1963Gr08

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 11-Jul-2022

Parent: 186 Pt: E=0.0; J^{π} =0+; $T_{1/2}$ =2.08 h 5; $Q(\alpha)$ =4320 18; $\%\alpha$ decay=1.8×10⁻⁴ 10

¹⁸⁶Pt-T_{1/2}: From weighted average of 2.10 h 5 (1991Be25), 2.0 h 1 (1972Fi12) and 2.0 h 2 (1963Gr08). Other: 2.10 h 5 in ¹⁸⁶Pt Adopted Levels in the ENSDF database (March 2022 update), value taken from 1991Be25.

¹⁸⁶Pt α decay (2.08 h)

¹⁸⁶Pt-Q(α): From 2012Wa38.

¹⁸⁶Pt- $\frac{1}{2}$ α decay: %α=0.00018 10 (evaluator), from maximum value of 0.00028% and minimum value of 0.00007, based on measured (or estimated) value of %α=≈1.4×10⁻⁴ (1963Gr08), with authors' statement that the branching was correct within a factor of 2. Other: ≈0.00014% in ¹⁸⁶Pt Adopted Levels in the ENSDF database (March 2022 update), value taken from 1963Gr08.

 $\%\alpha\approx0.00014\%$ was deduced by 1963Gr08 by assuming that neighboring mass nuclei were produced in equal quantities. The branching was estimated by 1963Gr08 to be correct within a factor of 2.

HF: r_0 =1.536 30 (2020Si16) deduced from r_0 =1.518, r_0 =1.574 and r_0 =1.485 for $\%\alpha$ =0.00014, $\%\alpha$ =0.00028 and $\%\alpha$ =0.00007, respectively, and using 94% 6 branching for the intensity of the 4230 α transition form g.s. to g.s.

¹⁸²Os Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}}$

 α radiations

 $\frac{\text{E}\alpha}{4230\ 20} \quad \frac{\text{E(level)}}{0.0} \quad \frac{\text{HF}}{1.0}$

Comments

E α : the α energy was measured by 1963Gr08. I α : only one α group has been observed. α intensities are calculated as I α (to g.s.)>88.7, I α (to 2⁺)<11.3 per 100 α decays by requiring that the hindrance factor for an unobserved 4103-keV α to the 2⁺, 127.0 level is greater than 1.

 $I\alpha(4230\alpha)=94$ 6 per 100 α decays is used in computations.