¹⁸²Hf β⁻ decay (8.90×10⁶ y) 2004Ah10,1971He13

		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015	

Parent: 182 Hf: E=0.0; J^{π} =0+; $T_{1/2}$ =8.90×10⁶ y 9; $Q(\beta^-)$ =381 6; $\%\beta^-$ decay=100.0 182 Hf- $T_{1/2}$: From 182 Hf Adopted Levels. 182 Hf- $Q(\beta^-)$: From 2012Wa38.

2004Ah10: 182 Hf source was the one originally produced by 1971He13. measured E γ , I γ , $\gamma\gamma$ with a 25% Ge detector and a low energy photon spectrometer (LEPS).

1971He13: 182Hf sources produced by irradiation of natural Hf and enriched 180Hf with neutrons followed by chemical separation after a waiting period of about two years. One sample was also mass separated. Measured E γ , I γ , $\gamma\gamma$ using Ge(Li) and NaI(Tl) detectors.

¹⁸²Ta Levels

97.85 *3* 114.320 10 270.408 9

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments			
(111.6)	270.408	100	$12.58^{1u} 9$	av E <i>B</i> =32.9 20			

[†] Absolute intensity per 100 decays.

E_{γ}^{\dagger}	Ι _γ ‡@	$E_i(level)$	J_i^{π}	E_f	J_f^{π}	Mult.#	δ#	α&	Comments
97.85 4	0.11 <i>I</i>	97.85	4-	0.0	3-	M1		4.64	$\alpha(K)$ =3.86 6; $\alpha(L)$ =0.609 9; $\alpha(M)$ =0.1381 20 $\alpha(N)$ =0.0330 5; $\alpha(O)$ =0.00523 8; $\alpha(P)$ =0.000362 5
114.32 <i>I</i>	3.0 1	114.320	4-	0.0	3-	(M1)		2.97	$\alpha(K)$ =2.47 4; $\alpha(L)$ =0.389 6; $\alpha(M)$ =0.0882 13 $\alpha(N)$ =0.0211 3; $\alpha(O)$ =0.00334 5; $\alpha(P)$ =0.000231 4
156.09 2	7.0 2	270.408	2-	114.320	4-	E2		0.700	$\alpha(K)$ =0.327 5; $\alpha(L)$ =0.284 4; $\alpha(M)$ =0.0706 10 $\alpha(N)$ =0.01654 24; $\alpha(O)$ =0.00222 4; $\alpha(P)$ =2.26×10 ⁻⁵ 4 $\alpha(P)$ =2.26×10 ⁻⁵ 4 E _{γ} : From 1971He13. In 2004Ah10, it could not be determined because it overlaps the
172.55 <i>4</i>	0.20 2	270.408	2-	97.85	4-	E2		0.492	156.3865 peak from ¹⁸² Ta decay. $\alpha(K)=0.251$ 4; $\alpha(L)=0.184$ 3; $\alpha(M)=0.0456$ 7
172.33 4	0.20 2	270.408	Δ	91.83	4	EΖ		0.492	$\alpha(R)$ =0.231 4; $\alpha(L)$ =0.164 5; $\alpha(M)$ =0.0436 7 $\alpha(N)$ =0.01070 15; $\alpha(O)$ =0.001444 21; $\alpha(P)$ =1.766×10 ⁻⁵ 25
270.408 <i>10</i>	79.0 <i>6</i>	270.408	2-	0.0	3-	E2(+M1)	>3	0.120 8	$\alpha(K)$ =0.081 8; $\alpha(L)$ =0.0298 5; $\alpha(M)$ =0.00722 11

[†] From least-squares fit to Eγ data.

[‡] From Adopted Levels.

¹⁸²Hf β⁻ decay (8.90×10⁶ y) 2004Ah10,1971He13 (continued)

 $\gamma(^{182}\text{Ta})$ (continued)

 E_{γ}^{\dagger} $E_{i}(\text{level})$ Comments

 α (N)=0.00170 3; α (O)=0.000239 5; α (P)=6.5×10⁻⁶ 8

[†] From 2004Ah10. Corresponding values from 1971He13 are in agreement but somewhat less precise.

From 2004Ah10 who measured absolute intensities (photons/100 decays of the parent) were measured by two methods. The first involved a counting arrangement with low absolute efficiencies and the other is to use a system where one can measure and account for the summing effect. Corresponding values from 1971He13 are in agreement but somewhat less precise.

[#] From Adopted Gammas.

[@] Absolute intensity per 100 decays.

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁸²Hf β^- decay (8.90×10⁶ y) 2004Ah10,1971He13

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays Legend $\begin{array}{ll} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ 0.0 8.90×10⁶ y 9 Q_β-=381 6 $\%\beta^{-}=100.0$ $^{182}_{\,72}\mathrm{Hf}_{110}$ $\underline{^{1\beta^{-}}}$ Log ft100 12.58^{1u} 270.408 114.320 97.85 0.0 $^{182}_{73}\mathrm{Ta}_{109}$