186 Os α decay 1975Vi01

 $^{182}_{74}\mathrm{W}_{108}$

History Citation Literature Cutoff Date Author Balraj Singh NDS 130, 21 (2015) 15-Jul-2015

Parent: $^{186}\rm{Os}$: E=0.0; J**=0+; T_{1/2}=2.0 \times 10^{15} y 11; Q(\$\alpha\$)=2820.4 12; %\$\alpha\$ decay=100.0 $^{186}\rm{Os}$ -T_{1/2}: From $^{186}\rm{Os}$ Adopted Levels.

¹⁸⁶Os-Q(α): From 2012Wa38.

¹⁸⁶Os-%α decay: %α=100.

 $T_{1/2}(^{186}\text{Os})=2.0\times10^{15}\text{ y }11$, measured by 1975Vi01, is adopted in 2003Ba44 and is recommended by 1990Ho28. This half-life is used in calculations here. $\%\alpha = 100$. ¹⁸⁶Os is β stable.

¹⁸²W Levels

α radiations

HF Comments $E\alpha$: deduced from Q(α)(186 Os)=2820.4 12. $E\alpha$ ≈2760 was measured by 1975Vi01. 0.0 1.0 $I\alpha$: only one α group has been observed. An upper limit of 5% is calculated for an unobserved 2663.4-keV α to the 2⁺ state at 100.1060 keV by requiring its hindrance factor to be greater than $I\alpha(2759.7\alpha)=97.5\%$ 25 ($I\alpha>95\%$) is used in computations.

[†] Calculations requiring HF(2761 α)=1.0 yield $r_0(^{182}W)$ =1.49 3.