¹⁸²Ta IT decay (15.84 min) 1986Se14,1971He13

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015

Parent: ¹⁸²Ta: E=519.587 25; $J^{\pi}=10^-$; $T_{1/2}=15.84 \text{ min } 10$; %IT decay=100.0 1986Se14: measured I γ . 1971He13: measured E γ , I γ . 1966Bi10: measured E γ , I γ , ce. 1947Se33: identification and $T_{1/2}$ measurement. Others: 1968Ho11, 1967Fe03, 1961Su01.

¹⁸²Ta Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$\frac{3^{-}}{5^{+}}$		
163.050 <i>15</i>	6 ⁺	<30 [‡] ps	
334.637 20	7+	<30 [‡] ps	
519.587 25	10-	15.84 min 10	T _{1/2} : from 1966Bi10. Other values: 16.2 min 5 (1947Se33), 16.4 min (1948Ho37), and 16 min 2 (1950Wi67).

[†] From Adopted Levels.

[‡] From (ce)(ce(t) (1968Ho11).

 $\gamma(^{182}\text{Ta})$

I γ normalization, I(γ +ce) normalization: From average of Σ (I(γ +ce) of gammas from 519.6 level)=100 and Σ (I(γ +ce) of gammas to 16.27 level)=100.

Eγ	Ι _γ #@	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α ^{&}	$I_{(\gamma+ce)}^{@}$	Comments
16.273 [‡] 4	0.0047 <i>CA</i>	16.273	5+	0.0	3-	(M2) [‡]	4.30×10 ⁴	202 10	$ce(L)/(\gamma+ce)=0.746 \ 8;ce(M)/(\gamma+ce)=0.198 \ 4;ce(N+)/(\gamma+ce)=0.0557 \ 11ce(N)/(\gamma+ce)=0.0482 \ 10;ce(O)/(\gamma+ce)=0.000356 \ 7L from intensity balance$
146.785 <i>15</i>	76 4	163.050	6+	16.273	5+	M1	1.460		$\begin{array}{l} \alpha({\rm X})=1.214 \ 17; \ \alpha({\rm L})=0.190 \ 3; \\ \alpha({\rm M})=0.0432 \ 6 \\ \alpha({\rm N})=0.01033 \ 15; \\ \alpha({\rm O})=0.001636 \ 23; \\ \alpha({\rm P})=0.0001133 \ 16 \\ {\rm I}_{\gamma}: \ 63.2 \ 3 \ (1986{\rm Se14}). \\ {\rm Mult.: \ from \ } \alpha({\rm K}){\rm exp}=1.22 \ 16, \\ {\rm K}/{\rm L}{\rm =}5.0 \ 6 \ (1966{\rm Bi}{\rm 10}). \\ \Delta{\rm I}_{\gamma}({\rm absolute}){\rm =}0.8 \ {\rm per \ 100} \\ {\rm decays.} \end{array}$
171.586 <i>15</i>	100	334.637	7+	163.050	6+	M1	0.940		$\alpha(K) = 0.782 \ 11; \ \alpha(L) = 0.1224 18; \ \alpha(M) = 0.0278 \ 4 \alpha(N) = 0.00664 \ 10; \alpha(O) = 0.001052 \ 15; \alpha(P) = 7.29 \times 10^{-5} \ 11$

¹⁸²Ta IT decay (15.84 min) **1986Se14,1971He13** (continued)

γ (¹⁸²Ta) (continued)

Eγ	I_{γ} #@	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	α &	Comments
184.951 <i>15</i>	50 <i>3</i>	519.587	10-	334.637 7+	E3	3.20	Mult.: from α (K)exp=0.84 <i>14</i> , K/L=4.8 6 (1966Bi10). α (K)=0.633 <i>9</i> ; α (L)=1.93 <i>3</i> ; α (M)=0.501 <i>7</i> α (N)=0.1181 <i>17</i> ; α (O)=0.01561 <i>22</i> ; α (P)=7.48×10 ⁻⁵
318.40 5	14 <i>1</i>	334.637	7+	16.273 5+	E2	0.0688	I_{γ} : 54.8 4 (1986Se14). Mult.: from α (K)exp=0.62 10, K/L=0.29 3 (1966Bi10). α (K)=0.0478 7; α (L)=0.01603 23; α (M)=0.00388 6 α (N)=0.000913 13; α (O)=0.0001293 19; α (P)=3.81×10 ⁻⁶ 6 I_{γ} : 24.1 3 (1986Se14).
356.47 10	0.6 1	519.587	10-	163.050 6+	M4	4.76	Mult.: from α (K)exp=0.053 <i>10</i> and K/L=2.1 5 (1966Bi10). δ >2.3 from α (K)exp but K/L agrees with pure E2. Δ I γ (absolute)=0.6 per 100 decays. α (K)=2.99 5; α (L)=1.331 <i>19</i> ; α (M)=0.344 5 α (N)=0.0829 <i>12</i> ; α (O)=0.01220 <i>18</i> ; α (P)=0.000560 8 I $_{\gamma}$: from 1971He13. Mult.: from α (K)exp=2.7 <i>10</i> , K/L=2.1 5 (1966Bi10).

[†] From ce data and subshell ratios from 1966Bi10.

[‡] From Adopted Gammas.

[#] From 1971He13. For $\Delta I\gamma$ (absolute) combine 5.2% in quadrature with $\Delta I\gamma$ (rel), except as noted. Values from 1986Se14 do not give an acceptable intensity balance at 334.6 and 163.0 levels.

[@] For absolute intensity per 100 decays, multiply by 0.48 2.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

1986Se14,1971He13

¹⁸²Ta IT decay (15.84 min)

¹⁸²₇₃Ta₁₀₉