¹⁸³Hg ε p decay (9.4 s) 1971Ho07

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh NDS 130, 21 (2015) 15-Jul-2015

Parent: 183 Hg: E=0.0; J^{π} =1/2 $^{-}$; $T_{1/2}$ =9.4 s 7; $Q(\varepsilon p)$ =5075 15; % εp decay=2.6×10 $^{-4}$ 6

 $^{183}\mathrm{Hg}\text{-}\mathrm{T}_{1/2}\text{:}$ From $^{183}\mathrm{Hg}$ Adopted Levels in ENSDF database.

¹⁸³Hg-Q(ε p): From 2012Wa38.

1971Ho07: a distribution of proton energies from 2.5 to 5 MeV was observed which was peaked at about 4.1 MeV. No level scheme is proposed.

¹⁸²Pt Levels

 $\frac{\text{E(level)}}{0} \quad \frac{\text{J}^{\pi}}{0^{+}} \quad \frac{\text{Comments}}{\text{It is assumed that the ground state is populated in this decay.}}$

¹⁸³Hg-%εp decay: %εp=2.6×10⁻⁴ 6, from I(p)/I(α)=2.2x10⁻⁵ 3 (1971Ho07), and adopted %α=11.7 20. %εp would be 0.00056 8 if %α=25.5 15 (1980Sc09) is considered.