\alpha(N) = 1.99 \times 10^{-5} 52; \ \alpha(O) = 3.25 \times 10^{-6} 86;$	
									α (P)=2.31×10 ⁻⁷ 68; α (IPF)=0.000211 16 α (K)exp>0.0011 (1971Ga37).	
2140.3 2	0.121 21	2240.83	(3 ⁺)	100.11	2+	(M1)		0.00197	α (K)=0.001265 <i>18</i> ; α (L)=0.000186 <i>3</i> ; α (M)=4.19×10 ⁻⁵ 6	
									$\alpha(N)=1.010\times 10^{-5}$ 15; $\alpha(O)=1.658\times 10^{-6}$ 24;	
									α (P)=1.219×10 ⁻⁷ <i>17</i> ; α (IPF)=0.000464 <i>7</i> α (K)exp=0.0017 <i>8</i> (1971Ga37).	
2148 ^{&} 3	0.088 19	2147.98	(3 ⁻)	0.0	0^+	[E3]		0.00218	α (K)=0.001633 24; α (L)=0.000259 4; α (M)=5.90×10 ⁻⁵ 9	
									α (N)=1.419×10 ⁻⁵ 21; α (O)=2.30×10 ⁻⁶ 4;	
									α (P)=1.573×10 ⁻⁷ 23; α (IPF)=0.000209 3	
2175.2 3	0.147 21	2274.73	(3)-	100.11	2+	E1		1.14×10^{-3}	$\alpha(K)=0.000402\ 6;\ \alpha(L)=5.53\times10^{-5}\ 8;$	
									$\alpha(M) = 1.238 \times 10^{-5} \ 18$	
									$\alpha(N) = 2.9 \times 10^{-6} 5; \alpha(O) = 4.8 \times 10^{-7} 7;$	
									$\alpha(P)=5.57\times10^{-5}$ 5; $\alpha(PP)=0.000071$ 10 $\alpha(K)=xn<0.00039$ (1971Ga37)	
x2189& 3	0.055.15								u(R)exp<0.00037 (17710a37).	
2207.7 3	0.33 3	2207.17	(3 ⁻)	0.0	0^{+}	(E3)		0.00209	$\alpha(K)=0.001548\ 22;\ \alpha(L)=0.000244\ 4;\ \alpha(M)=5.56\times10^{-5}$	
			(-)						8	
									$\alpha(N)=1.336\times 10^{-5}$ 19; $\alpha(O)=2.17\times 10^{-6}$ 3;	
									α (P)=1.488×10 ⁻⁷ 21; α (IPF)=0.000229 4 α (K)exp=0.0014 7 (1971Ga37).	
2216 ^{&} 3	≈0.07 <mark>&</mark>	2316.1		100.11	2^{+}					
^x 2230 ^{&} 3	0.034 10									
2316 ^{&} 3	0.025 ^{&} 5	2316.1		0.0	0^+					

7

 $\gamma(^{182}W)$ (continued)

[†] From Adopted Gammas.

[‡] From ce data of 1971Ga37 (also 1970Ag07), unless otherwise stated.

[#] Weighted averages of values from 1969Ga23 and 1969Sa25. The uncertainties from 1969Ga23 were increased substantially to reflect poor agreement of data with those from 1969Sa25. For $\Delta I\gamma$ (absolute) combine 5.1% in quadrature with $\Delta I\gamma$ (rel), except as noted.

[@] Energy from ce data of 1971Ga37. The γ -ray intensity is 0.82 5 combined for E γ =2109.3 10 (1969Sa25), 0.82 8 for 2110 2 (1969Ga23) corresponding to a triplet (2106.8+2108.6+2109.3) from conversion electron data.

[&] From 1969Ga23.

^a From 1969Sa25.

^b Theoretical values from BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" approximation. If mixing ratio δ is not given, it was assumed as 1.0 for E2/M1 and E3/M2 and 0.10 for others.

^c For absolute intensity per 100 decays, multiply by 0.320 16.

 $x \gamma$ ray not placed in level scheme.

6-⁸⁰¹ M^{†/}₇₈₁