		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015

 $Q(\beta^{-}) = -280 \times 10^{1} \ 10$; $S(n) = 8066 \ 5$; $S(p) = 7095.1 \ 17$; $Q(\alpha) = 1765.0 \ 19 \ 2012Wa38$

S(2n)=14751.8 20, S(2p)=13043.9 10 (2012Wa38).

First identification of $^{1\hat{8}2}$ W isotope by Aston: Nature 126, 913 (1930).

Other reactions:

 ${}^{9}\text{Be}({}^{208}\text{Pb},X) = 1 \text{ GeV/nucleon: } 2002\text{Pf01: Measured fragment yield, (fragment)}\gamma \text{ coin, deduced isomer (at 2230 keV) half-life and isomer production ratio of 10% 2.}$

Additional information 1.

Mass measurements: 2012Li52, 1977Sh04, 1970Mc03, 1961De21, 1960Bh02.

Structure calculations (levels, moments, transition probabilities, high-K isomers, etc.): 2013Zh43, 2012Bu01, 2012Ze02, 2012Zh23, 2011Er04, 2008Sa21, 2003Jo10, 1998Sh01, 1996Na08, 1996Na12, 1994Be21, 1994Mo07, 1993Be25, 1991Gr14, 1990Ch50, 1990Ve01, 1989Sa19, 1989Ta06. Only selected references are given here, consult NSR database at www.nndc.bnl.gov website for more detailed bibliography for theoretical studies on ¹⁸²W nuclide.

¹⁸²W Levels

Details of the measurements of Half-life (in ns) of the 100.1, 2⁺ state:

- 1. Deduced from B(E2) values in Coulomb excitation: 1.44 7 (1961Ha21), 1.26 *11* (1963Gr04), 1.340 *30* (1968St13), 1.368 *29* (1973Be40, earlier value from the same lab is 1.31 *15*, 1958Mc02), 1.15 *12* (1989Ku04), 1.53 7 (1991Wu05, earlier value is 1.41 *9* in 1989Wu04).
- 2. Delayed coincidence method in Coulomb excitation: 1.366 *14* (1961Ke07), 1.43 *4* (1962Bi05, earlier value from the same group is 1.55 *14*,1959Bi10).
- 3. Pulsed beam: (p,p'γ): 1.372 *14* (1964Sc21).
- 4. Deduced from B(E2) in Muonic atom: 1.343 40 (1970Hi03).
- 5. Deduced from B(E2) in (e,e'): 1.391 21 (1987PeZV,1988PeZW).
- 6. Delayed coincidence in 182 Ta β^- decay: 1.27 *10* (1955Su64,1954Su10), 1.55 *11* (1963Ba24), 1.26 *4* (1963Fo02), 1.41 *6* (1963Ko02), 1.47 *9* (1964Ro19), 1.4 *1* (1964Be36), 1.39 *3* (1965Do02), 1.37 *3* (1965Me08), 1.45 *4* (1966Bl08), 1.35 *7* (1966Fu03), 1.43 *5* (1966Ra04), 1.48 *3* (1970Ab14), 1.380 *20* (1971Ho14), 1.55 *5* (1973GrXX), 1.380 *30* (1983El02),

Cross Reference (XREF) Flags

A B C D E F	¹⁸² Ta β ⁻ decay (114.74 d) Muonic atom ¹⁸² Re ε decay (64.2 h) ¹⁸² Re ε decay (14.14 h) ¹⁸⁶ Os α decay ¹⁷⁶ Yb(⁹ Be,3nγ) ¹⁷⁶ Yb(¹³ C, α3nr)	H J K L M	${}^{180}\text{Hf}(\alpha,2n\gamma)$ ${}^{180}\text{W}(t,p)$ ${}^{182}\text{W}(\gamma,\gamma):\text{Mossbauer}$ ${}^{182}\text{W}(\gamma,\gamma')$ ${}^{182}\text{W}(e,e')$ ${}^{182}\text{W}(e,n'\gamma)$ ${}^{182}\text{W}(n,n'\gamma)$	O P Q R S T	¹⁸² W(p,p'),(pol p,p'),(α , α') ¹⁸² W(d,d') Coulomb excitation ¹⁸³ W(d,t) ¹⁸³ W(³ He, α) ¹⁸⁴ W(p,t) ¹⁸⁶ W(p, 5pa))
G	176 Yb(13 C, α 3n γ)	N	$^{182}W(n,n')$	U	$^{186}W(n,5n\gamma)$

E(level) [†]	J ^π ‡	T _{1/2}	XREF	Comments
0.0&	0+	stable	ABCDEFGHIJKLMNOPQR TU	$\begin{split} & T_{1/2}: \ T_{1/2}(\alpha \ decay) \ measured \ limits: \geq 7.7 \times 10^{21} \ y \ (2004Co26) \ with \ 90\% \\ & \text{confidence limit. Others: } \geq 1.7 \times 10^{20} \ y \ (2003Da05,2003Bi13,1997Ge15, \\ 1995Ge17), \geq 2.5 \times 10^{19} \ y \ (2003Ce01), \ 1960Be13. \\ & ()^{1/2} (\text{rms charge radius}) = 5.3559 \ \text{fm} \ 17 \ (2013An02,\text{evaluation}). \\ & \Delta < r^2> (^{182}W - ^{180}W) = 0.068 \ \text{fm}^2 \ 4 \ (1994Ji02). \\ & \Delta < r^2> (^{183}W - ^{182}W) = 0.052 \ \text{fm}^2 \ 3 \ (1994Ji02). \\ & \Delta < r^2> (^{184}W - ^{182}W) = 0.099 \ \text{fm}^2 \ 5 \ (1994Ji02). \end{split}$

¹⁸²W Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments			
100.10598 7	2+	1.381 ns <i>10</i>	ABCD FGHIJKLMNOPQRSTU	μ =+0.521 <i>16</i> (1968Pe06,2014StZZ) Q=-2.13 <i>35</i> (1977RuZV,2014StZZ,2013StZZ) B(E2)↑=4.17 <i>6</i> μ : Mossbauer effect (1968Pe06). Other: +0.528 <i>12</i> (CEAD,1972Ca12). Q: reorientation method in Coul. Ex. (1977RuZV). B(E2) from Coul. Ex. T _{1/2} : from several weighted averaging methods (weighted average, limitation of statistical weights method (LWM), normalized residuals method (NRM) and Rajeval's technique (RT)) using 26 independent measurements (from 1954 to 1991) of lifetimes from Coulomb excitation, delayed coincidence methods, pulsed beam, (e,e') and muonic atom. The value of χ^2 is ≈2.1 for different methods as compared to critical χ^2 of 1.7. All the values used in the averaging procedure are listed above in the header comments of this table 2001Ra27 evaluation (of 27 measurements from 1954 to 1988) gives nearly the same adopted B(E2)(↑)=4.20 <i>8</i> and mean lifetime (τ)=1990 ps 20 (T _{1/2} =1.379 ns <i>14</i>). J ^π : E2 γ to 0 ⁺ .			
329.4268 ^{&} 6	4+	62 ps <i>3</i>	A CD FGHI LMNOPQRSTU	μ=+0.88 <i>17</i> (1972Be94,2014StZZ) B(E4)=0.077 <i>16</i> (1987PeZV) from (e,e'). μ: IPAC (1972Be94). T _{1/2} : from RDM in Coul. ex. J ^π : ΔJ=2, E2 γ to 2 ⁺ .			
680.42 ^{&} 5	6+	8.2 ps 9	A C FGH LMNOPQR TU	B(E6)=0.012 5 (1987PeZV) from (e,e'). $T_{1/2}$: from RDM in Coul. ex. J^{π} : stretched E2 γ to 4 ⁺ .			
1135.82 ^{<i>a</i>} 10	0^{+}		A I MNPRT	J^{π} : L(p,t)=0. Also L(t,p)=0 and E0 transition to 0 ⁺ .			
1144.32 ^{&} 12	8+	2.01 ps 17	FGH LM Q U	B(E8)=0.00029 17 (1987PeZV) from (e,e'). T _{1/2} : from RDM in Coulomb excitation. J^{π} : ΔJ =2, E2 γ to 6 ⁺ ; band assignment.			
1221.4001 ^b 10	2+	0.434 ps 11	A CD HI MNOPQR T	J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: from B(E2) in Coulomb excitation. B(E2)(IS)(\uparrow)=0.146 <i>11</i> ((pol p,p') 1987Ic04). This gives B(E2)(W u)=4.8.4 compared to 3.4 from Coul. ex			
1257.4121 ^{<i>a</i>} 11	2+	1.71 ps <i>13</i>	ACD HI MN PQR T	J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: from B(E2) in Coulomb excitation and adopted branching ratios			
1289.1498 ^{<i>c</i>} 10	2-	1.12 ns 4	ACD GH M QR	$\mu = +1.74 \ 24 \ (1973Se14,2014StZZ)$ $\mu: IPAC \ (1973Se14).$ $J^{\pi}: M2 \ \gamma \text{ to } 0^{+}.$ $T_{1/2}: \text{ from } (\beta)(ce)(t) \text{ and } \beta\gamma(t) \text{ in } {}^{182}\text{Ta } \beta^{-} \text{ decay.}$ Weighted averaging method (normalized residuals) used.			
1331.1153 ^b 10	3+	<0.6 ns	ACD H MN QRS	XREF: N(1309). J^{π} : M1+E2 γ s to 2 ⁺ and 4 ⁺ . T ₁ α : from $\gamma \gamma(t)$ in ¹⁸² Ta β^{-} decay.			
1373.8301 ^c 10	3-	78 ps 10	A CD GH MNOPQ T	$\mu = 0.96 \ 27 \ (1972 \text{He}10, 2014 \text{StZZ})$ XREF: N(1357). μ : IPAC (1972 \text{He}10). Other: 2.21 34 (IPAC, 1973 \text{Se}14). J ^{π} : E3 γ to 0 ⁺ .			
1442 825b 0	4+	0.22 - 2		$1_{1/2}$: nom (ce)(ce)(t) in $\frac{1}{2}$ a decay. I^{π} , M1 + E2 at to I^{\pm} , E2 at to 2^{\pm} , (E1) at from 5^{\pm} , hand			
1442.033 9	4	0.52 ps 5	A CD HI MNOPUK I	J. IVIT+E2 γ to 4; E2 γ to 2; (E1) γ from 5; Dand			

¹⁸²W Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}		XR	EF		Comments		
1487.5018 ^c 10	4-	<49 ps	A CD	GH	MN		assignment. T _{1/2} : from B(E2) in Coul. ex. B(E4)(IS)(↑)=0.0122 25 ((pol p,p') 1987Ic04) which gives B(E4)(W.u.)=2.0 4. XREF: N(1492).		
1510.22 ^a 4	4+		AC	н	М	R	J^{π} : M2+E3 γ to 2 ⁺ ; M1+E2 γ from 5 ⁻ . $T_{1/2}$: from (ce)(ce)(t) in ¹⁸² Ta β ⁻ decay. J^{π} : E2 γ to 2 ⁺ : E2+M1 γ to 4 ⁺ : γ from 5 ⁻ .		
1553.2240 ^g 10	4-	1.27 ns 4	A CD	GH	MN	R	$T_{1/2}$: from $\gamma\gamma(t)$ in ¹⁸² Ta β^- decay. T^* . M2+E3 γ to 2^+ : M1+E2 γ from 5 ⁻		
1621.284 [°] 21	5-		С	GH	Mn p	t	J^{π} : M1 γ from 6 ⁻ ; E1 γ to 4 ⁺ .		
1623.51 ^b 4	$(5)^{+}$		С	н	Mn p	QR t	J^{π} : E1 γ from 6 ⁻ ; band assignment.		
1660.383 ^g 21	5-		C	GH	MN P	P R T	XREF: N(1678). J^{π} : E1+M2 γ to 4 ⁺ ; M1+E2 γ to 5 ⁻ ; M1 γ from 6 ⁻ .		
1711.99 ^{&} <i>14</i>	10+	0.76 ps 7		FGH		Q U	$T_{1/2}$: from RDM in Coulomb excitation. J ^π : ΔJ=2, E2 γ to 8 ⁺ ; band assignment.		
1756.75 ^h 4	6+		С	GH	MN		XREF: N(1745). J^{π} : log <i>ft</i> =7.4 from 7 ⁺ , E2 γ to 4 ⁺ .		
1765.53 12					M P	Y T			
1768.943 ⁸ 23	6-		C	GH	M	RS	J ^{π} : E1+M2 γ to 6 ⁺ ; E2 γ s to 4 ⁻ ; band assignment.		
1769.5? ^D 7	(6 ⁺)					Q	E(level): level is suspect since the two γ rays at 1089 and 1440 are associated with the decay of 1769, (6) ⁻ level. J^{π} : γ to 6 ⁺ ; possible band assignment.		
1809.64 ⁱ 7	5-		С	GH	n	Rt	XREF: n(1792). J^{π} : M1 γ to 4 ⁻ ; M1 γ from 6 ⁻ .		
1810.85 ^c 4	(6)-		С	GH	n	t	XREF: n(1792). J ^{π} : log <i>ft</i> =8.7 from 7 ⁺ ; M1+E2 γ to 5 ⁻ ; band assignment.		
1813.4 3					Mn	rt	XREF: n(1792).		
1829.53 3	6-		C	GH		RST	J^{π} : log <i>ft</i> =7.4 from 7 ⁺ ; E2 γ to 4 ⁻ .		
1833.1? 6	(2^{+})		л		M Mn n		VDEE: $M(1956.2)$		
1655.76 5	(2)		U		тат р	, , , ,	J^{π} : γ s to 0 ⁺ and 4 ⁺ .		
1856.9 5	1				Mn p	rt	XREF: $M(1856.9)$.		
1871 17 15	1-		л		м		J [*] : γ s to 0 ⁺ and 2 ⁺ ; $\gamma(\theta)$ in (n,n' γ).		
1887.84 21	1		D		M P	Р Т	J. LI Y 10 0 .		
1917.05 ⁸ 5	7-		С	GH		RS	XREF: R(1916). J^{π} : $\Delta J=2$, E2 γ to 5 ⁻ ; γ to (6) ⁻ ; band assignment.		
1918.6 4	$(2^+ \text{ to } 4^+)$				MN	R	XREF: R(1923). J^{π} : γ to 2 ⁺ ; not 0 or 1 from $\gamma(\theta)$ in $(n,n'\gamma)$.		
1959.35 <i>16</i>	(2 ⁺)				M P	P R T	XREF: T(1961). J^{π} : ΔJ=(2) γ to 4 ⁺ ; γ to 0 ⁺ .		
1960.30 <i>j 3</i>	(7)-		С	GH			J ^{π} : log ft=7.1 from 7 ⁺ ; Δ J=2, E2 γ s to 5 ⁻ .		
1960.78 ⁱ 7	6-		С	G	M	RS	J ^{π} : M1 γ to 5 ⁻ ; log <i>ft</i> =8.0 from 7 ⁺ ; possible band assignment.		
1971.05 ^h 7	(7)+		С	GH		R	XREF: R(1966). J ^{π} : log <i>ft</i> =8.2 from 7 ⁺ ; M1+E2 γ to 6 ⁺ ; band assignment.		
1978.36 ^k 4	(7) ⁻		С	GH			J^{π} : log ft=7.0 from 7 ⁺ ; M1+E2 γ to (6) ⁻ ; band assignment.		
1981.82 25					MN	R	XREF: R(1985).		

¹⁸²W Levels (continued)

E(level) [†]	J <i>π</i> ‡	T _{1/2}		Х	(RE	F			Comments
1993.68 ^c 10 2016.8 8	(7^{-}) (2,3,4) ⁺			GH		M		R	J^{π} : $\Delta J=2 \gamma$ to 5 ⁻ ; band assignment. J^{π} : L(d,t)=1,3 from 1/2 ⁻ ; possible γ s to 2 ⁺ and 4 ⁺ . E(level): 2023 7 level in (d,t) is probably not 2023.57, 3 ⁻ level
2023.57 <i>3</i> 2057.39 <i>5</i> 2071	3- 1 ⁺		D D			Mn Mn		R R	J^{π} : M1+E2 γ s to 2 ⁻ and 4 ⁻ . J^{π} : $\Delta J=1 \gamma$ to 0 ⁺ ; L(d,t)=1,3 from 1/2 ⁻ target.
2087.43 ⁸ 7 2094 10	8-			GH				RТ	J ^{π} : Δ J=2 γ to (6 ⁻); band assignment.
2109.96 20	(2 ⁻ ,3 ⁻)		D			Mn		Rt	XREF: t(2117). J ^{π} : (E2) γ to 4 ⁻ ; (E1+M2) γ to 2 ⁺ .
2114.35 ^J 5 2116.4 3	(8)-		C D	GH		Mn		t	J^{π} : E2 γ to (6) ⁻ ; log <i>ft</i> =8.2 from 7 ⁺ ; band assignment. XREF: t(2117). J^{π} : 0 ⁺ to 4 ⁺ from γ to 2 ⁺ .
2120.25 ¹ 7	(8-)		С	GH					J^{π} : (M1) γ to (7) ⁻ ; probable bandhead of a 2-qp band.
2131.3 ^{<i>i</i>} 3 2143.0 <i>10</i>	(7 ⁻)			GH		M	p	RS R t	J^{π} : γ to (6) ⁻ ; possible band assignment.
2147.95 17	(3 ⁻)		D			Mn	p	Rt	J^{π} : (E1) γ to 4 ⁺ ; (E1+M2) γ to 2 ⁺ .
2173.5 3	$(0^+ \text{ to } 4^+)$		D			Mn	Ρ	Rt	XREF: t(2175). J^{π} : γ to 2 ⁺ . If 2174 γ to 0 ⁺ exists, then $J^{\pi}=1,2^+$.
2180.4 ^b 8 2184.04 4	(8 ⁺) (2 ⁻ ,3 ⁻)		D			Mn	Q p	t t	J^{π} : γ s to 8 ⁺ and 6 ⁺ ; band assignment. XREF: t(2175). J^{π} : (M1) γ s to 2 ⁻ and 3 ⁻ .
2204.54 ^k 6 2207.21 <i>16</i> 2209.07 <i>17</i>	(8) ⁻ (3 ⁻) 3 ⁻		C D D	GH		Mn Mn	p p	R t R t	J^{π} : M1+E2 γ to (7) ⁻ , log <i>ft</i> =7.5 from 7 ⁺ . J^{π} : (E3) γ to 0 ⁺ and (E1+M2) γ to 4 ⁺ . XREF: R(2217). I^{π} : E1 γ to 4 ⁺ log <i>ft</i> =8.3 from 2 ⁺
2212.50 ^h 11	(8^+)			GH					J^{π} : $\Delta J = 1 \gamma$ to $(7)^+$; band assignment.
2225.55 11 2220.65^{d} 14	(0)	12		ECU					$J = \Delta J - 2 \gamma (0, 0)$, band assignment.
2230.05 14	(10)	1.5 μ8 1		гGП					J^{π} : (M1) γ to 10 ⁺ ; γ to 8 ⁺ ; probable bandhead of a 2-qp band.
									$T_{1/2}$: from $\gamma(t)$; average of 1.2 μ s <i>I</i> in ${}^{9}\text{Be}({}^{200}\text{Pb},X)$ and 1.4 μ s <i>I</i> in (α ,2n γ).
2240.83 <i>15</i>	(3^{+})		D	CII		MN		RT	J^{n} : (M1) γ s to 2^{+} and 4^{+} .
2274.63 <i>4</i>	$(3)^{-}$		D	GH		Mn		Rt	$T = \Delta J = 2 \text{ vio} (T) \text{ ; } \text{ vio} (8 \text{); band assignment.}$ XREF: R(2270).
2283.5 6	1					Mn		Rt	$J^{\pi}: E1 \gamma \text{ to } 2^{-\gamma}; (M1) \gamma \text{ to } 4^{-\gamma}.$ XREF: R(2284). $I^{\pi}: 2283_2(4) \text{ in } (n n'2)$
2301.56 ^j 8 2316.1 22	(9 ⁻) (1,2 ⁺)		D	G		n		т	J^{π} : γ s to (7) ⁻ and (8) ⁻ ; band assignment. XREF: T(2311).
2222 85 ⁱ 21	(9^{-})			СЧ					J^{-1} ; γ to U^{-1} .
2323.85 21 2327.01 10	(0^{-})			GR U					J . γ to (7), possible band assignment. I^{π} : AI=1 (M1+E2) α to (8 ⁻); hand assignment
2327.91° 10 2328 2221 10	(9)			п			P	ът	$J : \Delta J=1$, (M1+E2) γ to (8); band assignment.
2334.26 21 2360 8				Н			r	K I D T	J^{π} : (7,8,9) from γ to (7) ⁻ .
2372.59 ^{&} 17	12+	0.38 ps 2		FGH			Q	K I U	J ^{π} : Δ J=2, E2 γ to 10 ⁺ ; band assignment. T _{1/2} : from B(E2) in Coulomb excitation from 10 ⁺ level.
2376		ш						R	
2382.1 7	1	7.9 [#] fs 11			K	N		R	J^{π} : from $\gamma \gamma(\theta)$.

¹⁸²W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Х	REF	7		Comments
							$B(M1)(\uparrow)=0.46\ 6.\ B(E1)(\uparrow)=5.0\times10^{-5}\ 7.$
2395 8						R	
2427 8	(0-)		CII			R	E(level): multiplet.
2445.98° 15 2452 7 20	(9)		GH			R	J^{A} : $\Delta J=2 \gamma$ to (7), band assignment.
2455.74^{k} 12	(9^{-})		GH			I.	I^{π} : $\Lambda I=1 \gamma$ to $(8)^{-1}$: γ to $(7)^{-1}$: hand assignment
2474.1 7	1@	15 [#] fs 2	GII	к	N	R	J^{π} : from $\gamma\gamma(\theta)$.
		10 10 2					$B(M1)(\uparrow)=0.31 5$. $B(E1)(\uparrow)=3.5\times10^{-5} 5$.
2479.83 ^h 13	(9+)		GH				J^{π} : $\Delta J=1 \gamma$ to (8 ⁺); γ to (7) ⁺ ; band assignment.
2486.89 ^g 10	10-		GH				J^{π} : $\Delta J=2 \gamma$ to (8 ⁻); γ to (9 ⁻); band assignment.
2492 8						R	
2492.78 ^{<i>a</i>} 17	(11^{+})		FGH				J^{π} : $\Delta J=1 \gamma$ to (10 ⁺); band assignment.
2507.48 ^J 9	(10^{-})		G				J^{π} : γ s to (8) ⁻ and (9 ⁻); band assignment.
2520 10	0^{+}				n n	1	$ \begin{array}{ccc} I & J^{A} \colon L(p,t) = 0. \\ T & I^{A} \colon I(p,t) = 0. \end{array} $
$2552 10^{1}$	(10^{-})		СН				I^{π} : χ to (9^{-}) : hand assignment
2610 10	(10)		GII		ΝP	1	T XREF: T(2625).
2689 10						1	T
2710.93 ⁸ 11	11-		GH				J^{π} : $\Delta J=2 \gamma$ to (9 ⁻); γ to (10 ⁻); band assignment.
2725 10	01				ΝP	1	T XREF: N(2690). I^{π} : I (p t)=0
2730.84 ^k 16	(10^{-})		СН				J^{π} . $\Delta I = 1$ v to (0^{-}) ; hand assignment
2739.15 [°] 15	(10^{-})		GH				J^{π} : $\Delta J=2 \gamma$ to (8 ⁻); band assignment.
2741.66 ^j 12	(11^{-})		G				J^{π} : $\Delta J=2 \gamma$ to (9 ⁻); band assignment.
2769.27 ^h 16	(10^{+})		GH				J^{π} : $\Delta J=1 \gamma$ to (11 ⁺); γ to (10 ⁺); band assignment.
2775 10					N	1	T
2775.65 ^d 18	(12^{+})		FGH				J^{π} : $\Delta J=2 \gamma$ to (10 ⁺); $\Delta J=1 \gamma$ to (11 ⁺); band assignment.
2815 10]	T
2823.93 16	(11^{-})	#	GH				J^{π} : $\Delta J=1 \gamma$ to (10 ⁻); γ to (9 ⁻); band assignment.
2884.1 7	le	16" fs 2		K			J^{n} : from $\gamma\gamma(\theta)$.
2802 1 7	(1)	27# 6- 17					$B(M1)()=0.223$. $B(E1)()=2.4\times10^{-5}3$.
2892.1 /	(1)	27" 18 17		K			J [*] : IFOM $\gamma\gamma(\theta)$. B(M1)(γ)=0.07 / B(E1)(γ)=0.8×10 ⁻⁵ 5
2941.0 20	$(1,2^{+})$			K			J^{π} : γ to 0 ⁺ .
2972.49 <mark>8</mark> <i>13</i>	12-		G				J^{π} : $\Delta J=2 \gamma$ to (10 ⁻); γ to (11 ⁻); band assignment.
2980.58 [°] 18	(11^{-})		GH				J^{π} : $\Delta J=2 \gamma$ to (9 ⁻); band assignment.
2981.33 ^J 12	(12^{-})		G				J^{π} : γ to (10 ⁻); band assignment.
2996.1 7	1	6.7 [#] fs 13		K			J ^{π} : from $\gamma\gamma(\theta)$. Possible K=(0) assigned by 1993He15.
k							B(M1)(\uparrow)=0.25 5. B(E1)(\uparrow)=2.7×10 ⁻³ 5.
3027.94 ^k 19	(11^{-})		GH				J^{π} : $\Delta J = (1) \gamma$ to (10^{-}) ; γ to (9^{-}) ; band assignment.
3078.25 ^{<i>u</i>} 19	(13^+)	#	FGH				J^{π} : $\Delta J=1 \gamma$ to (12 ⁺); $\Delta J=2 \gamma$ to (11 ⁺); band assignment.
3080.1 7	le	17" ts 3		K			J^{n} : from $\gamma\gamma(\theta)$.
2106 72 18	(12^{-})		CII				$B(MI)()=0.15$ 5. $B(EI)()=1.0\times10^{-5}$ 5.
$3100.72^{\circ}10$	(12)	0.24 m 4	GR			^	$J: \Delta J=(1) \gamma$ to (11); γ to (10); band assignment.
5112.89** 20	14	0.24 ps 4	ГGП			Q	$T_{1/2}$: from B(E2) in Coul. ex. from 12 ⁺ .
3163.1 7	1 [@]	10.3 [#] fs 14		K			J^{π} : from $\gamma \gamma(\theta)$.
	0	щ					B(M1)(\uparrow)=0.24 3. B(E1)(\uparrow)=2.6×10 ⁻⁵ 4.
3198.1 7	$(1,2^+)^{(a)}$	16 [#] fs 3		K			J^{π} : (γ, γ') excitation from 0^+ .
							$B(M1)(\uparrow)=0.14 \ 3. \ B(E1)(\uparrow)=1.5\times10^{-3} \ 3.$

¹⁸²W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XI	REF		Comments
3224.53 ⁸ 15	13-		G			J^{π} : $\Delta J=2 \gamma$ to (11 ⁻); band assignment.
3269.56 ^j 16	(13^{-})		G			J^{π} : $\Delta J=2 \gamma$ to (11 ⁻); band assignment.
3319.7 [°] 5	(12-)		G			J^{π} : γ to (10 ⁻); band assignment.
3343.05 ^k 21	(12^{-})		G			J^{π} : $\Delta J = (1) \gamma$ to (11^{-}) ; γ to (10^{-}) ; band assignment.
3365.1 7	1@	11.1 [#] fs 23		К		J^{π} : from $\gamma\gamma(\theta)$.
						$B(M1)(\uparrow)=0.17$ 4. $B(E1)(\uparrow)=1.9\times10^{-5}$ 4.
3398.35 ^d 19	(14 ⁺)		FGH			J^{π} : $\Delta J=2 \gamma$ to (12^+) ; $\Delta J=1 \gamma$ to (13^+) ; band assignment.
3410.54 ¹ 20	(13^{-})		G			J^{π} : γ s to (11 ⁻) and (12 ⁻); band assignment.
3415.92 ⁰ 19	(12)		G			J^{π} : $\Delta J=1 \gamma$ to (11^+) ; band assignment.
3422.1 7	$(1,2^+)^{(a)}$	10.3 [#] fs 20		K		J^{π} : (γ, γ') excitation from 0 ⁺ . B(M1)(\uparrow)=0.19 3. B(E1)(\uparrow)=2.1×10 ⁻⁵ 4.
3518.04 ^j 15	(14^{-})		G			J^{π} : γ to (12 ⁻): band assignment.
3549.99 <mark>8</mark> 17	14-		G			J^{π} : $\Delta J=2 \gamma$ to (12 ⁻); band assignment.
3567.8 [°] 4	(13-)		G			J^{π} : $\Delta J=(2) \gamma$ to (11^{-}) ; band assignment.
3601.1 7	1 [@]	6.2 [#] fs 12		K		J^{π} : from $\gamma \gamma(\theta)$.
						$B(M1)(\uparrow)=0.23$ 4. $B(E1)(\uparrow)=2.5\times10^{-5}$ 5.
3640.0 20	$(1,2^{+})$			K		J^{π} : γ to 0^+ .
3677.15 ⁰ 21	(13)		G			J^{π} : γ to (12 ⁺); band assignment.
3727.1 15	$(1,2^{+})$			K		J^{π} : γ to 0^+ .
3733.85 ¹ 23	(14 ⁻)		G			J^{π} : γ s to (12 ⁻) and (13 ⁻); band assignment.
3736.40 ^d 20	(15 ⁺)		FGH			J^{π} : γ s to (13 ⁺) and (14 ⁺); band assignment.
3754.89 ^m 21	(15 ⁺)	37 ns 2	FG			J ^π : ΔJ=2, (E2) γ to (13 ⁺); ΔJ=1 γ to (14 ⁺); bandhead of configuration=(($\nu 9/2^+[624]$)($\nu 7/2^-[503]$)8 ⁻)+(($\pi 9/2^-[514]$)($\pi 5/2^+[402]$)7 ⁻). Other possible configuration from coupling of K^{π} =10 ⁺ neutrons to K^{π} =5 ⁺ protons: $\pi 9/2[514]+\pi 1/2[541]$ is less likely.
						$T_{1/2}$: from $\gamma\gamma(t)$ in (¹³ C, α 3n γ). Other: 54 ns 10 in (⁹ Be 3n γ).
3807.63 <mark>8</mark> 18	15-		G			J^{π} : $\Delta J=2 \gamma$ to (13 ⁻); band assignment.
3880.06 ^j 19	(15^{-})		G			J^{π} : $\Delta J=2 \gamma$ to (13 ⁻); band assignment.
3882.0 20	$(1,2^+)$			K		J^{π} : γ to 0^+ .
3893.69 ^e 23	(16 ⁺)	≤7 ns	FG			J ^{π} : (M1) γ to (15 ⁺); probable bandhead of a 4-qp band.
2010.00 \$ 22	16+	0.1.4 2				$\Gamma_{1/2}$: from $\gamma\gamma(t)$ in (°Be, $3n\gamma$).
3910.09 [∞] 22	16 '	0.14 ps 3	FG		Q	$I_{1/2}$: from B(E2) in Coul. ex. from 14 ⁺ .
3920.0.20	1			ĸ		J : $\Delta J = 2$, $E 2 \gamma$ to 14, band assignment. I^{π} : from $\gamma \gamma (\theta)$
3966.25° 23	(14)		G			J^{π} : γ s to (12) and (13); band assignment.
4040.6^{f} 3	(17^{-})	20 ns 1	FG			I^{π} : (E1) γ to (16 ⁺): probable bandhead of a 4-qp band.
	(1,)	20 115 1				$T_{1/2}$: from $\gamma\gamma(t)$ in (¹³ C, α 3n γ). Other: 17 ns 7 in (⁹ Be,3n γ).
4074.8 ¹ 3	(15^{-})		G			J^{π} : γ s to (13 ⁻) and (14 ⁻); band assignment.
4078.89 ^m 23	(16 ⁺)		G			J^{π} : γ to (15 ⁺); band assignment.
4081.5 ^d 3	(16 ⁺)		G			J^{π} : γ s to (14 ⁺) and (15 ⁺); band assignment.
4116.9 <i>j 3</i>	(16 ⁻)		G			J^{π} : γ to (14 ⁻); band assignment.
4197.1 [°] 4	(15 ⁻)		G			J^{π} : γ s to (13 ⁻); band assignment.
4211.1 ^g 3	16-		G			J^{π} : $\Delta J=2 \gamma$ to (14 ⁻); band assignment.
4218.1 5	(17^{+})		F			J^{π} : γ to (16 ⁺).
4280.2 ⁰ 3	(15)		G			J^{π} : γ s to (13) and (14); band assignment.
4293.1 ^e 3	(17^{+})		G			J^{μ} : γ to (16 ⁺); band assignment.
4421.5^{J} 3	(18^{-})		FG			J^{π} : γ to (17 ⁻); band assignment.
4430.3 3	(1/)		G			\mathbf{j} . $\gamma \mathbf{s}$ to (15) and (10); band assignment.

¹⁸²W Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	7	Comments
4453.3 ^{<i>d</i>} 8 4456.2 ^{<i>g</i>} 3 4569.7 6	(17 ⁺) 17 ⁻ (18 ⁺)		G G F		J^{π} : γ s to (15 ⁺) and (16 ⁺); band assignment. J^{π} : $\Delta J=2 \gamma$ to (15 ⁻); band assignment. J^{π} : γ s to (16 ⁺) and (17 ⁺); band assignment.
4570.9 <i>j 4</i>	(17^{-})		G		J^{π} : γ to (15 ⁻); band assignment.
4690.89 ^{&} 25	18^{+}		G		J^{π} : $\Delta J=2 \gamma$ to 16 ⁺ ; band assignment.
4711.9 ^e 3	(18^{+})		G		J ^{π} : γ s to (16 ⁺) and (17 ⁺); band assignment.
4748.0 10	(18 ⁺)	0.088 ps +22-17	F	Q	E(level): this level also seems connected with g.s. band. $T_{1/2}$: from B(E2) in Coul. ex. J^{π} : γ to (16 ⁺); Coulomb excited.
4779.6 ^j 4	(18^{-})		G		J ^{π} : γ to (16 ⁻); band assignment.
4780.4 ⁿ 4	(18)		FG		J ^{π} : γ to (17 ⁻); possible configuration=((ν 9/2 ⁺ [624])(ν 11/2 ⁺ [615])10 ⁺)+ ((π 9/2 ⁻ [514])(π 7/2 ⁺ [404]))8 ⁻ .
4804.9 ^m 3	(18^{+})		G		J^{π} : γ s to (16 ⁺) and (17 ⁺); band assignment.
4820.1 ^{<i>f</i>} 3	(19 ⁻)		FG		J^{π} : γ s to (17 ⁻) and (18 ⁻); band assignment.
4847.4 ^d 8	(18^{+})		G		J^{π} : γ to 16 ⁺ ; band assignment.
4954.8 <mark>8</mark> 11	18-		G		J^{π} : γ to (16 ⁻); band assignment.
5148.6 ^e 5	(19 ⁺)		G		J^{π} : γ s to (17 ⁺) and (18 ⁺); band assignment.
5170.8 4	19-		G	Р	J^{π} : γ to (17 ⁻); band assignment.
5191.8 ⁿ 4	(19)		G		J^{π} : γ to (18); band assignment.
5199.6 ^m 4	(19^{+})		G		J^{π} : γ to (18 ⁺); band assignment.
5225.4 ^d 13	(19 ⁺)		G		J^{π} : γ to (17 ⁺); band assignment.
5235.8 ^f 4	(20^{-})		FG		J^{π} : γ s to (18 ⁻) and (19 ⁻); band assignment.
5338.6 ^j 11	(19 ⁻)		G		J^{π} : γ to (17 ⁻); band assignment.
5428.6 ^{&} 4	20^{+}		G		J^{π} : γ to 18 ⁺ ; band assignment.
5618.6 ⁿ 4	(20)		G		J^{π} : γ s to (18) and (19); band assignment.
5666.9 ^{<i>f</i>} 8	(21 ⁻)		G		J^{π} : γ s to (19 ⁻) and (20 ⁻); band assignment.

[†] From least-squares fit to $E\gamma$ data; normalized χ^2 =0.68.

[‡] For high-spin (J>6) states, ascending spins are assumed with the rise in excitation energy, as expected from yrast type of population of levels in in-beam, heavy-ion γ -ray studies. The transitions involving $\Delta J=2$ from angular distributions are generally treated as E2 from RUL and those with $\Delta J=1$ and significant D+Q admixtures as M1+E2.

- [#] Deduced from $\Gamma_{\gamma 0}$ and branching ratio given by 1993He15.
- [@] K=1 assigned by 1993He15 from comparison of reduced transition probabilities with Alaga's rules.
- & Band(A): $K^{\pi}=0^+$, g.s. band. Backbending at $\hbar\omega \approx 0.38$ MeV.
- ^{*a*} Band(B): $K^{\pi}=0^+$ band. 2001Ga02, in analysis of β vibration and second 0^+ states, suggest that excited 0^+ band in ¹⁸²W is not a β -vibration.
- ^b Band(C): $K^{\pi}=2^+$, γ band.
- ^{*c*} Band(D): K^{π} =2⁻, octupole band.
- ^{*d*} Band(E): $K^{\pi} = 10^+, v9/2[624] \otimes v11/2[615]$. (g_K-g_R)=0.34 4 (1994Re03), g_K(exp)=-0.15 2.
- ^{*e*} Band(F): $K^{\pi} = (16^+), 4-\text{qp}$ band. $v^2(8^-)$: $v9/2[624] \otimes v7/2[503]$; $\pi^2(8^-)$: $\pi 9/2[514] \otimes \pi 7/2[404]$. (g_K-g_R)=0.21 *19* (1994Re03), g_K(exp)=+0.36 *6*. Configuration=($v9/2^+$ [624])($v11/2^+$ [615])10⁺)+($\pi 7/2^+$ [404]) ($\pi 5/2^+$ [402])6⁺ is also proposed by 1994Re03. For $K^{\pi} = 8^-$ neutron configuration, 7/2[514] orbital is excluded by the comparison of experimental g_K and corresponding theoretical value.
- ^{*f*} Band(G): $K^{\pi} = (17^{-}), 4$ -qp band. $v^{2}(10^{+}): v9/2[624] \otimes v11/2[615]; \pi^{2}(7^{-}): \pi 9/2[514] \otimes \pi 5/2[402].$ (g_K-g_R)=0.30 7, 0.18 7 (1994Re03), g_K(exp)=+0.46 3.
- ^g Band(H): $K^{\pi} = 4^{-}, v9/2[624] \otimes v1/2[510]$. g_K(exp)=+0.05 4.
- ^{*h*} Band(I): $K^{\pi} = 6^+, \pi 5/2[402] \otimes \pi 7/2[404]$. g_K(exp)=+1.11 5.

¹⁸²W Levels (continued)

^{*i*} Band(J): $K^{\pi}=5^{-}, v9/2[624] \otimes v1/2[510]$.

^{*j*} Band(K): $K^{\pi} = 6^{-}, v9/2[624] \otimes v3/2[512]$. g_K(exp)=+0.01 1.

- ^{*k*} Band(L): $K^{\pi} = 7^{-}, \pi 9/2[514] \otimes \pi 5/2[402]$. g_K(exp)=+1.17 7.
- ^{*l*} Band(M): $K^{\pi} = 8^{-}, v9/2[624] \otimes v7/2[503]$. g_K(exp)=-0.21 5 excludes 7/2[514] neutron orbital when compared with theoretical value.
- ^{*m*} Band(N): $K^{\pi}=15^+, 4$ -qp band. $v^2(8^-)$: $v9/2[624] \otimes v7/2[503]$; $\pi^2(7^-)$: $\pi 9/2[514] \otimes \pi 5/2[402]$. $g_K(exp)=+0.52$ 4. For $K^{\pi}=8^-$ neutron configuration, 7/2[514] orbital is excluded by the comparison of experimental g_K and corresponding theoretical value.

^{*n*} Band(O): $K^{\pi} = 18^{-}, v_{(10^{+})}^{2} \otimes \pi_{(8^{-})}^{2}$. $v^{2}(10^{+}): v9/2[624] \otimes v11/2[615]; \pi^{2}(8^{-}): \pi 9/2[514] \otimes \pi 7/2[404]. g_{K}(exp) \approx +0.32.$

^o Band(P): K=(12) band.

$\gamma(^{182}W)$

 $q_{K}(E0/E2)$ =ratios of K-conversion intensities of E0 and E2 transitions.

E _i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	$I_{(\gamma+ce)}$	Comments
100.10598	2+	100.10595 [#] 7	100	0.0	0+	E2		3.89		B(E2)(W.u.)=136.1 <i>18</i> α (K)=0.878 <i>13</i> ; α (L)=2.28 <i>4</i> ; α (M)=0.576 <i>8</i> α (N)=0.1358 <i>19</i> ; α (O)=0.0186 <i>3</i> ; α (P)=7.08×10 ⁻⁵ <i>10</i>
329.4268	4+	229.3207 [#] 6	100	100.10598	2+	E2		0.196		B(E2)(W.u.)=196 <i>10</i> α (K)=0.1167 <i>17</i> ; α (L)=0.0605 <i>9</i> ; α (M)=0.01497 <i>21</i> α (N)=0.00354 <i>5</i> ; α (O)=0.000505 <i>7</i> ;
680.42	6+	351.02 6	100	329.4268	4+	E2		0.0538		$\alpha(P)=9.50\times10^{-6} \ 14$ B(E2)(W.u.)=201 22 $\alpha(K)=0.0380 \ 6; \ \alpha(L)=0.01210 \ 17; \ \alpha(M)=0.00293 \ 5$ $\alpha(N)=0.000696 \ 10; \ \alpha(O)=0.0001027 \ 15;$
1135.82	0+	1035.65 12	100 <i>33</i>	100.10598	2+	[E2]		0.00420		$\begin{array}{l} \alpha(\mathbf{r}) = 3.34 \times 10^{-6} \ 5 \\ \alpha(\mathbf{K}) = 0.00346 \ 5; \ \alpha(\mathbf{L}) = 0.000575 \ 8; \\ \alpha(\mathbf{M}) = 0.0001317 \ 19 \\ \alpha(\mathbf{N}) = 3.16 \times 10^{-5} \ 5; \ \alpha(\mathbf{O}) = 5.05 \times 10^{-6} \ 7; \end{array}$
		1135.9 2		0.0	0^+	E0			0.84 21	$\alpha(P)=3.21\times10^{-7}$ 5 $q_{K}^{2}(E0/E2)=1.8$ 7, X(E0/E2)=0.09 4 (2005Ki02
1144 32	8+	463.9.1	100	680.42	6+	E2		0.0254		evaluation). B(E2)(W μ)=209 18
1111.52	0	103.7 1	100	000.12	0	52		0.0251		$\begin{array}{l} \alpha(\mathbf{K})=0.0191 \ 3; \ \alpha(\mathbf{L})=0.00479 \ 7; \\ \alpha(\mathbf{M})=0.001140 \ 16 \\ \alpha(\mathbf{N})=0.000272 \ 4; \ \alpha(\mathbf{O})=4.11\times10^{-5} \ 6; \\ \alpha(\mathbf{P})=1 \ 735\times10^{-6} \ 25 \end{array}$
1221.4001	2+	891.77 10	0.163 7	329.4268	4+	E2		0.00569		$\begin{array}{l} B(E2)(W.u.)=0.0346 \ 18 \\ \alpha(K)=0.00464 \ 7; \ \alpha(L)=0.000810 \ 12; \\ \alpha(M)=0.000187 \ 3 \\ \alpha(N)=4 \ 47 \times 10^{-5} \ 7; \ \alpha(\Omega)=7.09 \times 10^{-6} \ 10; \end{array}$
		1121.290 <i>3</i>	100.0	100.10598	2+	E2+M1+E0	+30 +6-4			α (P)=4.31×10 ⁻⁷ 6 B(E2)(W.u.)=6.74 <i>17</i> Mult.: E0 component suggested by ce data in ¹⁸² Ta β^- (1990Ka35) and q _K (E0/E2)=0.19 6
		1221.395 <i>3</i>	77.27 22	0.0	0+	E2		0.00305		$\begin{array}{l} (1975 \text{ we22}).\\ \delta: 17 + 4 - 3 \ (1990 \text{ Ka35}).\\ \text{B}(\text{E2})(\text{W.u.}) = 3.40 \ 9 \\ \alpha(\text{K}) = 0.00252 \ 4; \ \alpha(\text{L}) = 0.000402 \ 6; \\ \alpha(\text{M}) = 9.15 \times 10^{-5} \ 13 \end{array}$

9

					A	dopted Levels,	Gammas (ce	ontinued)	
						γ (¹⁸² W) (continued)		
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
1257.4121	2+	(121.5 2)	0.16 4	1135.82	0+	[E2]		1.83	$\begin{aligned} \alpha(N) &= 2.20 \times 10^{-5} \ 3; \ \alpha(O) &= 3.53 \times 10^{-6} \ 5; \ \alpha(P) &= 2.34 \times 10^{-7} \\ 4; \ \alpha(IPF) &= 6.75 \times 10^{-6} \ 10 \\ B(E2)(W.u.) &= 1.8 \times 10^2 \ 5 \\ \alpha(K) &= 0.596 \ 9; \ \alpha(L) &= 0.936 \ 15; \ \alpha(M) &= 0.236 \ 4 \\ \alpha(N) &= 0.0556 \ 9; \ \alpha(O) &= 0.00765 \ 13; \ \alpha(P) &= 4.50 \times 10^{-5} \ 7 \\ E_{\gamma}: \ B(E2)(W.u.) &= 200 \ 60 \ \text{is considered as large and} \\ \text{improbable by the evaluators in view of relatively small} \\ B(E2)(W.u.) &= 0 \ \text{for other transitions from the } 1257 \ \text{level} \end{aligned}$
		928.00 <i>3</i>	40.5 6	329.4268	4+	E2		0.00524	Thus the presence of this transition is treated as questionable. B(E2)(W.u.)=1.73 <i>15</i> α (K)=0.00429 <i>6</i> ; α (L)=0.000738 <i>11</i> ; α (M)=0.0001698 <i>24</i> α (N)=4.07×10 ⁻⁵ <i>6</i> ; α (O)=6.47×10 ⁻⁶ <i>9</i> ; α (P)=3.98×10 ⁻⁷ <i>6</i>
		1157.3 <i>I</i>	42 6	100.10598	2+	E2+M1+E0	-9 +3-6	0.0092 5	 δ(M3/E2)=+0.04 14 (γγ(θ) in ¹⁸²Ta β⁻, 1992Ch26). B(E2)(W.u.)=0.59 10 E_γ: from ¹⁸²Re decay (64.0 h). In β⁻ decay, 1157+1158 doublet is not well resolved; with average energy of the doublet at 1157.510 15, it deviates from level-energy difference by 0.2 keV in β⁻ decay dataset. I_γ: unweighted average of 48.6 23 (β⁻ decay) and 35 4 in ε decay (64 h). Other: 72 5 in Coul. ex. is high by ≈70%. Values from (α,2nγ) and (n,n'γ) cannot be used as these studies did not account for 1157 being a doublet with the second component from 1487 level. Mult.: E0 component is estimated as 0.5% 1 by the
		1257.407 3	100.00 28	0.0	0+	E2		0.00289	evaluators from comparison of γ -ray intensities and K-shell electron conversion data in 1976He18. α : based on 0.5% <i>I</i> E0 component and $\delta(\text{E2/M1})=-9 + 3-6$. B(E2)(W.u.)=0.93 8 α (K)=0.00239 4; α (L)=0.000378 6; α (M)=8.60×10 ⁻⁵ <i>I</i> 2 α (N)=2.06×10 ⁻⁵ 3; α (O)=3.33×10 ⁻⁶ 5; α (P)=2.21×10 ⁻⁷
1289.1498	2-	31.7377 5	5.30 13	1257.4121	2+	E1		1.628	5; α (IPF)=1.119×10 × 10 B(E1)(W.u.)=7.1×10 ⁻⁵ 4 α (L)=1.259 18; α (M)=0.293 4 α (N)=0.0675 10; α (O)=0.00910 13; α (P)=0.000305 5 I _γ : all branchings relative to 1189γ, since efficiency problems at low energies such as 67.7 keV can be problematic. Branching for 31.7γ is from β ⁻ decay. Other: 2.8.6 from ε decay is low by a factor of \approx 2
		67.74970 [#] 10	260.4 21	1221.4001	2+	E1		0.202	B(E1)(W.u.)=0.000360 <i>14</i> α (L)=0.1563 <i>22</i> ; α (M)=0.0358 <i>5</i> α (N)=0.00840 <i>12</i> ; α (O)=0.001234 <i>18</i> ; α (P)=5.51×10 ⁻⁵ <i>8</i>

From ENSDF

I

	Adopted Levels, Gammas (continued)												
						$\gamma(^{182}W)$	W) (continued)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments				
1289.1498	2-	959.73 3	2.120 24	329.4268	4+	E3+M2	-5.5 +19-10	0.0116 7	Mult., δ : RUL(M2)=1 implies δ <0.002, thus pure E1 is assigned. Experimental limit: δ <0.02. B(M2)(W.u.)=0.00016 <i>11</i> ; B(E3)(W.u.)=3.44 <i>16</i> α (K)=0.0090 <i>6</i> ; α (L)=0.00196 <i>8</i> ; α (M)=0.000463 <i>17</i> α (N)=0.000111 <i>4</i> ; α (O)=1.73×10 ⁻⁵ <i>7</i> ; α (P)=9.3×10 ⁻⁷ <i>6</i>				
		1189.040 <i>3</i>	100.00 24	100.10598	2+	E1+M2+E3		0.0047 3	δ: other: -4.6 +36−Inf (γγ(θ) in ¹⁸² Ta β ⁻ , 1992Ch26). δ(M2/E1)=+0.48 3; δ(E3/E1)=-0.67 5 B(E1)(W.u.)=1.58×10 ⁻⁸ 13; B(M2)(W.u.)=0.012 2; B(E3)(W.u.)=10.6 13 δ: from weighted averages of δ(M2/E1)=+0.44 6, δ(E3/E1)=-0.69 10 (1983Ri05); δ(M2/E1)=+0.49 3, δ(E3/E1)=-0.64 5 (1972Kr05); δ(M2/E1)==0.49 3, δ(E3/E1)==0.72 7 (1972He10).				
		1289.145 <i>3</i>	8.32 4	0.0	0+	M2		0.01231	Mult.,α: 59% 4 E1, 14% 1 M2 and 27% 3 E3. Conversion coefficient deduced for this admixture from BrIcc code. B(M2)(W.u.)=0.00460 17 α(K)=0.01019 15; α(L)=0.001630 23; α(M)=0.000372 6 α(N)=8.98×10 ⁻⁵ 13; α(O)=1.466×10 ⁻⁵ 21;				
1331.1153	3+	1001.700 18	17.95 <i>21</i>	329.4268	4+	E2+M1	-8.9 +18-21	0.00455 8	$\begin{aligned} \alpha(\mathbf{N}) &= 1.047 \times 10^{-6} \ I5; \ \alpha(\mathbf{IPF}) = 5.96 \times 10^{-6} \ 9 \\ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) > 4.1 \times 10^{-8}; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) > 0.0023 \\ \alpha(\mathbf{K}) = 0.00374 \ 6; \ \alpha(\mathbf{L}) = 0.000627 \ I0; \\ \alpha(\mathbf{M}) = 0.0001438 \ 23 \\ \alpha(\mathbf{N}) = 3.45 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 5.51 \times 10^{-6} \ 9; \end{aligned}$				
		1231.004 <i>3</i>	100.00 <i>24</i>	100.10598	2+	E2+M1	-33 +6-9	0.00301	$\alpha(P)=3.48\times10^{-7} 6$ δ : other: $-8.2 + 22 - 42 (\gamma\gamma(\theta) \text{ in } {}^{182}\text{Ta }\beta^{-}, 1992\text{Ch26}).$ B(M1)(W.u.)>9.7×10 ⁻⁹ ; B(E2)(W.u.)>0.0046 $\alpha(K)=0.00249 4; \alpha(L)=0.000395 6; \alpha(M)=9.01\times10^{-5}$ I3 $\alpha(N)=2.16\times10^{-5} 3; \alpha(O)=3.48\times10^{-6} 5; \alpha(P)=2.31\times10^{-7} 4; \alpha(IPF)=7.86\times10^{-6} 11$				
1373.8301	3-	42.7148 4	3.82 8	1331.1153	3+	E1		0.720	δ: others: +11 +0-3 (γγ(θ) in ¹⁰² Ia β , 1992Ch26); -60 +20-100 (1972Kr05). B(E1)(W.u.)=0.00028 4 α (L)=0.557 8; α (M)=0.1286 18 α (N)=0.0299 5; α (O)=0.00419 6; α (P)=0.0001586 23				
		84.6802 [#] 3	37.82 25	1289.1498	2-	M1+E2	+0.326 11	7.66	B(M1)(W.u.)=0.034 5; B(E2)(W.u.)= 2.1×10^2 3 α (K)=5.84 9; α (L)=1.40 3; α (M)=0.331 8				

	Adopted Levels, Gammas (continued)													
						$\gamma(^{182}W)$	(continued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments					
	_				<u> </u>				α(N)=0.0790 18; α(O)=0.0121 3; α(P)=0.000593 9 δ: weighted average of +0.32 3 (1983Ri05), +0.30 2 (1980Sp01), +0.31 5 (1975Qu01), +0.30 2 (1972Kr05), 0.352 3 (1972He10,ce data, uncertainty increased to 0.02 in averaging procedure), 0.40 7 (1971Ga37,ce data), 0.346 7 (1967Ni03, ce data, uncertainty increased to 0.02 in averaging procedure). Values with sign are from γ(θ) or γγ(θ) data.					
1373.8301	3-	116.4179 [#] 6	6.33 5	1257.4121	2+	E1		0.253	B(E1)(W.u.)= $2.3 \times 10^{-5} 3$ α (K)=0.207 3; α (L)=0.0353 5; α (M)=0.00805 12 α (N)=0.00191 3; α (O)=0.000290 4; α (P)= $1.510 \times 10^{-5} 22$					
		152.42991 [#] 26	100.0 5	1221.4001	2+	Ε1		0.1258	B(E1)(W.u.)=0.000162 21 α(K)=0.1038 15; α(L)=0.01703 24; α(M)=0.00387 6 α(N)=0.000919 13; α(O)=0.0001421 20; α(P)=7.85×10 ⁻⁶ 11 δ: -0.22 11 (1992Ch26), -0.023 4 (1983Ri05), 0.035 53 (1980Sp01 in ¹⁸² Re decay); +0.014 13 (1975Qu01); all from $\gamma(\theta)$ or $\gamma\gamma(\theta)$. Subshell ratios in ce data (1967Ni03) give pure E1 consistent with RUL(M2)=1 suggests δ <0.006, thus the evaluators assign pure E1.					
		1044.42 5	3.41 6	329.4268	4+	E1+M2(+E3)	0.46 9	0.0051 12	B(E1)(W.u.)=1.42×10 ⁻⁸ 21; B(M2)(W.u.)=(0.013 5) α (K)=0.0042 10; α (L)=0.00067 16; α (M)=0.00015 4 α (N)=3.7×10 ⁻⁵ 9; α (O)=6.0×10 ⁻⁶ 14; α (P)=4.2×10 ⁻⁷ 10 S(M2)(F1)=+0.4.2 S(F3/F1)=-0.3.2 (1072K r05)					
		1273.719 <i>3</i>	9.40 5	100.10598	2+	E1+M2+E3		0.0029 5	δ(M2/E1)=+0.4 5, δ(E3/E1)=-0.5 2 (19/2Kr05). δ(M2/E1)=+0.36 10; δ(E3/E1)=-0.28 12 B(E1)(W.u.)=1.37×10 ⁻⁸ 20; B(M2)(W.u.)≈8×10 ⁻⁴ ; B(E3)(W.u.)=9 2 Mult.,α: 81% 5 E1, 12% 4 M2 and 7% 2 E3. Conversion coefficient deduced for this admixture from BrIcc code. Mult.,δ: from γ(θ) and lin pol data of 1983Ri05, agrees with ce data of 1992Ch26.					
		1373.824 3	3.17 3	0.0	0+	E3		0.00496	B(E3)(W.u.)=5.8 8 α (K)=0.00400 6; α (L)=0.000728 11; α (M)=0.0001685 24 α (N)=4.05×10 ⁻⁵ 6; α (O)=6.44×10 ⁻⁶ 9; α (P)=3.97×10 ⁻⁷ 6; α (IPF)=1.252×10 ⁻⁵ 18					
1442.835	4+	1113.410 18	100.0 14	329.4268	4+	E2+M1(+E0)	+5.6 +13-10	0.00376 8	B(E2)(W.u.)=10.3 <i>10</i> Mult.,δ: from ce data in ¹⁸² Ta $β^-$, 1990Ka35					

		<u>l)</u>							
						$\gamma(^1$	⁸² W) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{@}$	Comments
1442.835	4+	1342.730 15	57.7 3	100.10598	2+	E2		0.00256	suggest M1+E2(+E0) with δ (E2/M1)=20 <i>13</i> . δ (E2/M1)=+1.1 2 from $\gamma\gamma(\theta)$ in ¹⁸² Ta β ⁻ (1992Ch26). E0 component is suggested by 1975We22 with q _K (E0/E2)=0.41 9. B(E2)(W.u.)=2.41 23 α (K)=0.00211 3; α (L)=0.000329 5; α (M)=7.49×10 ⁻⁵ <i>11</i> (b) 1.80×10 ⁻⁵ 2(0) 2.00×10 ⁻⁶ 4
									$\begin{aligned} \alpha(N) &= 1.80 \times 10^{-5} \beta(O) = 2.90 \times 10^{-5} 4; \\ \alpha(P) &= 1.95 \times 10^{-7} ; \alpha(IPF) = 2.56 \times 10^{-5} \text$
1487.5018	4-	44.66 ^{&} 11	1.12 22	1442.835	4+	[E1]		0.637 10	B(E1)(W.u.)>0.00011 α (L)=0.493 8; α (M)=0.1136 18 α (N)=0.0264 5; α (O)=0.00373 6; α (P)=0.0001436 22
		113.67170 [#] 22	70.0 3	1373.8301	3-	M1+E2	+0.36 1	3.18	B(M1)(W.u.)>0.038; B(E2)(W.u.)>1.5×10 ² α (K)=2.49 4; α (L)=0.530 9; α (M)=0.1242 22 α (N)=0.0297 5; α (O)=0.00462 8; α (P)=0.000250 4 I _y : 122 10 in (α ,2ny) is high by \approx 75%.
		156.3864 [#] 3	100.0 4	1331.1153	3+	El		0.1177	B(E1)(W.u.)>0.00023 $\alpha(K)=0.0972 \ 14; \ \alpha(L)=0.01590 \ 23; \ \alpha(M)=0.00362 \ 5$ $\alpha(N)=0.000858 \ 12; \ \alpha(O)=0.0001328 \ 19; \ \alpha(P)=7.38\times10^{-6} \ 11$ $\delta(M2/E1)=-0.053 \ 4 \ (1983Ri05,\gamma(\theta) \ and \ lin \ pol); \ -0.08 \ 5 \ (1992Ch26, \ \gamma\gamma(\theta)); \ +0.06 \ +3-6 \ (1981Ka22,\gamma\gamma(\theta)). \ But \ RUL=1 \ for \ M2 \ implies \ \delta<0.005, \ thus \ the \ evaluators \ assign \ E1.$ $\delta(M2/E1)=-0.08 \ 5 \ (\gamma\gamma(\theta) \ and \ ce \ in \ ^{182}Ta \ \beta^-, \ 1992Ch26).$
		198.35187 [#] 29	54.84 21	1289.1498	2-	E2		0.317	B(E2)(W.u.)>68 α(K)=0.1725 25; α(L)=0.1097 16; α(M)=0.0273 4 α(N)=0.00646 9; α(O)=0.000910 13; α(P)=1.364×10 ⁻⁵ 19 δ(M3/E2)=+0.067 10 from γ(θ) in ¹⁸² Ta β ⁻ , but RUL(M3)=10 suggests δ(M3/E2) should be near zero. The evaluators assign pure E2.
		1158.1 2	10.8 13	329.4268	4+	E1		1.38×10 ⁻³	B(E1)(W.u.)>6.1×10 ⁻⁸ α (K)=0.001159 <i>17</i> ; α (L)=0.0001632 <i>23</i> ; α (M)=3.66×10 ⁻⁵ 6

					A	dopted Le	vels, Gamma	as (continued)	
						$\gamma(^1$	⁸² W) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
1487.5018	4-	1387.390 <i>3</i>	2.73 4	100.10598	2+	E3+M2	2.6 4	0.00554 24	$\begin{aligned} &\alpha(\text{N}) = 8.79 \times 10^{-6} \ 13; \ \alpha(\text{O}) = 1.432 \times 10^{-6} \ 20; \\ &\alpha(\text{P}) = 1.021 \times 10^{-7} \ 15; \ \alpha(\text{IPF}) = 7.59 \times 10^{-6} \ 12 \\ &\delta(\text{M2/E1}) = -0.01 \ +2 - 1 \ (\gamma\gamma(\theta) \text{ in } ^{182}\text{Ta }\beta^-, \ 1992\text{Ch26}). \\ &I_{\gamma}: \text{ from } ^{182}\text{Re decay (64.0 h).} \\ &B(\text{M2})(\text{W.u.}) > 0.0020; \ B(\text{E3})(\text{W.u.}) > 5.9 \\ &\alpha(\text{K}) = 0.00450 \ 21; \ \alpha(\text{L}) = 0.00079 \ 3; \ \alpha(\text{M}) = 0.000183 \ 7 \\ &\alpha(\text{N}) = 4.39 \times 10^{-5} \ 16; \ \alpha(\text{O}) = 7.0 \times 10^{-6} \ 3; \ \alpha(\text{P}) = 4.50 \times 10^{-7} \end{aligned}$
1510.22	4+	830.1 4	17 <i>3</i>	680.42	6+				21; $\alpha(\text{IPF})=1.426\times10^{-3}$ 22 E _{γ} , I _{γ} : weighted averages taken of data from β^- , ε and
		1180.80 11	100 3	329.4268	4+	E2+M1	-2.8 10	0.0036 4	(n,n' γ) for all three γ rays from the 1510 level. $\alpha(K)=0.0030 \ 4$; $\alpha(L)=0.00047 \ 5$; $\alpha(M)=0.000108 \ 11$ $\alpha(N)=2.59\times10^{-5} \ 25$; $\alpha(O)=4.2\times10^{-6} \ 5$; $\alpha(P)=2.8\times10^{-7} \ 4$; $\alpha(IPF)=3.11\times10^{-6} \ 16$
		1410.13 5	45.8 10	100.10598	2+	E2		0.00235	$\alpha(\mathbf{K}) = 0.00193 \ 3; \ \alpha(\mathbf{L}) = 0.000298 \ 5; \ \alpha(\mathbf{M}) = 6.76 \times 10^{-5} \ 10$ $\alpha(\mathbf{N}) = 1.624 \times 10^{-5} \ 23; \ \alpha(\mathbf{O}) = 2.62 \times 10^{-6} \ 4;$ $\alpha(\mathbf{P}) = 1.783 \times 10^{-7} \ 25; \ \alpha(\mathbf{IPF}) = 4.20 \times 10^{-5} \ 6$
1553.2240	4-	65.72215 [#] 15	39.8 4	1487.5018	4-	M1+E2	0.093 6	2.91 5	B(M1)(W.u.)=0.00624 24; B(E2)(W.u.)=5.2 7 α (L)=2.25 4; α (M)=0.517 9 α (N)=0.1242 20; α (O)=0.0200 3; α (P)=0.001340 19
		110.393 12	1.42 4	1442.835	4+	[E1]		0.290	B(E1)(W.u.)= 4.53×10^{-7} 20 α (K)= 0.238 4; α (L)= 0.0408 6; α (M)= 0.00931 13 α (N)= 0.00220 3; α (O)= 0.000335 5; α (P)= 1.717×10^{-5} 24
		179.39381 [#] 25	41.22 19	1373.8301	3-	M1+E2	+1.3 2	0.62 4	B(M1)(W.u.)=0.000119 24; B(E2)(W.u.)=2.6 4 α (K)=0.42 5; α (L)=0.149 5; α (M)=0.0363 13 α (N)=0.0086 3; α (O)=0.00126 4; α (P)=3.9×10 ⁻⁵ 5 I _y : 35.5 21 from ε decay is quite in agreement. δ: unweighted average of +2.2 2 (1992Ch26), +2.1 +3-2 (1983Ri05), +1.3 5 (1980Sp01), +0.9 4 (1975Qu01), +0.92 +13-7 (1972Kr05), +0.90m +40-23 (1972He10), 0.7 1 (1967Ni03). Weighted average is 1.0 2 but with reduced χ^2 =10. Except for 1967Ni03, all other methods are $\gamma(\theta)$ on oriented nuclei or $\gamma\gamma(\theta)$.
		222.1085 [#] 3	100.0 <i>3</i>	1331.1153	3+	E1		0.0480	B(E1)(W.u.)= 3.92×10^{-6} <i>13</i> α (K)=0.0399 6; α (L)=0.00630 9; α (M)=0.001429 20 α (N)=0.000340 5; α (O)= 5.34×10^{-5} 8; α (P)= 3.17×10^{-6} 5 δ : +0.007 5 (1972Kr05), +0.027 7 (1992Ch26), -0.12 <i>18</i> (1975Qu01), pure E1 from subshell data (1967Ni01), as also suggested by RUL for M2.
		264.0740 [#] 3	47.74 19	1289.1498	2-	E2		0.1254	B(E2)(W.u.)=0.700 23 α (K)=0.0799 12; α (L)=0.0347 5; α (M)=0.00852 12 α (N)=0.00202 3; α (O)=0.000291 4; α (P)=6.69×10 ⁻⁶ 10

From ENSDF

 $^{182}_{74}\mathrm{W}_{108}$ -14

	Adopted Levels, Gammas (continued)													
							$\gamma(^{182}W)$	y) (continued)						
	E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments				
	1553.2240	4-	1223.73 11	3.1 4	329.4268	4+	E1+M2(+E3)	-0.15 +10-25	0.0016 15	B(E1)(W.u.)=7.1×10 ⁻¹⁰ 10; B(M2)(W.u.)=(5.E-5 +7-5) α(K)=0.0013 13; α(L)=1.9×10 ⁻⁴ 20; α(M)=4.2×10 ⁻⁵ 46 α(N)=1.0×10 ⁻⁵ 11; α(O)=1.6×10 ⁻⁶ 18; α(P)=1.2×10 ⁻⁷ 13; α(IPF)=2.7×10 ⁻⁵ 3 E _γ : weighted average from β ⁻ and ε decay. Mult.,δ: from ce data of 1976He18 and γγ(θ) data of of 1992Ch26 in ¹⁸² Ta β ⁻ . E3 admixture				
			1453.120 6	0.405 14	100.10598	2+	E3(+M2)	>2.3	0.0048 4	cannot be ruled out. B(E3)(W.u.)=0.017 2 $\alpha(K)=0.0039 4$; $\alpha(L)=0.00068 5$; $\alpha(M)=0.000156$ 11 $\alpha(N)=3.76\times10^{-5} 25$; $\alpha(O)=6.0\times10^{-6} 4$; $\alpha(P)=3.9\times10^{-7} 4$; $\alpha(IPF)=2.29\times10^{-5} 4$ I _y : other: 27 3 in ($\alpha,2n\gamma$) is much higher, most				
	1621.284	5-	111.07 <i>5</i> 133 80 5	4.1 <i>3</i>	1510.22 1487 5018	$4^+_{4^-}$	M1+F2	$\pm 0.39 \pm 4 - 3$	1 96 4	$\alpha(K) = 1.55.4; \alpha(L) = 0.316.10; \alpha(M) = 0.0739.24$				
l.			155.60 5	49 5	1407.3010	4		+0.37 +4-3	0.0020	$\alpha(\mathbf{K}) = 1.534, \alpha(\mathbf{L}) = 0.516100, \alpha(\mathbf{M}) = 0.073924$ $\alpha(\mathbf{K}) = 0.01776; \alpha(\mathbf{O}) = 0.002778; \alpha(\mathbf{P}) = 0.0001554$				
			247.46 <i>5</i>	45 3	1373.8301	3-	E1 E2		0.0838	$\alpha(\mathbf{K})=0.0693\ 10;\ \alpha(\mathbf{L})=0.01118\ 16;\ \alpha(\mathbf{M})=0.00254$ $\alpha(\mathbf{N})=0.000604\ 9;\ \alpha(\mathbf{O})=9.39\times10^{-5}\ 14;$ $\alpha(\mathbf{P})=5.36\times10^{-6}\ 8$ $\alpha(\mathbf{K})=0.0951\ 14;\ \alpha(\mathbf{L})=0.0447\ 7;\ \alpha(\mathbf{M})=0.01101\ 16$ $\alpha(\mathbf{N})=0.00261\ 4;\ \alpha(\mathbf{O})=0.000374\ 6;$				
			1291.8 <i>4</i>	4.6 5	329.4268	4+	E1+M2	0.4 2	0.0027 14	$\alpha(P) = 7.86 \times 10^{-6} II$ $\alpha(K) = 0.0022 I2; \ \alpha(L) = 3.4 \times 10^{-4} I9;$ $\alpha(M) = 7.7 \times 10^{-5} 44$ $\alpha(N) = 1.9 \times 10^{-5} II; \ \alpha(O) = 3.0 \times 10^{-6} I7;$ $\alpha(D) = 2.2 \times 10^{-7} I2 \times (DE) 5.0 \times 10^{-5} 7$				
			1521.3 4	1.89 20	100.10598	2+	(E3)		0.00402	$\alpha(P)=2.2\times10^{-7} 15; \ \alpha(PF)=5.0\times10^{-7} 7$ $\alpha(K)=0.00325 5; \ \alpha(L)=0.000568 8; \alpha(M)=0.0001309 19$ $\alpha(N)=3.15\times10^{-5} 5; \ \alpha(O)=5.03\times10^{-6} 7; \alpha(P)=3.20\times10^{-7} 5; \ \alpha(OEE)=3.37\times10^{-5} 5$				
	1623.51	(5)+	943.1 <i>3</i>	14.0 22	680.42	6+	E2		0.00507	$\alpha(K) = 0.2015 6; \ \alpha(L) = 0.000711 \ 10; \alpha(M) = 0.0001634 \ 23 \alpha(N) = 3.92 \times 10^{-5} 6; \ \alpha(O) = 6.23 \times 10^{-6} \ 9; \alpha(P) = 3.86 \times 10^{-7} \ 6 L : 25 \ 5 \ in (p \ r'a) is disconnect.$				
			1294.0 <i>3</i>	100.0 19	329.4268	4+	E2(+M1)	>30	0.00274					

L

15

Adopted Levels, Gammas (continued)									
						- -	$\gamma(^{182}W)$ (continu	ued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_{f}	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
									$\alpha(N)=1.94\times10^{-5}$ 3; $\alpha(O)=3.13\times10^{-6}$ 5; $\alpha(P)=2.10\times10^{-7}$ 3;
1660.383	5-	39.1 <i>I</i>	3.7 7	1621.284	5-	M1+E2	0.061 7	13.6 4	α (IPF)=1.654×10 ⁻⁵ 24 α (L)=10.53 25; α (M)=2.42 6
		107.13 5	20.1 15	1553.2240	4-	M1+E2	-0.8 2	3.54 13	$\alpha(N)=0.581$ 15; $\alpha(O)=0.0935$ 21; $\alpha(P)=0.00618$ 10 $\alpha(K)=2.3$ 4; $\alpha(L)=0.96$ 15; $\alpha(M)=0.24$ 4 $\alpha(N)=0.056$ 9; $\alpha(O)=0.0081$ 12; $\alpha(P)=0.00022$ 4 I_{γ} : 55 4 in (α ,2n γ) is discrepant.
		150.25 ^{&} 5	7.3 7	1510.22	4+	(E1)		0.1305	α (K)=0.1077 <i>16</i> ; α (L)=0.01770 <i>25</i> ; α (M)=0.00403 <i>6</i> α (N)=0.00956 <i>14</i> ; α (O)=0.0001476 <i>21</i> ; α (P)=8.13×10 ⁻⁶ <i>12</i>
		172.87 5	51 <i>3</i>	1487.5018	4-	M1+E2	+0.26 1	0.971	
		217.55 5	46 <i>3</i>	1442.835	4+	(E1)		0.0506	I _γ : 137 14 in (α,2nγ) is discrepant. α (K)=0.0420 6; α (L)=0.00664 10; α (M)=0.001508 22 α (N)=0.000359 5; α (O)=5.63×10 ⁻⁵ 8; α (P)=3.33×10 ⁻⁶ 5 L : 03.7 in (α,2nα) is discrepant.
		286.56 5	100 7	1373.8301	3-	E2		0.0976	$\alpha(\mathbf{X}) = 0.0643 \ 9; \ \alpha(\mathbf{L}) = 0.0254 \ 4; \ \alpha(\mathbf{M}) = 0.00621 \ 9 \ \alpha(\mathbf{X}) = 0.001472 \ 24; \ \alpha(\mathbf{M}) = 0.000213 \ 3; \ \alpha(\mathbf{M}) = 5.47 \times 10^{-6} \ 8$
		1330.9 2	5.3 5	329.4268	4+	E1+M2	0.5 2	0.0032 14	$\begin{aligned} \alpha(N) = 0.001472271, \ \alpha(O) = 0.0002133, \ \alpha(P) = 3.47\times10^{-8} \\ \alpha(K) = 0.0026 11; \ \alpha(L) = 4.0\times10^{-4} 18; \ \alpha(M) = 9.1\times10^{-5} 41 \\ \alpha(N) = 2.19\times10^{-5} 98; \ \alpha(O) = 3.6\times10^{-6} 16; \ \alpha(P) = 2.6\times10^{-7} 12; \end{aligned}$
		1560.4 4	1.02 11	100.10598	2+	(E3)		0.00382	α (IPF)=6.3×10 ⁻⁵ 9 α (K)=0.00309 5; α (L)=0.000534 8; α (M)=0.0001231 18 α (N)=2.96×10 ⁻⁵ 5; α (O)=4.74×10 ⁻⁶ 7; α (P)=3.03×10 ⁻⁷ 5; α (IPF)=4.10×10 ⁻⁵ 6
1711.99	10+	567.5 1	100	1144.32	8+	E2		0.01543	$\alpha(\text{IPF})=4.10\times10^{-6} 6$ B(E2)(W.u.)=203 <i>19</i> $\alpha(\text{K})=0.01202$ <i>17</i> ; $\alpha(\text{L})=0.00262$ <i>4</i> ; $\alpha(\text{M})=0.000616$ <i>9</i>
1756.75	6+	313.94 12	7.5 5	1442.835	4+	E2		0.0743	$\alpha(N)=0.0001472\ 21;\ \alpha(O)=2.26\times10^{-5}\ 4;\ \alpha(P)=1.106\times10^{-6}\ 16$ $\alpha(K)=0.0506\ 8;\ \alpha(L)=0.0181\ 3;\ \alpha(M)=0.00440\ 7$
		1076.4 <i>1</i>	100 <i>3</i>	680.42	6+	E2+M1	+2.56 +9-8	0.00444	$\alpha(N)=0.001045 \ TS; \ \alpha(O)=0.0001525 \ 22; \ \alpha(P)=4.37\times10^{-6} \ 7 \ \alpha(K)=0.00368 \ 6; \ \alpha(L)=0.000592 \ 9; \ \alpha(M)=0.0001351 \ 21 \ \alpha(N)=3.24\times10^{-5} \ 5; \ \alpha(O)=5.22\times10^{-6} \ 8; \ \alpha(P)=3.45\times10^{-7} \ 6 \ Mult.: no E0 admixture was found in \ \gamma(ce)(\theta) and ce data of 1975We22$
		1427.2 <i>1</i>	92.1 17	329.4268	4+	E2		0.00231	$\alpha(K)=0.00188 \ 3; \ \alpha(L)=0.000291 \ 4; \ \alpha(M)=6.60\times10^{-5} \ 10 \ \alpha(N)=1.584\times10^{-5} \ 23; \ \alpha(O)=2.56\times10^{-6} \ 4; \ \alpha(P)=1.744\times10^{-7} \ 25; \ \alpha(IPE)=4.67\times10^{-5} \ 7$
1765.53		434.3 2	48 <i>12</i>	1331.1153	$3^+_{2^+}$				25, a(111)=7.07/10 /
1768.943	6-	108.58 5	12.6 25	1660.383	<u>5</u> -	M1+E2	-0.6 2	3.50 13	$\alpha(K)=2.5 \ 3; \ \alpha(L)=0.78 \ 14; \ \alpha(M)=0.19 \ 4$ $\alpha(N)=0.045 \ 9; \ \alpha(O)=0.0066 \ 11; \ \alpha(P)=0.00025 \ 4$ L: 78 6 in (α 2nx) is discrepant
		145.43 5	11.8 9	1623.51	(5)+	(E1)		0.1420	$\alpha(K)=0.1171 \ 17; \ \alpha(L)=0.0193 \ 3; \ \alpha(M)=0.00440 \ 7$ $\alpha(N)=0.001043 \ 15; \ \alpha(O)=0.0001608 \ 23; \ \alpha(P)=8.80\times10^{-6} \ 13$ $I_{\gamma}: \ 45 \ 10 \ in \ (\alpha, 2n\gamma) \ is \ discrepant.$

 $^{182}_{74}\mathrm{W}_{108}\text{--}16$

From ENSDF

 $^{182}_{74}\mathrm{W}_{108}\text{--}16$

						Adopted	Levels, Gamm	as (continued)	
						<u>.</u>	$\gamma(^{182}W)$ (contin	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
		147.71 5	16.2 14	1621.284	5-	M1+E2	+0.8 2	1.30 9	$\alpha(K)=0.94 \ 12; \ \alpha(L)=0.277 \ 24; \ \alpha(M)=0.067 \ 7$ $\alpha(N)=0.0159 \ 15; \ \alpha(O)=0.00237 \ 18; \ \alpha(P)=9.1\times10^{-5} \ 13$ $I_{\gamma}: \ 49 \ 10 \ in \ (\alpha, 2n\gamma) \ is \ discrepant.$
		215.72 5	12.3 24	1553.2240	4-	(E2)		0.240	$\alpha'(K)=0.1376\ 20;\ \alpha(L)=0.0776\ 11;\ \alpha(M)=0.0192\ 3$

						Adopted	Levels, Gammas	(continued)	
							$\gamma(^{182}W)$ (continu	ed)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{@}$	Comments
1768.943	6-	281.43 5	100 7	1487.5018	4-	E2		0.1031	$ \frac{\alpha(N)=0.00455 \ 7; \ \alpha(O)=0.000645 \ 9; \ \alpha(P)=1.106\times10^{-5}}{16} $ $ I_{\gamma}: \ 65 \ 6 \ in \ (\alpha, 2n\gamma) \ is \ discrepant. $ $ \alpha(K)=0.0675 \ 10; \ \alpha(L)=0.0272 \ 4; \ \alpha(M)=0.00665 \ 10 $ $ \alpha(N)=0.001578 \ 23; \ \alpha(O)=0.000228 \ 4; \ \alpha(P)=5.72\times10^{-6} $
		1088.5 <i>3</i>	3.5 4	680.42	6+	E1+M2	0.4 2	0.0040 23	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0033 \ 19; \ \alpha(\mathrm{L}) = 5.1 \times 10^{-4} \ 31; \ \alpha(\mathrm{M}) = 1.17 \times 10^{-4} \\ 70 \\ \alpha(\mathrm{N}) = 2.8 \times 10^{-5} \ 17; \ \alpha(\mathrm{O}) = 4.6 \times 10^{-6} \ 28; \end{array}$
		1439.3 <i>3</i>	2.81 18	329.4268	4+	(M2)		0.00930	$\alpha(P)=3.3\times10^{-7} 20$ $\alpha(K)=0.00770 11; \ \alpha(L)=0.001217 17; \ \alpha(M)=0.000277$ 4 $\alpha(N)=6.69\times10^{-5} 10; \ \alpha(O)=1.093\times10^{-5} 16; \ \alpha(P)=7.84\times10^{-7} 11; \ \alpha(IPF)=2.33\times10^{-5} 4$ Mult: F1: M2 from $\alpha(V)$ form $\alpha(V)$ form A (V requires M2
1769.5?	(6 ⁺)	1089.0 1440.1		680.42 329.4268	6+ 4+				Mult.: $E1+M2$ from $a(\mathbf{K})exp$ but ΔJ^{-1} requires M2.
1809.64	5-	188.54 ^{&} 5 256.42 <i>11</i>	1.38 <i>14</i> 100 <i>8</i>	1621.284 1553.2240	5- 4-	M1+E2	+0.037 +6-7	0.336	$\alpha(K)=0.279 \ 4; \ \alpha(L)=0.0438 \ 7; \ \alpha(M)=0.00997 \ 14 \ \alpha(N)=0.00240 \ 4; \ \alpha(Q)=0.000392 \ 6; \ \alpha(P)=2.80\times10^{-5} \ 4$
1810.85	(6)-	42.0 187.34 <i>5</i>	18.4 18	1768.943 1623.51	6 ⁻ (5) ⁺	E1+M2	+0.25 +27-20	0.33 66	$\alpha(K)=0.052$ for γ , $\alpha(C)=0.06032$ o, $\alpha(L)=2.00710$ γ
		189.60 7	21.8 18	1621.284	5-	M1+E2	+0.31 +15-12	0.74 4	$\alpha(N)=0.0033 \ 73; \ \alpha(O)=5.E-4 \ 12; \ \alpha(P)=3.3\times10^{-5} \ 74$ $\alpha(K)=0.60 \ 4; \ \alpha(L)=0.104 \ 3; \ \alpha(M)=0.0240 \ 10$ $\alpha(N)=0.00576 \ 22; \ \alpha(O)=0.000924 \ 21; \ \alpha(P)=6.0\times10^{-5} \ 5$
		323.33 10	100 7	1487.5018	4-	E2		0.0681	$\begin{aligned} \alpha(K) = 0.0469 \ 7; \ \alpha(L) = 0.01623 \ 23; \ \alpha(M) = 0.00395 \ 6\\ \alpha(N) = 0.000937 \ 14; \ \alpha(O) = 0.0001372 \ 20; \\ \alpha(P) = 4.07 \times 10^{-6} \ 6 \end{aligned}$
1813.4 1829.53	6-	524.2 <i>3</i> 19.85 <i>10</i>	100 0.32 <i>11</i>	1289.1498 1809.64	2- 5-	M1+E2	0.07 2	1.3×10 ² 3	α (L)=102 20; α (M)=24 5 α (N)=5.7 12; α (O)=0.88 15; α (P)=0.0461 10
		60.65 <i>10</i> 169.15 <i>10</i>	0.91 <i>23</i> 100 <i>7</i>	1768.943 1660.383	6^{-} 5 ⁻	M1+E2	+0.094 6	1.060	α (K)=0.879 <i>13</i> ; α (L)=0.1405 <i>20</i> ; α (M)=0.0320 <i>5</i> α (N)=0.00771 <i>11</i> ; α (O)=0.001256 <i>18</i> ; α (P)=8.85×10 ⁻⁵
		206.00 5	4.5 5	1623.51	(5)+	E1		0.0581	$\alpha(K)=0.0482\ 7;\ \alpha(L)=0.00766\ 11;\ \alpha(M)=0.001739\ 25$ $\alpha(N)=0.000414\ 6;\ \alpha(O)=6.48\times10^{-5}\ 9;\ \alpha(P)=3.80\times10^{-6}$
		208.26 5	5.5 5	1621.284	5-	M1+E2	-1.0 5	0.43 10	α (K)=0.32 <i>11</i> ; α (L)=0.084 <i>4</i> ; α (M)=0.0200 <i>14</i> α (N)=0.0048 3: α (O)=0.000721 <i>18</i> : α (P)=3 1×10 ⁻⁵ <i>12</i>
		276.31 5	77 5	1553.2240	4-	E2		0.1090	$\alpha(K) = 0.0708 \ 10; \ \alpha(L) = 0.0291 \ 4; \ \alpha(M) = 0.00714 \ 10$

 $^{182}_{74}\mathrm{W}_{108}\text{--}18$

From ENSDF

 $^{182}_{74}\rm{W}_{108}\text{--}18$

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

$\gamma(^{182}W)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	Comments
1829.53	6-	342.03 10	9.3 7	1487.5018	4-	E2	0.0579	α (N)=0.001693 24; α (O)=0.000245 4; α (P)=5.98×10 ⁻⁶ 9 α (K)=0.0406 6; α (L)=0.01326 19; α (M)=0.00321 5 α (N)=0.000764 11; α (O)=0.0001124 16; α (P)=3.55×10 ⁻⁶ 5 I _Y : 43 4 in (α ,2ny) is discrepant.
1833.1?		1733.0 <mark>&</mark> 6	100	100.10598	2+			
1855.98	(2^{+})	598.56 5	100 11	1257.4121	2^{+}			
		1527.0 ^{&} 10	10 5	329.4268	4+			E_{γ} : from $(n,n'\gamma)$ only.
		1756.0 2	15 3	100.10598	2^{+}			I_{γ} : 167 40 in (n,n' γ) is discrepant.
		1857.3 2	8.0 <i>6</i>	0.0	0+	(E2)	1.59×10^{-3}	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001162 \ 17; \ \alpha(\mathbf{L}) = 0.0001723 \ 25; \ \alpha(\mathbf{M}) = 3.89 \times 10^{-5} \ 6 \\ &\alpha(\mathbf{N}) = 9.35 \times 10^{-6} \ 13; \ \alpha(\mathbf{O}) = 1.522 \times 10^{-6} \ 22; \ \alpha(\mathbf{P}) = 1.073 \times 10^{-7} \ 15; \\ &\alpha(\mathbf{IPF}) = 0.000210 \ 3 \end{aligned}$
								E_{γ} : from ¹⁸² Re decay only, poor fit; γ not used in the level-scheme fitting procedure. Level-energy difference=1856.1
1856.9	1	1757.0 6	35 12	100.10598	2+			level scheme mung procedure. Level energy unreferice=1050.1.
100000	-	1856.7 6	100 23	0.0	$\bar{0}^{+}$			
1871.17	1-	1543 2	≈5	329.4268	4+	[E3]	0.00391	α (K)=0.00316 5; α (L)=0.000549 8; α (M)=0.0001265 19 α (N)=3.04×10 ⁻⁵ 5; α (O)=4.86×10 ⁻⁶ 7; α (P)=3.11×10 ⁻⁷ 5; α (PE)=3.77×10 ⁻⁵ 7
		1771.0.2	100 10	100.10598	2^{+}	E1	1.04×10^{-3}	$\alpha(\text{K}) = 0.000562 \ 8; \ \alpha(\text{L}) = 7.77 \times 10^{-5} \ 11; \ \alpha(\text{M}) = 1.740 \times 10^{-5} \ 25$
		1771.02	100 10	100.10570	2	21	1.0 1/(10	$\alpha(N) = 4.18 \times 10^{-6} 6; \ \alpha(O) = 6.84 \times 10^{-7} \ 10; \ \alpha(P) = 4.98 \times 10^{-8} \ 7; \ \alpha(IPF) = 0.000383 \ 6$
		1871.2 2	90 7	0.0	0+	E1	1.06×10 ⁻³	$\alpha(K)=0.000513 \ 8; \ \alpha(L)=7.09\times10^{-5} \ 10; \ \alpha(M)=1.587\times10^{-5} \ 23$ $\alpha(N)=3.81\times10^{-6} \ 6; \ \alpha(O)=6.24\times10^{-7} \ 9; \ \alpha(P)=4.55\times10^{-8} \ 7; \ \alpha(PF)=0.000457 \ 7$
1887.84		556.7 <i>3</i>	83 25	1331.1153	3+			
		666.4 <i>4</i>	46 17	1221.4001	2+			
		1558.5 4	100 25	329.4268	4+			
1917.05	7-	106.3 1	82	1810.85	(6) ⁻			
		148.2 <i>1</i>	10 2	1768.943	6-			
		160.20 ^{&} 5		1756.75	6+			E_{γ} : from ¹⁸² Re decay only. This γ is considered as suspect by the evaluators since its intensity of 116 7 relative to 100 for 295.7 γ is much too high to have missed detection in in-beam γ -ray study.
		256.5 1	28 4	1660.383	5-	0		<i>/ 14 / 5444 / 5</i>
		295.63 10	100 14	1621.284	5-	Ē2	0.0888	$\alpha(K)=0.0592$ 9; $\alpha(L)=0.0226$ 4; $\alpha(M)=0.00551$ 8
1018 6	$(2^+ to 4^+)$	1818 5 1	100	100 10500	2+			$\alpha(N)=0.001308 \ 19; \ \alpha(O)=0.000190 \ 3; \ \alpha(P)=5.06\times 10^{-6} \ 8$
1910.0	(2 10 4)	1010.3 4	21 10	1510.22	∠ ∕1+	(0)		
1757.55	(2)	627 5 4	50 14	1310.22	+ 3+			
		1629.8.2	100 14	320 1268	$^{3}_{4^{+}}$			
		1859.1 8	71 24	100,10598	$\frac{1}{2^+}$			
		1959 2 10	14 5	0.0	-0^{+}			
		1/0/.4 10	115	0.0	0			

19

	Adopted Levels, Gammas (continued)								
							γ ⁽¹⁸² W) (continu	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
1960.30	(7)-	130.81 5	100 7	1829.53	6-	M1+E2	-0.51 +6-8	2.03 6	$\alpha(K)=1.55 \ 8; \ \alpha(L)=0.369 \ 21; \ \alpha(M)=0.087 \ 6$
		149.45 5	12.1 10	1810.85	(6)-	M1+E2	-0.15 +15-18	1.50 6	$\alpha(N)=0.0208 \ I3; \ \alpha(O)=0.00319 \ I6; \ \alpha(P)=0.000154 \ 8 \\ \alpha(K)=1.23 \ 7; \ \alpha(L)=0.202 \ I4; \ \alpha(M)=0.046 \ 4 \\ \alpha(N)=0.0111 \ 9; \ \alpha(O)=0.00180 \ I0; \ \alpha(P)=0.000124 \ 8 \\ \alpha(D)=0.00124 \ R \\ \alpha(D)=0.0$
		191.39 5	90 7	1768.943	6-	M1+E2	-0.23 +6-8	0.734 18	$\alpha(K) = 0.604 \ I9; \ \alpha(L) = 0.1002 \ I8; \ \alpha(M) = 0.0230 \ 5 \ \alpha(N) = 0.00552 \ I1; \ \alpha(D) = 0.00892 \ I4; \ \alpha(P) = 6.05 \times 10^{-5} \ 20$
		203.55 5	6.6 7	1756.75	6+	(E1)		0.0599	$\begin{aligned} \alpha(\text{K}) = 0.0032 \ 17, \ \alpha(\text{O}) = 0.00302 \ 17, \ \alpha(1) = 0.03 \times 10^{-2.0} \\ \alpha(\text{K}) = 0.00497 \ 7; \ \alpha(\text{L}) = 0.00790 \ 11; \ \alpha(\text{M}) = 0.00179 \ 3 \\ \alpha(\text{N}) = 0.000427 \ 6; \ \alpha(\text{O}) = 6.68 \times 10^{-5} \ 10; \ \alpha(\text{P}) = 3.91 \times 10^{-6} \ 6 \\ \text{From } \gamma(\theta) \text{ in } {}^{182}\text{Re } \varepsilon \text{ decay, } 1980\text{Sp01 give } \delta(\text{Q/D}) = -17 \\ + 10 - 24 \text{ or } + 0.06 + 9 - 4; \text{ favoring the former value from } \delta \end{aligned}$
									based on ce data of 1971Ga37. But 1971Ga37 assigned tentative E2 from their ce data. δ (M2/E1)=-17 +10-24 is inconsistent with RUL(M2)=1 for T _{1/2} (1960.30 level)<1 ns or so. The evaluators assign tentative E1.
		299.90 10	20 3	1660.383	5-	E2		0.0851	I_{γ} : 52 4 in (α,2nγ) is discrepant. α (K)=0.0570 8; α (L)=0.0214 3; α (M)=0.00522 8 α (N)=0.001239 18; α (O)=0.000180 3; α (P)=4.89×10 ⁻⁶ 7
		339.04 10	72 10	1621.284	5-	E2		0.0594	I_{γ} : 61 6 in (α ,2n γ) is discrepant. α (K)=0.0415 6; α (L)=0.01368 20; α (M)=0.00332 5 α (N)=0.000780 L1; α (O)=0.0001150 L7; α (D)=3.63×10 ⁻⁶ 5
1960.78	6-	151.15 5	26 3	1809.64	5-	M1+E2	0.8 3	1.21 13	$\alpha(K) = 0.0078971, \alpha(C) = 0.000113977, \alpha(F) = 3.05 \times 10^{-5}$ $\alpha(K) = 0.8877; \alpha(L) = 0.253; \alpha(M) = 0.0619$
		300.36 10	100 23	1660.383	5-	M1+E2	+0.048 26	0.218	$\alpha(N)=0.0146\ 20;\ \alpha(O)=0.00218\ 23;\ \alpha(P)=8.5\times10^{-5}\ 19$ $\alpha(K)=0.181\ 3;\ \alpha(L)=0.0284\ 4;\ \alpha(M)=0.00646\ 9$ $\alpha(N)=0.001555\ 22;\ \alpha(O)=0.000254\ 4;\ \alpha(P)=1.81\times10^{-5}\ 3$
		1279.8 <mark>&</mark> <i>3</i>	3.6 5	680.42	6+				
		1631.4 ^{&} 5	0.74 14	329.4268	4+	M2+E3	≈2.5	≈0.00396	$\alpha(K) \approx 0.00321; \ \alpha(L) \approx 0.000536; \ \alpha(M) \approx 0.0001230$ $\alpha(N) \approx 2.96 \times 10^{-5}; \ \alpha(O) \approx 4.77 \times 10^{-6}; \ \alpha(P) \approx 3.17 \times 10^{-7};$
1971.05	(7)+	214.31 5	100	1756.75	6+	M1+E2	+0.25 +8-7	0.532 15	$\alpha(\text{IFF}) \approx 3.70 \times 10^{-5}$ $\alpha(\text{K}) = 0.439 \ 14; \ \alpha(\text{L}) = 0.0725 \ 11; \ \alpha(\text{M}) = 0.0166 \ 3$ $\alpha(\text{N}) = 0.00309 \ 7; \ \alpha(\text{O}) = 0.000645 \ 9; \ \alpha(\text{P}) = 4.39 \times 10^{-5} \ 15$
1978.36	(7)-	18.05 10	1.9 5	1960.30	(7)-	M1+E2	0.016 5	128 4	a(1)=0.00000000000000000000000000000000000
		148.86 5	27.2 20	1829.53	6-	M1+E2	+0.28 +8-6	1.48 4	$\alpha(N) = 5.45 \ 16; \ \alpha(O) = 0.885 \ 24; \ \alpha(P) = 0.0612 \ 14$ $\alpha(K) = 1.20 \ 5; \ \alpha(L) = 0.214 \ 8; \ \alpha(M) = 0.0493 \ 22$ $\alpha(N) = 0.0118 \ 5; \ \alpha(C) = 0.0180 \ 5; \ \alpha(D) = 0.00121 \ 5;$
		209.40 5	7.6 8	1768.943	6-	M1+E2	-0.28 +23-15	0.56 <i>3</i>	$\alpha(N)=0.00121 \ S, \alpha(D)=0.00169 \ G, \alpha(P)=0.000121 \ S$ $\alpha(K)=0.46 \ S; \alpha(L)=0.0776 \ IS; \alpha(M)=0.0178 \ S$ $\alpha(N)=0.00428 \ IO; \alpha(O)=0.000690 \ II; \alpha(P)=4.6\times10^{-5} \ 4$ L: 33 3 in (α 2na) is discrement
		221.59 6	100 8	1756.75	6+	E1		0.0483	$a(\mathbf{X}) = 0.04016; a(\mathbf{L}) = 0.006339; a(\mathbf{M}) = 0.00143821$
		357.04 10	8.4 8	1621.284	5-	E2		0.0513	$\alpha(N) = 0.000542$ <i>J</i> ; $\alpha(O) = 0.57 \times 10^{-5}$ <i>S</i> ; $\alpha(P) = 0.19 \times 10^{-5}$ <i>S</i> $\alpha(K) = 0.0364$ <i>J</i> ; $\alpha(L) = 0.01140$ <i>I</i> 6; $\alpha(M) = 0.00276$ <i>A</i> $\alpha(N) = 0.000556$ <i>I</i> 0; $\alpha(O) = 0.68 \times 10^{-5}$ <i>I</i> 4; $\alpha(D) = 2.20 \times 10^{-6}$ <i>J</i>
1981.82		650.7 <i>3</i>	59 18	1331.1153	3+				$a_{(1Y)} = 0.0000000 \ 10; \ a_{(0)} = 9.08 \times 10^{\circ} \ 14; \ a_{(1Y)} = 5.20 \times 10^{\circ} \ 5$

From ENSDF

$\gamma(^{182}W)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α@	Comments
1981.82		723.8 7	26 9 82 24	1257.4121	$2^+_{4^+}$				
		1033.1 8	82 24 100 18	529.4208 100 10598	$\frac{4}{2^+}$				
1993.68	(7 ⁻)	182.8 5	<11	1810.85	$(6)^{-}$				
		372.4 1	100 17	1621.284	5-	Q			
2016.8	$(2,3,4)^+$	1688.3 <mark>&</mark> 10	100 33	329.4268	4+				
		1915.3 ^{&} 12	100 33	100.10598	2^{+}				
2023.57	3-	470.26 5	100 5	1553.2240	4-	M1+E2	0.6 1	0.055 3	α (K)=0.0455 25; α (L)=0.0075 3; α (M)=0.00171 6 α (N)=0.000412 15; α (O)=6.6×10 ⁻⁵ 3; α (P)=4.5×10 ⁻⁶ 3
		536.04 5	10.3 16	1487.5018	4-	M1+E2	0.7 2	0.037 4	α (K)=0.031 4; α (L)=0.0051 4; α (M)=0.00116 9 α (N)=0.000279 21; α (O)=4.5×10 ⁻⁵ 4; α (P)=3.0×10 ⁻⁶ 4
		649.73 5	16.8 24	1373.8301	3-	M1+E2	0.8 2	0.0219 23	$\alpha(K)=0.0181 \ 19; \ \alpha(L)=0.00293 \ 24; \ \alpha(M)=0.00067 \ 6 \ \alpha(N)=0.000161 \ 13; \ \alpha(O)=2.60\times10^{-5} \ 22; \ \alpha(P)=1 \ 76\times10^{-6} \ 20$
		734.53 5	18.7 22	1289.1498	2-	M1+E2	1.0 3	0.0148 22	$\alpha(\mathbf{K}) = 0.0122 \ I9; \ \alpha(\mathbf{L}) = 0.00199 \ 24; \ \alpha(\mathbf{M}) = 0.00045 \ 6$ $\alpha(\mathbf{N}) = 0.000109 \ I3; \ \alpha(\mathbf{O}) = 1.76 \times 10^{-5} \ 22;$ $\alpha(\mathbf{P}) = 1.18 \times 10^{-6} \ I9$
2057.39	1^{+}	800 1	16 4	1257.4121	2^{+}				
		835.98 5	50 5	1221.4001	2+	(M1+E2)	≈0.8	≈0.01177	$\alpha(K) \approx 0.00979; \ \alpha(L) \approx 0.001538; \ \alpha(M) \approx 0.000350$ $\alpha(N) \approx 8.42 \times 10^{-5}; \ \alpha(O) \approx 1.366 \times 10^{-5}; \ \alpha(P) \approx 9.48 \times 10^{-7}$
		1957.4 2	49 <i>3</i>	100.10598	2+	(M1+E2)	1.0 +6-4	0.00186 17	α (K)=0.00131 <i>13</i> ; α (L)=0.000193 <i>18</i> ; α (M)=4.4×10 ⁻⁵ <i>4</i> α (N)=1.05×10 ⁻⁵ <i>10</i> ; α (O)=1.72×10 ⁻⁶ <i>17</i> ; α (P)=1.24×10 ⁻⁷ <i>13</i> ; α (IPF)=0.000303 <i>23</i>
		2057.4 3	100 8	0.0	0^{+}	D			
2087.43	8-	170.4 <i>1</i>	20 4	1917.05	7-				
		318.5 <i>1</i>	100 15	1768.943	6-	Q		0.0716	
2109.96	(2 ⁻ ,3 ⁻)	556.7 3	100 28	1553.2240	4-	(E2)		0.01615	$\alpha(K)=0.01255\ 18;\ \alpha(L)=0.00276\ 4;\ \alpha(M)=0.000652\ 10$ $\alpha(N)=0.0001556\ 22;\ \alpha(O)=2.39\times10^{-5}\ 4;$ $\alpha(P)=1\ 154\times10^{-6}\ 17$
		2010.1 3	86 12	100.10598	2^{+}	(E1+M2)	0.9 + 7 - 4	0.00250 85	$\alpha(K) = 0.00176 \ 80; \ \alpha(L) = 2.7 \times 10^{-4} \ 13; \ \alpha(M) = 6.0 \times 10^{-5}$
						· · · ·			28
									$\alpha(N)=1.45\times10^{-5} \ 68; \ \alpha(O)=2.4\times10^{-6} \ 11; \\ \alpha(P)=1.73\times10^{-7} \ 81; \ \alpha(IPF)=3.9\times10^{-4} \ 10$
		2109.3 5	<235	0.0	0^{+}	[M2,E3]		0.00303 80	$\alpha(K)=0.00235\ 66;\ \alpha(L)=3.64\times10^{-4}\ 95;\ \alpha(M)=8.3\times10^{-5}$
									$\alpha(N) = 1.99 \times 10^{-5} 52; \ \alpha(O) = 3.25 \times 10^{-6} 86;$
2114.35	(8)-	154.10 5	58 13	1960.30	(7)-	M1+E2	0.6 3	1.22 12	$\alpha(P)=2.31\times10^{-7}$ 68; $\alpha(PP)=0.000211$ 16 $\alpha(K)=0.93$ 15; $\alpha(L)=0.22$ 3; $\alpha(M)=0.052$ 8 $\alpha(M)=0.0124$ 17; $\alpha(Q)=0.00100$ 10; $\alpha(M)=0.052$ 17
		107 4 2	23.7	1017.05	7-				$\alpha(N)=0.0124 \ 1/; \ \alpha(O)=0.00190 \ 19; \ \alpha(P)=9.2\times10^{-5} \ 1/$
		285.1 10	46.8	1829.53	6-				
		345.29 15	100 15	1768.943	6-	E2		0.0564	α(K)=0.0396 6; α(L)=0.01283 18; α(M)=0.00311 5
1									

21

					Ado	opted Levels,	Gammas (cont	tinued)	
						γ (¹⁸² W) (continued)		
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α@	Comments
2116.4		2016.2.2	100	100 10508	2+				α (N)=0.000739 <i>11</i> ; α (O)=0.0001087 <i>16</i> ; α (P)=3.47×10 ⁻⁶ <i>5</i>
2120.25	(8 ⁻)	160.1 <i>1</i>	100 18	1960.30	(7) ⁻	(M1)		1.243	$\alpha(K)=1.032 \ 15; \ \alpha(L)=0.1633 \ 23;$ $\alpha(M)=0.0372 \ 6$ $\alpha(N)=0.00896 \ 13; \ \alpha(O)=0.001461 \ 21;$ $\alpha(P)=0.0001040 \ 15$
	(- -)	290.5 1	35 6	1829.53	6-				
2131.3 2143.0	(7-)	362.4 <i>3</i> 1813 6 <mark>&</mark> 10	100	1768.943	6^{-} Δ^{+}				
2145.0	(3 ⁻)	817.0 <i>10</i>	12 4	1331.1153	3+				E_{γ} : from $(n,n'\gamma)$ only.
		1818.7 2	92 8	329.4268	4+	(E1)		1.05×10 ⁻³	$\alpha(K)=0.000538 \ 8; \ \alpha(L)=7.44\times10^{-5} \ 11;$ $\alpha(M)=1.664\times10^{-5} \ 24$ $\alpha(N)=4.00\times10^{-6} \ 6; \ \alpha(O)=6.54\times10^{-7} \ 10;$ $\alpha(P)=4.77\times10^{-8} \ 7; \ \alpha(IPF)=0.000418 \ 6$ Ly: 222 33 in (n,n' γ) is discrepant.
		2047.4 3	100 8	100.10598	2+	(E1+M2)	1.0 +10-5	0.00258 89	$\alpha(K)=0.00183 \ 84; \ \alpha(L)=2.8\times10^{-4} \ 13; \\ \alpha(M)=6.3\times10^{-5} \ 30 \\ \alpha(N)=1.51\times10^{-5} \ 72; \ \alpha(O)=2.5\times10^{-6} \ 12; \\ \alpha(P)=1.80\times10^{-7} \ 85; \ \alpha(IPF)=3.9\times10^{-4} \ 12$
		2148 ^{&} 3	24 5	0.0	0+	[E3]		0.00218	$\alpha(K)=0.001633\ 24;\ \alpha(L)=0.000259\ 4;\alpha(M)=5.90\times10^{-5}\ 9\alpha(N)=1.419\times10^{-5}\ 21;\ \alpha(O)=2.30\times10^{-6}\ 4;\alpha(P)=1.573\times10^{-7}\ 23;\ \alpha(IPF)=0.000209\ 3$
2173.5	$(0^+ \text{ to } 4^+)$	952.3 <i>6</i> 2073.3 <i>3</i>	42 <i>12</i> 100 <i>23</i>	1221.4001 100.10598	$2^+ 2^+$				
2180.4	(8 ⁺)	2174 ^{&} 1036.0 1500.0	<23	0.0 1144.32 680.42	0^+ 8^+ 6^+				E_{γ} : from $(n,n'\gamma)$ only.
2184.04	(2 ⁻ ,3 ⁻)	810.24 5	18.2 <i>21</i>	1373.8301	3-	(M1)		0.01639	$\alpha(K)=0.01371\ 20;\ \alpha(L)=0.00208\ 3;\ \alpha(M)=0.000470\ 7$ $\alpha(N)=0.0001132\ 16;\ \alpha(O)=1.85\times10^{-5}\ 3;\ \alpha(D)=1\ 3/3\times10^{-6}\ 10$
		894.85 <i>5</i>	100 8	1289.1498	2-	(M1)		0.01276	$\alpha(K) = 0.01068 \ 15; \ \alpha(L) = 0.001613 \ 23; \alpha(M) = 0.000365 \ 6 \alpha(N) = 8.79 \times 10^{-5} \ 13; \ \alpha(O) = 1.440 \times 10^{-5} \ 21; \alpha(P) = 1.045 \times 10^{-6} \ 15$
2204 54	$\langle 0 \rangle =$	2084.0 3	3.1 3	100.10598	2^+	M1 . D2	0.15.2	0.460	
2204.54	(8)-	226.19 5	100	1978.36	(7)-	M1+E2	+0.15 2	0.468	$\alpha(K)=0.388 \ 6; \ \alpha(L)=0.0620 \ 9; \alpha(M)=0.01414 \ 20 \alpha(N)=0.00341 \ 5; \ \alpha(O)=0.000554 \ 8; \alpha(P)=3.89\times10^{-5} \ 6$

L

 $^{182}_{74}\rm{W}_{108}\text{--}22$

$\gamma(^{182}W)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I_{\gamma}}^{\dagger}$	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
2207.21	(3 ⁻)	1877.6 2	58 18	329.4268	4+	(E1+M2)	-0.28 6	0.00134 12	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00076 \ 11; \ \alpha(\mathrm{L}) = 0.000110 \ 17; \ \alpha(\mathrm{M}) = 2.5 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 6.0 \times 10^{-6} \ 10; \ \alpha(\mathrm{O}) = 9.7 \times 10^{-7} \ 16; \ \alpha(\mathrm{P}) = 7.1 \times 10^{-8} \\ 11; \ \alpha(\mathrm{IPF}) = 0.000438 \ 12 \end{array} $
		2106.8 5	<250	100.10598	2^+	(E2)		0.00200	$\alpha(K) = 0.001548.22; \alpha(L) = 0.000244.4; \alpha(M) = 5.55 \times 10^{-5}$
		2207.7 3	100 9	0.0	0	(E3)		0.00209	$a(\mathbf{K})=0.001348\ 22,\ a(\mathbf{L})=0.000244\ 4,\ a(\mathbf{M})=5.50\times10^{-6}$
									α (N)=1.336×10 ⁻⁵ <i>19</i> ; α (O)=2.17×10 ⁻⁶ <i>3</i> ; α (P)=1.488×10 ⁻⁷ <i>21</i> ; α (IPF)=0.000229 <i>4</i>
2209.07	3-	835.9 6	33 11	1373.8301	3-			2	E_{γ} : from $(n,n'\gamma)$ only.
		1879.6 2	21 6	329.4268	4+	E1		1.06×10^{-3}	$\alpha(K)=0.000509 \ 8; \ \alpha(L)=7.04\times10^{-5} \ 10; \ \alpha(M)=1.575\times10^{-5} \ 22$
									$\alpha(N)=3.78\times10^{-6} 6; \alpha(O)=6.19\times10^{-7} 9;$ $\alpha(P)=4.52\times10^{-8} 7; \alpha(IPE)=0.000463 7$
		2108.9 4	100 17	100.10598	2^{+}				a(i) 1.52/16 /, a(iii) 0.000105 /
		2208.8 6	78 17	0.0	0^+	[E3]		0.00209	$\alpha(K)=0.001546\ 22;\ \alpha(L)=0.000244\ 4;\ \alpha(M)=5.55\times10^{-5}$
									$\alpha(N)=1.335\times10^{-5}$ 19; $\alpha(O)=2.16\times10^{-6}$ 3;
									$\alpha(P)=1.487\times10^{-7} 21; \alpha(IPF)=0.000230 4$
									E_{γ} : from $(n,n'\gamma)$ only.
2212.50	(8^{+})	241.5 1	100 15	1971.05	$(7)^+$	D+Q			
2225.25	(0-)	454.9 4	15.5	1/56./5	6 ⁺	0			
2225.35	(8)	414.5 <i>I</i>	100	1810.85	(0)	Q		0.0514	$P(M1)(W_{12}) = 7.0 \times 10^{-8}$ 12
2230.05	(10.)	518.5 1	100 15	1711.99	10	(1411)		0.0314	B(M1)(w.u.)=7.0×10 ^{-7.5} α (K)=0.0429 6; α (L)=0.00659 10; α (M)=0.001495 21 α (N)=0.000360 5; α (O)=5.89×10 ⁻⁵ 9; α (P)=4.24×10 ⁻⁶ 6
		1086.5 <i>1</i>	69 7	1144.32	8+	[E2]		0.00382	$B(E2)(W.u.)=1.9\times10^{-6}$ 3
									$\alpha(K)=0.00315\ 5;\ \alpha(L)=0.000517\ 8;\ \alpha(M)=0.0001183\ 17$
									$\alpha(N)=2.84\times10^{-5}$ 4; $\alpha(O)=4.54\times10^{-6}$ 7;
									$\alpha(P) = 2.93 \times 10^{-7} 4$
									I_{γ} : 116 13 in (α ,2n γ) is discrepant.
2240.83	(3+)	1911.8 2	100 17	329.4268	4+	(M1)		0.00230	α (K)=0.001659 24; α (L)=0.000245 4; α (M)=5.52×10 ⁻³ 8
									$\alpha(N) = 1.330 \times 10^{-5} \ 19; \ \alpha(O) = 2.18 \times 10^{-6} \ 3;$
					- 1				$\alpha(P)=1.602\times10^{-7} 23; \ \alpha(IPF)=0.000322 5$
		2140.3 2	87 15	100.10598	2+	(M1)		0.00197	$\alpha(K)=0.001265 \ I8; \ \alpha(L)=0.000186 \ 3; \ \alpha(M)=4.19\times10^{-3}$
									$\alpha(N)=1.010\times10^{-5} \ 15; \ \alpha(O)=1.658\times10^{-6} \ 24; \\ \alpha(P)=1.219\times10^{-7} \ 17; \ \alpha(IPF)=0.000464 \ 7$
2273.87	9-	186.5 <i>1</i>	16.7 <i>19</i>	2087.43	8-				
		356.8 1	100 15	1917.05	7-	Q			

23

From ENSDF

Adopted Levels, Gammas (continued) $\gamma(^{182}W)$ (continued)													
2274.63	(3)-	787.11 5	86 16	1487.5018	4-	(M1)		0.01763	$ \begin{array}{c} \alpha(\mathrm{K}) = 0.01474 \ 21; \ \alpha(\mathrm{L}) = 0.00224 \ 4; \ \alpha(\mathrm{M}) = 0.000506 \ 7 \\ \alpha(\mathrm{N}) = 0.0001219 \ 17; \ \alpha(\mathrm{O}) = 2.00 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) = 1.446 \times 10^{-6} \\ 21 \end{array} $				
		900.80 5	100 17	1373.8301	3-	(M1+E2)	≈0.5	≈0.01116	I_{γ} : 15 8 in (n,n'γ) is discrepant. α (K)≈0.00932; α (L)≈0.001427; α (M)≈0.000324 α (N)≈7.79×10 ⁻⁵ : α (O)≈1.271×10 ⁻⁵ : α (P)≈9.06×10 ⁻⁷				
		2175.2 3	13.2 19	100.10598	2+	E1		1.14×10^{-3}	$\alpha(K) = 0.000402 \ 6; \ \alpha(L) = 5.53 \times 10^{-5} \ 8; \ \alpha(M) = 1.238 \times 10^{-5} \ 18 \ \alpha(N) = 2.97 \times 10^{-6} \ 5; \ \alpha(O) = 4.87 \times 10^{-7} \ 7; \ \alpha(P) = 3.57 \times 10^{-8} \ 5; \ \alpha(PE) = 0.000671 \ 10$				
2283.5	1	909.7 6	64 29 100 20	1373.8301	$3^{-}_{0^{+}}$								
2301.56	(9 ⁻)	2283.3 10 181.3 10 187.6 3 214.2 10 341.3 1	100 29 18 9 36 9 <27 109 46	0.0 2120.25 2114.35 2087.43 1960.30	(8^{-}) $(8)^{-}$ 8^{-} $(7)^{-}$								
2316.1	$(1,2^{+})$	384.4 <i>I</i> 2216 <i>3</i>	100 <i>18</i> ≈275	1917.05 100.10598	2 ⁺								
2222.05	(0-)	2316 3	100 20	0.0	$0^+_{7^-}$								
2325.85	(8) (9 ⁻)	207.4 2	73 15	2120.25	/ (8 ⁻)	(M1+E2)		0.44 17	$\alpha(K)=0.33\ 18;\ \alpha(L)=0.085\ 7;\ \alpha(M)=0.0203\ 24$ $\alpha(N)=0.0048\ 6;\ \alpha(Q)=0.00073\ 3;\ \alpha(P)=3.1\times10^{-5}\ 19$				
2334.26		213.6 <i>1</i> 355.9 2	100 <i>16</i> 100	2114.35 1978.36	$(8)^{-}$ $(7)^{-}$								
2372.59	12+	660.6 <i>1</i>	100	1711.99	10+	E2		0.01085	B(E2)(W.u.)=191 <i>10</i> α (K)=0.00862 <i>12</i> ; α (L)=0.001719 <i>24</i> ; α (M)=0.000401 <i>6</i> α (N)=9.60×10 ⁻⁵ <i>14</i> ; α (O)=1.494×10 ⁻⁵ <i>21</i> ; α (P)=7.98×10 ⁻⁷ <i>12</i>				
2382.1	1	2282 <i>I</i> 2382 <i>I</i>	142 <i>20</i> 100	100.10598	$2^+_{0^+}$								
2445.98 2455.74	(9 ⁻) (9 ⁻)	452.3 <i>I</i> 251.2 <i>I</i> 477.1 <i>I</i> 0	100 100 <i>14</i> <7	1993.68 2204.54 1978.36	(7^{-}) $(8)^{-}$ $(7)^{-}$	Q (D+Q)							
2474.1	1	2374 <i>I</i> 2474 <i>I</i>	66 <i>14</i>	100.10598	2^+ 0 ⁺								
2479.83	(9+)	267.3 1	100 18	2212.50	(8^+)	D+Q							
2486.89	10-	213.0 <i>I</i>	29 0 25 3	2273.87	(7) 9 ⁻ 8-	0							
2492.78 2507.48	(11 ⁺) (10 ⁻)	262.1 <i>I</i> 205.8 2 233.8 <i>I0</i> 387.1 2 393.4 2	$ \begin{array}{c} 100 \\ 100 \\ 30 \\ 10 \\ < 20 \\ 120 \\ 60 \\ 10 \end{array} $	2007.45 2230.65 2301.56 2273.87 2120.25 2114.35	o (10 ⁺) (9 ⁻) 9 ⁻ (8 ⁻) (8) ⁻	Q D+Q							

Adopted Levels, Gammas (continued)													
							$\gamma(^{182}W)$	(continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	Comments					
2507.48	(10^{-})	420.0 1	100 20	2087.43	8-								
2563.94	(10^{-})	236.0 1	100 16	2327.91	(9 ⁻)								
		443.8 2	<8	2120.25	(8 ⁻)								
2710.93	11-	224.0 1	24 <i>3</i>	2486.89	10-								
	(10)	437.1 <i>1</i>	100 18	2273.87	9-	Q							
2730.84	(10^{-})	275.1 1	100 14	2455.74	(9-)	(D+Q)							
0720 15	(10-)	526.2 10	<14	2204.54	(8)	0							
2739.15	(10)	513.8 1	100 18	2225.35	(8)	Q							
2/41.00	(11)	440.1 1	35.6	2301.30	(9)	Q							
2760 27	(10^{+})	280 / 1	100	2273.87	(0^+)	D±O							
2709.27	(10)	557.6.5	39.4	2212 50	(9^{+})	D+Q							
2775.65	(12^{+})	282.8 1	100	2492.78	(11^+)	D+O							
	()	545.1 2	18 3	2230.65	(10^+)	0							
2823.93	(11^{-})	260.0 1	100	2563.94	(10-)	D+Q							
		496.0 5	48 5	2327.91	(9 ⁻)								
2884.1	1	2784 <i>1</i>	40 11	100.10598	2+								
		2884 1	100	0.0	0^{+}								
2892.1	(1)	2792 1	150 90	100.10598	2+								
2041.0	(1.0+)	2892 1	100	0.0	0^+								
2941.0	$(1,2^{+})$	2941 2	100	0.0	0^{+}								
2972.49	12	201.0 2	20.5	2/10.93	11	0							
2080 58	(11^{-})	483.01	100 20	2460.69	(0^{-})	Q							
2980.38	(11^{-})	473.8 1	100 79	2507 48	(10^{-})	Q							
2701.55	(12)	494.6.2	38.6	2486.89	$10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$								
2996.1	1	2896 1	168 35	100.10598	2^{+}								
		2996 1	100	0.0	0^{+}								
3027.94	(11^{-})	297.1 <i>1</i>	100	2730.84	(10^{-})	(D+Q)							
		575.2 20	24 11	2455.74	(9 ⁻)								
3078.25	(13^{+})	302.5 1	100	2775.65	(12^{+})	D+Q		$I\gamma(586\gamma)/I\gamma(302)=1.6\ 7\ in\ (\alpha,2n\gamma).$					
		585.8 2	479	2492.78	(11^{+})	Q							
3080.1	1	2980 1	61 18	100.10598	2+								
2106 72	(10-)	3080 1	100	0.0	0^+								
3106.72	(12)	282.8 I 542.5 5	100 52 6	2823.93	(11)	(D+Q)							
2112.00	1.4+	342.3 3 740 2 1	33 U 100	2303.94	(10)	(E2)	0.00942	$D(E2)(W_{12}) = 1.7 \times 10^2 2$					
3112.89	14'	740.3 1	100	2372.59	12'	(E2)	0.00843	B(E2)(W.U.)=1.7×10 ⁻⁵ 3 α (K)=0.00678 10; α (L)=0.001277 18; α (M)=0.000297 5 α (N)=7 10×10 ⁻⁵ 10; α (O)=1 114×10 ⁻⁵ 16; α (P)=6 29×10 ⁻⁷ 9					
3163.1	1	3063 1	54 12	100.10598	2^{+}			u(1) 110/10 10, u(0)=1.111/10 10, u(1)=0.20/10 0					
5105.1	1	3163 1	100	0.0	$\tilde{0}^+$								

From ENSDF

 $^{182}_{74}\mathrm{W}_{108}\text{--}25$

I

Adopted Levels, Gammas (continued)												
						<u>γ(</u>	¹⁸² W) (continu	ed)				
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	Comments				
3198.1	$(1,2^+)$	3098 1	59 21	100.10598	2+							
		3198 <i>1</i>	100	0.0	0^{+}			If E2, B(E2)(W.u.)= 0.67×10^{-5} 16.				
3224.53	13-	513.6 <i>1</i>	100	2710.93	11-	Q						
3269.56	(13 ⁻)	527.9 1	100	2741.66	(11^{-})	Q						
3319.7	(12^{-})	580.6 4	100	2739.15	(10^{-})							
3343.05	(12^{-})	315.1 <i>I</i>	100 14	3027.94	(11^{-})	(D+Q)						
		612.6 10	43 29	2730.84	(10^{-})							
3365.1	1	3265 1	63 17	100.10598	2+							
		3365 1	100	0.0	0+							
3398.35	(14^{+})	320.0 1	100	3078.25	(13^{+})	D+Q						
		622.7 1	61 18	2775.65	(12^{+})	Q						
3410.54	(13^{-})	303.8 1	100 13	3106.72	(12^{-})							
		586.8 5	88 13	2823.93	(11^{-})							
3415.92	(12)	923.1 <i>I</i>	100	2492.78	(11^+)	D+Q						
3422.1	$(1,2^{+})$	3322 1	53 15	100.10598	2+			5				
		3422 1	100	0.0	0+			If E2, B(E2)(W.u.)= 0.76×10^{-5} 17.				
3518.04	(14^{-})	536.7 1	100 20	2981.33	(12^{-})							
		545.7 5	40 10	2972.49	12-							
3549.99	14-	568.6 ^{&} 10	<22	2981.33	(12^{-})							
		577.5 1	100 22	2972.49	12-	Q						
3567.8	(13-)	587.2 <i>3</i>	100	2980.58	(11^{-})	(Q)						
3601.1	1	3501 <i>1</i>	77 19	100.10598	2+							
		3601 1	100	0.0	0^{+}							
3640.0	$(1,2^{+})$	3640 2		0.0	0^{+}							
3677.15	(13)	261.2 <i>1</i>	100 14	3415.92	(12)							
		901.8 <i>3</i>	21 7	2775.65	(12^{+})							
3727.1	$(1,2^{+})$	3627 2		100.10598	2+							
		3727 2		0.0	0+							
3733.85	(14^{-})	323.3 1	71 10	3410.54	(13^{-})							
2726.40	(1 5 +)	627.4 5	100 14	3106.72	(12^{-})							
3736.40	(15^{+})	338.0 1	100	3398.35	(14')							
	(a a b)	658.2 1	94 20	3078.25	(13^{+})							
3754.89	(15+)	(19)	≈0.2	3736.40	(15+)	[M1]	107.1	B(M1)(W.u.) $\approx 9.8 \times 10^{-7}$ α (L)=82.8 <i>12</i> ; α (M)=18.9 <i>3</i> α (D)=4.56 7.2 (C)=0.741 <i>1</i> Hz α (D)=0.0526 8				
								u(1)=4.30 /; $u(0)=0.741$ 11; $u(1)=0.0320$ 8				
		256 5 1	100 17	2208.25	(1.4+)		0.005 44	r_{γ} . from $\gamma\gamma$ data, $f(\gamma+cc)$ branching is $\approx 10\%$.				
		356.5 1	100 17	3398.35	(14')	(M1+E2)	0.095 44	$B(M1)(W.u.) = 15.0 \times 10^{-5} 23$				
								$\alpha(\mathbf{K}) = 0.00022$ <i>k</i> (0) 0.00012 <i>k</i> ($\alpha(\mathbf{M}) = 0.0034$ /				
		(7(9))	57 12	2070 25	(12+)		0.01020	$\alpha(N)=0.00082$ 16; $\alpha(O)=0.00013$ 4; $\alpha(P)=7.3\times10^{-6}$ 42				
		6/6.8 2	5/13	3078.25	(13')	(E2)	0.01028	B(E2)(W.U.) = 0.000053 IS $(K) = 0.00010 IS = (L) = 0.0001612 IS = (DD) = 0.000276 IC$				
								$\alpha(\mathbf{K}) = 0.00319 \ 12; \ \alpha(\mathbf{L}) = 0.001612 \ 23; \ \alpha(\mathbf{M}) = 0.000376 \ 6$				
2007	1.5-	502 1 3	100	2224 52	10-	0		$\alpha(N) = 8.99 \times 10^{-5} \ 13; \ \alpha(O) = 1.402 \times 10^{-5} \ 20; \ \alpha(P) = 7.58 \times 10^{-7} \ 11$				
3807.63	15-	583.1 <i>I</i>	100	3224.53	13-	Q						

 $^{182}_{74}\rm{W}_{108}\text{--}26$

L

From ENSDF

 $^{182}_{74}\mathrm{W}_{108}\text{--}26$

						Adopte	ed Levels, G	ammas (continued)
							$\gamma(^{182}W)$	(continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	Comments
3880.06	(15^{-})	610.5 <i>1</i>	100	3269.56	(13 ⁻)	Q		
3882.0	$(1,2^{+})$	3782 ^{&} 2		100.10598	2^{+}			
		3882 2		0.0	0^{+}			
3893.69	(16^{+})	138.8 <i>1</i>	100	3754.89	(15^{+})	(M1)	1.86	B(M1)(W.u.)>0.00041
								$\alpha(K)=1.545\ 22;\ \alpha(L)=0.245\ 4;\ \alpha(M)=0.0558\ 8$
								α (N)=0.01344 <i>19</i> ; α (O)=0.00219 <i>4</i> ; α (P)=0.0001559 <i>22</i>
3910.09	16+	797.2 1	100	3112.89	14^{+}	E2	0.00719	$B(E2)(W.u.)=2.0\times10^2 5$
								$\alpha(K)=0.00582 9; \alpha(L)=0.001061 15; \alpha(M)=0.000246 4$
2020.0		2020.2	100	0.0	0±			$\alpha(N)=5.88\times10^{-5}$ 9; $\alpha(O)=9.27\times10^{-6}$ 13; $\alpha(P)=5.40\times10^{-7}$ 8
3920.0		3920 2	100	0.0	0^{+}			
3966.25	(14)	289.1 1	100 50	36/7.15	(13)			
1010 6	(17-)	330.5 <i>I</i> 0	23 13	3413.92	(12)	(E1)	0 1294	$P(E_1)/W_{12} > 2.02 \times 10^{-6} I_5$
4040.0	(17)	140.9 1	100	3893.09	(10)	(E1)	0.1364	$D(E1)(W.u.) = 2.92 \times 10^{-11} IS$ $\alpha(K) = 0.11 / 1.16; \alpha(L) = 0.0188 3; \alpha(M) = 0.00428.6$
								$\alpha(\mathbf{N}) = 0.01015, 15; \alpha(\mathbf{C}) = 0.0001566, 23; \alpha(\mathbf{D}) = 0.00428, 0$
4074 8	(15^{-})	340.9.2	75 25	3733 85	(14^{-})			$u(1)=0.001015$ 15, $u(0)=0.0001500$ 25, $u(1)=0.55\times10^{-15}$
107 1.0	(15)	664.2.5	100 25	3410.54	(13^{-})			
4078.89	(16^{+})	324.0 1	100	3754.89	(15^+)			
4081.5	(16^{+})	345.1 2	60 20	3736.40	(15 ⁺)			
		683.2 <i>3</i>	100 40	3398.35	(14^{+})			
4116.9	(16 ⁻)	598.9 2	100	3518.04	(14 ⁻)			
4197.1	(15^{-})	629.3 2	100	3567.8	(13 ⁻)			
4211.1	16-	661.1 2	100	3549.99	14-	Q		
4218.1	(17^{+})	324.4 5	100	3893.69	(16^{+})			
4280.2	(15)	314.0 1	100 67	3966.25	(14)			
4202 1	(17^{+})	603.1 <i>10</i>	33 1/	30//.15	(13)			
4295.1	(17) (18^{-})	399.4 1	100	3893.09	(10) (17^{-})			
4430 5	(10^{+})	351.6 /	100 18	4078 89	(17) (16^+)			
1150.5	(17)	675.5 11	18.9	3754.89	(15^+)			
4453.3	(17^{+})	371.3 10	<33	4081.5	(16^+)			
		717.3 10	100 33	3736.40	(15 ⁺)			
4456.2	17^{-}	648.6 2	100	3807.63	15-	Q		
4569.7	(18^{+})	351.6 5	100 32	4218.1	(17^{+})			
		676.1 7	24 8	3893.69	(16^{+})			
4570.9	(17-)	690.8 <i>3</i>	100	3880.06	(15 ⁻)	_		
4690.89	18+	780.8 1	100	3910.09	16+	Q		
4711.9	(18^{+})	418.8 1	100 18	4293.1	(17^{+})			
4740.0	(10+)	818.1.6	64 27	3893.69	(16')		0.00640	$D(T_{2})(T_{1}) = 0.5 \cdot 10^{2} \cdot 5 \cdot 7$
4/48.0	(18')	837.99	100	3910.09	10'	[E2]	0.00648	$B(E2)(W,U,)=2.5\times10^{-4}+5-7$
								$u(\mathbf{N}) = 0.00320$ o; $u(\mathbf{L}) = 0.000940$ 14; $u(\mathbf{N}) = 0.000217$ 3 $u(\mathbf{N}) = 5.20\times10^{-5}$ 8; $u(\mathbf{O}) = 9.22\times10^{-6}$ 12; $u(\mathbf{D}) = 4.99\times10^{-7}$ 7
4779.6	(18^{-})	66272	100	4116.9	(16^{-})			$u(1) = -3.20 \times 10^{-0}, u(0) = 0.22 \times 10^{-12}, u(1) = 4.00 \times 10^{-7}$
1112.0	(10)	002.1 2	100	11101/	(10)			

 $^{182}_{74}\mathrm{W}_{108}\text{--}27$

$\gamma(^{182}W)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
4780.4	(18)	739.8 2	100	4040.6	(17^{-})	5191.8	(19)	411.4 2	100	4780.4	(18)
4804.9	(18^{+})	374.5 2	100 25	4430.5	(17^{+})	5199.6	(19^{+})	394.7 <i>2</i>	100	4804.9	(18^{+})
		725.7 5	50 25	4078.89	(16^{+})	5225.4	(19^{+})	772.1 10	100	4453.3	(17^{+})
4820.1	(19 ⁻)	398.5 <i>1</i>	100	4421.5	(18^{-})	5235.8	(20^{-})	415.6 2	100 25	4820.1	(19 ⁻)
		779.9 <i>3</i>	24 11	4040.6	(17^{-})			814.8 4	75 25	4421.5	(18^{-})
4847.4	(18^{+})	765.9 10	100 33	4081.5	(16^{+})	5338.6	(19 ⁻)	767.7 10	100	4570.9	(17^{-})
		937.3 10	67 33	3910.09	16^{+}	5428.6	20^{+}	737.7 2	100	4690.89	18^{+}
4954.8	18^{-}	743.7 10	100	4211.1	16-	5618.6	(20)	426.7 2	100	5191.8	(19)
5148.6	(19^{+})	436.6 9	100 25	4711.9	(18^{+})			838.4 5	50	4780.4	(18)
		855.5 4	<50	4293.1	(17^{+})	5666.9	(21^{-})	431.2 10	100	5235.8	(20^{-})
5170.8	19-	714.6 <i>3</i>	100	4456.2	17-			846.7 10	100	4820.1	(19 ⁻)

[†] The adopted values represent weighted averages from different studies. The intensities are known with high precision in ¹⁸²Ta β^- decay, thus values from this decay are preferred when available. In cases where large discrepancies are found, those values were not considered in deducing averages. In (α ,2n γ), many such cases are noted where the relative branching ratios are discrepant, generally being much higher than in other studies. For gammas from high-spin levels above 2500 keV, gamma-ray energies and intensities are almost entirely from ¹⁷⁶Yb(¹³C, α 3n γ) dataset since this dataset provides the most complete set of values. [‡] From ce and angular distribution/correlation studies in ¹⁸²Ta decay, ¹⁸²Re decay and in-beam γ -ray studies.

[#] From evaluation by 2000He14.

[@] Theoretical values from BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" approximation. If mixing ratio δ is not given, it was assumed as 1.0 for E2/M1 and E3/M2 and 0.10 for others.

[&] Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{182}_{\ 74}\rm{W}_{108}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{182}_{\ 74}W_{108}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{182}_{\ 74}W_{108}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{182}_{\ 74}W_{108}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{182}_{74}W_{108}$

 $^{182}_{\ 74}W_{108}$

 $^{182}_{\ 74}W_{108}$

 $^{182}_{74}\mathrm{W}_{108}\text{--}37$

From ENSDF

 $^{182}_{74}\mathrm{W}_{108}\text{--}37$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{182}_{74}W_{108}$

 $^{182}_{74}W_{108}$

 $^{182}_{74}W_{108}$

 $^{182}_{74}W_{108}$

 $^{182}_{\ 74}W_{108}$