¹⁸²Hf β⁻ decay (8.90×10⁶ y) 2004Ah10,1971He13 | | | History | | | |-----------------|--------------|--------------------|------------------------|--| | Type | Author | Citation | Literature Cutoff Date | | | Full Evaluation | Balraj Singh | NDS 130, 21 (2015) | 15-Jul-2015 | | Parent: 182 Hf: E=0.0; J^{π} =0+; $T_{1/2}$ =8.90×10⁶ y 9; $Q(\beta^-)$ =381 6; $\%\beta^-$ decay=100.0 182 Hf- $T_{1/2}$: From 182 Hf Adopted Levels. 182 Hf- $Q(\beta^-)$: From 2012Wa38. 2004Ah10: 182 Hf source was the one originally produced by 1971He13. measured E γ , I γ , $\gamma\gamma$ with a 25% Ge detector and a low energy photon spectrometer (LEPS). 1971He13: 182Hf sources produced by irradiation of natural Hf and enriched 180Hf with neutrons followed by chemical separation after a waiting period of about two years. One sample was also mass separated. Measured E γ , I γ , $\gamma\gamma$ using Ge(Li) and NaI(Tl) detectors. ### ¹⁸²Ta Levels 97.85 *3* 114.320 10 270.408 9 ### β^- radiations | E(decay) | E(level) | $I\beta^{-\dagger}$ | Log ft | Comments | | | | |----------|----------|---------------------|----------------|------------------------|--|--|--| | (111.6) | 270.408 | 100 | $12.58^{1u} 9$ | av E <i>B</i> =32.9 20 | | | | [†] Absolute intensity per 100 decays. | E_{γ}^{\dagger} | Ι _γ ‡@ | $E_i(level)$ | J_i^{π} | E_f | J_f^{π} | Mult.# | δ# | α& | Comments | |------------------------|-------------------|--------------|-------------|---------|-------------|---------|----|---------|---| | 97.85 4 | 0.11 <i>I</i> | 97.85 | 4- | 0.0 | 3- | M1 | | 4.64 | $\alpha(K)$ =3.86 6; $\alpha(L)$ =0.609 9; $\alpha(M)$ =0.1381 20 $\alpha(N)$ =0.0330 5; $\alpha(O)$ =0.00523 8; $\alpha(P)$ =0.000362 5 | | 114.32 <i>I</i> | 3.0 1 | 114.320 | 4- | 0.0 | 3- | (M1) | | 2.97 | $\alpha(K)$ =2.47 4; $\alpha(L)$ =0.389 6; $\alpha(M)$ =0.0882 13 $\alpha(N)$ =0.0211 3; $\alpha(O)$ =0.00334 5; $\alpha(P)$ =0.000231 4 | | 156.09 2 | 7.0 2 | 270.408 | 2- | 114.320 | 4- | E2 | | 0.700 | $\alpha(K)$ =0.327 5; $\alpha(L)$ =0.284 4; $\alpha(M)$ =0.0706 10 $\alpha(N)$ =0.01654 24; $\alpha(O)$ =0.00222 4; $\alpha(P)$ =2.26×10 ⁻⁵ 4 $\alpha(P)$ =2.26×10 ⁻⁵ 4 E _{γ} : From 1971He13. In 2004Ah10, it could not be determined because it overlaps the | | 172.55 <i>4</i> | 0.20 2 | 270.408 | 2- | 97.85 | 4- | E2 | | 0.492 | 156.3865 peak from ¹⁸² Ta decay. $\alpha(K)=0.251$ 4; $\alpha(L)=0.184$ 3; $\alpha(M)=0.0456$ 7 | | 172.33 4 | 0.20 2 | 270.408 | Δ | 91.83 | 4 | EΖ | | 0.492 | $\alpha(R)$ =0.231 4; $\alpha(L)$ =0.164 5; $\alpha(M)$ =0.0436 7
$\alpha(N)$ =0.01070 15; $\alpha(O)$ =0.001444 21;
$\alpha(P)$ =1.766×10 ⁻⁵ 25 | | 270.408 <i>10</i> | 79.0 <i>6</i> | 270.408 | 2- | 0.0 | 3- | E2(+M1) | >3 | 0.120 8 | $\alpha(K)$ =0.081 8; $\alpha(L)$ =0.0298 5; $\alpha(M)$ =0.00722 11 | [†] From least-squares fit to Eγ data. [‡] From Adopted Levels. ## ¹⁸²Hf β⁻ decay (8.90×10⁶ y) 2004Ah10,1971He13 (continued) $\gamma(^{182}\text{Ta})$ (continued) E_{γ}^{\dagger} $E_{i}(\text{level})$ Comments α (N)=0.00170 3; α (O)=0.000239 5; α (P)=6.5×10⁻⁶ 8 [†] From 2004Ah10. Corresponding values from 1971He13 are in agreement but somewhat less precise. From 2004Ah10 who measured absolute intensities (photons/100 decays of the parent) were measured by two methods. The first involved a counting arrangement with low absolute efficiencies and the other is to use a system where one can measure and account for the summing effect. Corresponding values from 1971He13 are in agreement but somewhat less precise. [#] From Adopted Gammas. [@] Absolute intensity per 100 decays. [&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. # ¹⁸²Hf β^- decay (8.90×10⁶ y) 2004Ah10,1971He13 ### Decay Scheme Intensities: $I_{(\gamma+ce)}$ per 100 parent decays Legend $\begin{array}{ll} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ 0.0 8.90×10⁶ y 9 Q_β-=381 6 $\%\beta^{-}=100.0$ $^{182}_{\,72}\mathrm{Hf}_{110}$ $\underline{^{1\beta^{-}}}$ Log ft100 12.58^{1u} 270.408 114.320 97.85 0.0 $^{182}_{73}\mathrm{Ta}_{109}$