170 Er(16 O,4n γ) **1982Fa01**

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	11-Jul-2022

1982Fa01 (also 1981Dr06, 1980Dr11, 1980Dr10): E=77, 81, 86 MeV. Measured E γ , I γ , $\gamma\gamma$, delayed $\gamma\gamma$, $\gamma\gamma(\theta)$ using a large-volume Ge(Li) detector in conjunction with another large-volume detector, a thin-window planar intrinsic Ge detector or a Compton-suppressed Ge(Li) spectrometer. Conversion data with a mini-orange magnetic filter and Si(Li) detector were measured but no useful results were deduced due to complexity of low-energy spectrum and weak intensity of high-energy transitions.

The 5⁻ band starts at 1896 according to 1982Fa01 but in 1982Li04 and in Adopted Levels, the band starts at 1801 with 4⁻. The level energies for this band starting at 2119, 7⁻ should be adjusted downward by 94 keV and the level spins should be adjusted downward by one unit The 1896, 5⁻ member of this band is at right energy but the 1990, 6⁻ level should be omitted. The 94.0 γ from this level is placed from 1896 level instead.

E(level)	Jπ†	T _{1/2}	E(level)	J^{π}	E(level)	J^{π}
0.0	0^{+}		2220.5 ^a 5	10-	3265.4 ^{<i>a</i>} 5	14-
127.06 ^{&} 19	2^{+}		2235.4 <mark>8</mark> 5		3291.6 ^k 5	14^{+}
400.50 ^{&} 25	4+		2246.3 ^j 6	9+	3305.3 ^j 5	(15 ⁺)
794.3 ^{&} 3	6+		2276.2 ^f 6	8(-)	3319.9 <mark>&</mark> 5	16+
891.0 ^h 3	2+		2346.2 <mark>&</mark> 5	12+	3339.3 ^e 5	(13)
1039.7 <mark>h</mark> 3	3+		2375.3 ⁱ 5	10+	3490.2 ^c 5	(14-)
1190.8 ^h 3	4+		2382.0 ^e 4	(9)	3573.7 ^b 6	15-
1278.1 ^{&} 4	8+		2420.3 [°] 4	10-	3617.3 ⁱ 6	16+
1400.0 ^h 3	5+		2449.7 <mark>b</mark> 5	11-	3640.3 ^d 6	15-
1472.4 ^d 3	3-		2465.6 ^ƒ 6	9(-)	3709.8 ^{<i>f</i>} 7	$14^{(-)}$
1589.1 ^h 4	(6 ⁺)		2527.5 ^j 5	11^{+}	3850.6 ^k 7	(16 ⁺)
1654.7 ^d 3	5-		2592.1 ^d 4	11-	3856.7 <mark>&</mark> 6	18+
1735.2 ^e 4	(5)		2652.3 ^g 5		3904.1 ^{<i>a</i>} 6	16-
1757.1 [°] 4	6-		2672.4 ¹ 5	12+	3906.5 ^e 7	(15)
1812.2 4	10^{+}		2677.6 ⁵ 6	$10^{(-)}$	4059.2 ^c	(16 ⁻)
1831.6 ^{#a} 4	8-	0.78 [@] ms 7	2700.9 ^a 5	12-	4237.5 ^b 7	17^{-}
1853.5 ^h 4	7+		2803.6 ^k 5	12+	4274.7 ¹ 7	(18^{+})
1879.4 ^d 4	7-		2825.3 ^e 5	(11)	4276.8? ^f 10	(16 ⁻)
1891.8 <mark>8</mark> 5			2840.6 ^{&} 5	14+	4294.1 ^d 8	17^{-}
1896.1 ^{<i>f</i>} 4	$5^{(-)}$		2870.9 ^j 5	(13 ⁺)	4467.6 ^e 8	(17)
1990.1 [‡] <i>f</i> 5	6(-)		2909.4 [°] 5	12-	4467.9 ^k	(18^{+})
2014.4 ^b 5	9-		2913.2 ^f 6	$11^{(-)}$	4479.6 ^{&} 7	20^{+}
2017.9 ^e 4	(7)		2972.9 ^b 5	13-	4598.6 ^a 6	18-
2036.1 [°] 4	8-		3072.6 ^d 5	13-	4940.4 ^b 8	(19 ⁻)
2113.1 ^{<i>i</i>} 5	8+		3073.6 ⁱ 5	14+	5023.8 ⁱ 8	(20 ⁺)
2119.4 ^{<i>f</i>} 5	$7^{(-)}$		3166.2 ^f 6	$12^{(-)}$	5191.0 <mark>&</mark> 8	(22^{+})
2194.1 ^d 4	9-		3189.6 <mark>8</mark> 7		5986.3 ^{&} 9	(24+)

¹⁸²Os Levels

[†] As proposed by 1982Fa01 based on $\gamma(\theta)$ data and band assignments. The assignments in Adopted Levels are consistent but many are placed in parentheses there.

^{\ddagger} This level is not included in Adopted Levels since 94.0 γ is placed from 1896 level.

%IT=100.

[@] From Adopted Levels.

170 Er(16 O,4n γ) 1982Fa01 (continued)

¹⁸²Os Levels (continued)

- & Band(A): $K^{\pi}=0^+$ g.s. band.
- ^{*a*} Band(B): $K^{\pi} = 8^{-}, \alpha = 0$.
- ^{*b*} Band(b): $K^{\pi} = 8^{-}, \alpha = 1$.
- ^c Band(C): Band based on 3^- .
- ^d Band(c): Band based on 6^- .
- ^e Band(D): Band based on (5).
- ^{*f*} Band(E): Band based on $5^{(-)}$.

- ^g Seq.(I): γ sequence. ^h Band(F): $K^{\pi}=2^{+} \gamma$ band. ⁱ Band(G): Band based on 8⁺.
- ^{*j*} Band(g): Band based on 9^+ .
- ^{*k*} Band(H): Band based on 12^+ .

$\gamma(^{182}\text{Os})$

	Ε _γ @	Iγ	E_i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ&	Comments	
	94.0 ^C 4	$2.5^{\#d}.5$	1990.1	$6^{(-)}$	1896.1	5 ⁽⁻⁾				
	102.1 4	2.3 5	1757.1	6-	1654.7	5-	D+Q		A ₂ =-0.51 14; A ₄ =+0.20 20	
	122.3 4	1.6 7	1879.4	7^{-}	1757.1	6-	D+Q		$A_2 = -0.60 \ 14; A_4 = +0.08 \ 20$	
	127.0 2	45 <i>3</i>	127.06	2+	0.0	0^{+}	Q		$A_2 = +0.15 2; A_4 = -0.04 2$	
	129.5 4	1.4 4	2119.4	$7^{(-)}$	1990.1	6(-)	D+Q	+0.17 8	$A_2 = +0.01 \ 9; A_4 = -0.01 \ 14$	
	133.2 4	1.3 6	2246.3	9+	2113.1	8+	(D)		$A_2 = -0.07 4; A_4 = -0.05 5$	
	152.4 4	2.6 9	2527.5	11+	2375.3	10+	D		$A_2 = -0.165; A_4 = +0.066$	
	156.8 4	1.8 [#] 10	2276.2	8(-)	2119.4	$7^{(-)}$				
	156.9 4	2.7 [#] 15	2036.1	8-	1879.4	7-				
	158.0 4	1.1 4	2194.1	9-	2036.1	8-	D+Q		$A_2 = -0.83 \ 17; \ A_4 = -0.02 \ 29$	
	172.2 4	1.1 2	2592.1	11-	2420.3	10-				
	182.5 4	2.7# 7	1654.7	5-	1472.4	3-				
	182.7 2	11.7 [#] 9	2014.4	9-	1831.6	8-				
	189.9 [†] 4	2.1 3	2465.6	9(-)	2276.2	8(-)	(D+Q)		$A_2 = -0.07 \ 12; \ A_4 = -0.11 \ 19$	
	198.3 4	2.8# 7	2870.9	(13 ⁺)	2672.4	12+				
	206.2 2	4.1 3	2220.5	$10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$	2014.4	9-	D+Q	-0.9 4	$A_2 = -0.93$ 2; $A_4 = +0.07$ 2	
	212.2 4	1.6 2	2677.6	10(-)	2465.6	9(-)	(D+Q)	+0.27 5	$A_2 = +0.15$ 6; $A_4 = -0.08$ 7	
	223.4 4	≤0.8#	2119.4	$7^{(-)}$	1896.1	5(-)				
	224.7 4	1.4 3	18/9.4	7-	1654.7	5-	Q		$A_2 = +0.45 9; A_4 = -0.18 10$	
	226.5 4	1.3 3	2420.3	10-	2194.1	9-	(D)	0.54 04 00	$A_2 = -0.03$ 7; $A_4 = +0.03$ 8	
	229.2 2	3.3 3	2449.7	11	2220.5	10	D+Q	-0.56 + 34 - 22	$A_2 = -0.792; A_4 = +0.043$	
	231.8 4	≤1.6‴	3305.3	(15^+)	3073.6	14+				
	235.2 4	1.9 4	2913.2	11(-)	2677.6	$10^{(-)}$	(D+Q)	+0.23 8	$A_2 = +0.10 \ 10; \ A_4 = -0.02 \ 12$	
	251.4 4	2.2 2	2700.9	12	2449.7	11	D+Q	-0.42 +28-15	$A_2 = -0.732; A_4 = +0.113$	
	253.1 4	2.1 3	3166.2	12(-)	2913.2	11 ⁽⁻⁾	(D)		$A_2 = -0.075; A_4 = -0.016$	
	255.0 4	1.4 3	1654.7	5	1400.0	2.	(D)•		$A_2 = +0.08$ /; $A_4 = -0.01$ 8	
	271.8 4	1.6 [#] 4	29/2.9	13-	2700.9	12-	0		A 0.02 J. A 0.08 2	
	273.5 2	100 5	400.50	4	127.00	2.	Q		$A_2 = +0.23$ <i>I</i> ; $A_4 = -0.08$ <i>2</i>	
	278.8 2	3.9+ 9	2036.1	8	1/5/.1	6	Q		$A_2 = +0.20 3; A_4 = -0.09 3$	
	281.1 4	$2.0^{+}_{+}12$	2527.5	11+	2246.3	9+				
	282.6 4	≤1.1#	2017.9	(7)	1735.2	(5)				
	285.9 4	2.2 3	2276.2	8(-)	1990.1	6(-)	(Q)		$A_2 = +0.20 6; A_4 = -0.08 7$	
1	292.07 4	1.2 2	3265.4	14-	2972.9	13-	(D)		$A_2 = -0.34 9; A_4 = -0.03 10$	
1	308.6 4	≤1.6	3573.7	15-	3265.4	14-	0			
1	314.8 2	3.9 4	2194.1	9=	1879.4	·/-	Q		$A_2 = +0.34 4$; $A_4 = -0.09 5$	
1	317.8 4	1.4# 2	2909.4	12-	2592.1	11-				
1	326.2 2	5.8 6	26/2.4	12*	2346.2	12*	(D) ⁴		$A_2 = +0.34 3; A_4 = +0.01 3$	
1	329.6 ⁿ 4	0.6 <i>3</i>	3904.1	16-	3573.7	15-				

 $\boldsymbol{\omega}$

¹⁷⁰Er(¹⁶**Ο,4**nγ) **1982Fa01** (continued)

$\gamma(^{182}\text{Os})$ (continued)

Ε _γ @	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	Comments
343.5 ^f 2	3.9 f ‡ 6	2235.4		1891.8			
343.5 f 2	3.9 f ‡6	2870.9	(13^{+})	2527.5	11+		
346.4 4	2.0 3	2465.6	9(-)	2119.4	$7^{(-)}$	(Q)	A ₂ =+0.10 7; A ₄ =-0.03 8
360.5 4	≤0.5 [#]	1400.0	5+	1039.7	3+		
364.1 2	5.3 [‡] 22	2382.0	(9)	2017.9	(7)	(0)	$A_2 = +0.27$ 13; $A_4 = -0.13$ 15
382.0 4	≤1.1	2235.4		1853.5	7+	(U	
384.2 2	3.7 4	2420.3	10-	2036.1	8-	Q	$A_2 = +0.26 5; A_4 = -0.12 6$
389.2 4	3.0 [‡] 7	2220.5	10-	1831.6	8-	(Q)	$A_2 = +0.30 \ 11; \ A_4 = -0.07 \ 12$
393.9 2	85 6	794.3	6+	400.50	4+	Q	$A_2 = +0.25 2; A_4 = -0.07 2$
398.0 2	5.0 5	2592.1	11-	2194.1	9-	Q	$A_2 = +0.35 4; A_4 = -0.08 4$
401.28 2	$3.1^{8#}$ 14	2677.6	10(-)	2276.2	8(-)	Q	$A_2 = +0.24 4, A_4 = -0.13 5.$
401.2 ⁸ 4	$\approx 0.5^{8^{\#}}$	3073.6	14+	2672.4	12+		
416.9 2	6.7 <mark>0</mark> 6	2652.3		2235.4		(Q)	$A_2 = +0.13 \ 3, A_4 = -0.04 \ 3 \ \text{for } 416.9 + 417.2.$
417.2 ^{<i>h</i>} 2	6.7 <mark>0</mark> 6	3490.2	(14 ⁻)	3072.6	13-		$A_2 = +0.13 \ 3; \ A_4 = -0.04 \ 3$ for doublet.
428.3 [†] 4	0.9 <i>3</i>	2017.9	(7)	1589.1	(6 ⁺)	(D)	$A_2 = -0.22 \ 21; A_4 = +0.06 \ 24$
432.4 4	2.0 6	1472.4	3-	1039.7	3+	(D) ^{<i>a</i>}	$A_2 = +0.18 \ 8; \ A_4 = +0.01 \ 9$
434.4 2	3.8# 20	3305.3	(15^{+})	2870.9	(13+)		
435.1 2	3.7 5	2449.7	11^{-}	2014.4	9 ⁻	0	A = 0.006 A = 0.157
445.5 2	3.3 5	2023.5	(11) 11(-)	2362.0	(9)	Q	$A_2 = +0.090; A_4 = -0.137$
447.72	4.03	1952 5	7+	1400.0	9 5+	Q	$A_2 = +0.55\ 0,\ A_4 = -0.52\ 8$
433.84	$\leq 0.5^{\circ}$	2803.6	12+	1400.0 2346.2	12 ⁺	0	$\Delta_{2} = \pm 0.71 \ 10^{\circ} \ \Delta_{4} = -0.39 \ 11$
463 7 4	$22^{\pm}10$	1654.7	5-	1100.8	12 1+	Q	$M_2 = +0.7110, M_4 = -0.5711$
479.3 2	20.2	3319.9	16 ⁺	2840.6	4 14 ⁺	0	$A_2 = +0.34$ 3: $A_4 = -0.10$ 3
480.4 2	3.1 8	2700.9	12-	2220.5	10-	×	
480.5 2	3.1 8	3072.6	13-	2592.1	11-		
483.8 2	72 5	1278.1	8+	794.3	6+	Q	$A_2 = +0.25 2; A_4 = -0.07 2$
487.9 4	≤0.5	3291.6	14^+	2803.6	12^+		
488.6 2	4.1 10	3166.2	12	2677.6	10		
400.9 2	$ > 0.0^{\#} $	1201.4	12	1400.0	10 5+		
491.74	≤ 0.9	2840.6	14+	2346.2	$\frac{5}{12^+}$	0	$A_2 = +0.333 + A_4 = -0.114$
514.0.2	$51^{\#}24$	3339.3	(13)	2825.3	(11)	×	
523.1 2	4.2 4	2972.9	13-	2449.7	11^{-11}	0	$A_2 = +0.37$ 3: $A_4 = -0.06$ 3
534.0 ^f 2	70^{f} 5	1812.2	10+	1278.1	8+	õ	$A_2 = +0.33$ 2; $A_4 = -0.10$ 2
534.0^{f} 2	$70^{f} 5$	2346.2	12+	1812.2	10+	Õ	
536.8 2	8.6 9	3856.7	18+	3319.9	16+	Q	$A_2 = +0.42 4$, $A_4 = -0.10 5$ for 536.8+537.3.
537.3 4	1.6 9	3189.6		2652.3		(Q)	$A_2 = +0.42$ 4, $A_4 = -0.10$ 5 for 536.8+537.3.
543.6 4	1.6 8	3709.8	$14^{(-)}$	3166.2	$12^{(-)}$		

4

$^{182}_{76}\mathrm{Os}_{106}\text{-}4$

From ENSDF

	170 Er (16 O ,4 n γ)					¹⁷⁰ Er(¹	¹⁶ Ο,4n γ)	1982Fa01 (continued)
							γ (¹⁸² Os	s) (continued)
E _γ @	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_{f}^{π}	Mult.&	α^{e}	Comments
543.8 4	≤1.5	3617.3	16+	3073.6	14+			
553.5 2	17 2	1831.6	8-	1278.1	8+	a		$A_2 = -0.01 \ l; \ A_4 = -0.02 \ 2$
559.0 4	≈1.0 4	3850.6	(16^{+})	3291.6	14+			
561.1 4	≈1.0 4	4467.6	(17)	3906.5	(15)			
562.7 4	1.6 3	2375.3	10+	1812.2	10+	(D) <i>a</i>		$A_2 = +0.36 \ 11; \ A_4 = -0.04 \ 13$
564.7 2	3.6+ 6	3265.4	14-	2700.9	12-			
567 <mark>″</mark>	щ	4276.8?	(16 ⁻)	3709.8	$14^{(-)}$			Tentative placement, γ not seen in all coin gates.
567.2 4	2.7 [#] 13	3906.5	(15)	3339.3	(13)			
567.7 4	2.1# 9	3640.3	15-	3072.6	13-			
568.7 ⁿ 4	≤2.5	4059.2	(16 ⁻)	3490.2	(14 ⁻)			
580.8 2	3.8 12	3490.2	(14)	2909.4	12	(Q)		$A_2 = +0.254, A_4 = -0.074$ for $580.8 + 581.2$.
581.2 4	2.2 10	1472.4	3-	891.0	2+			A_2 =+0.25 4, A_4 =-0.07 4 for 580.8+581.2. A_2 and A_4 are inconsistent with ΔJ =1, E1 expected for 581.2 γ .
600.8 2	5.5 [#] 8	3573.7	15-	2972.9	13-	Q		$A_2=+0.25$ 8; $A_4=-0.11$ 5 I_{γ} : corrected for contamination.
617.6 ^h 4	2.3 12	4467.9	(18^{+})	3850.6	(16+)			
622.9 4	2.8 4	4479.6	20^{+}	3856.7	18^{+}	(Q)		$A_2 = +0.26$ 7; $A_4 = -0.09$ 8
638.7 2	3.7 4	3904.1	16-	3265.4	14-	Q		$A_2 = +0.23$ 7; $A_4 = -0.12$ 8
653.8 4	1.0.3	4294.1	1/	3640.3	15	(Q)		$A_2 = +0.73 \ 13; \ A_4 = -0.13 \ 15$
657.44 663.84	0.3"3	4274.7	(18^{+}) 17^{-}	3617.3	16' 15 ⁻	(0)		$A_{0} = \pm 0.33.6$; $A_{1} = \pm 0.04.6$
694.5 2	4.0 25	4598.6	18^{-1}	3904.1	15^{-15}	(Q)		$R_2 = \pm 0.55$ 0, $R_4 = \pm 0.04$ 0
702.9 4	≈1.0	4940.4	(19 ⁻)	4237.5	17-			
705.3 4	2.8 4	1896.1	5(-)	1190.8	4+	(E1)	0.00378	$A_2 = -0.17 \ 10; \ A_4 = +0.01 \ 12$
711 4 4	10.2	5101.0	(22+)	1170 (20+			Mult.: from estimated $\alpha(K)$ exp.
/11.4 4	1.0.3	5191.0 3073.6	(22^+) 14^+	44/9.6	20 ⁺ 12 ⁺	(0)		$\Delta_{c} = 10.32.5; \Delta_{c} = 0.05.6$
749.0 4	2.7 4	5023.8	(20^{+})	4274.7	(18^+)	(Q)		$R_2 = +0.52$ J, $R_4 = -0.05$ U
763.4 4	1.9 3	891.0	2^{+}	127.06	2^+	$(D+Q)^{a}$		$A_2 = -0.12 8; A_4 = +0.03 9$
776.7 4	1.3 3	3617.3	16^{+}	2840.6	14^{+}	Q		$A_2 = +0.43 9; A_4 = -0.14 11$
790.2 2	3.6 4	1190.8	4+	400.50	4+			$A_2 = +0.08 4; A_4 = -0.07 5$
794.7 <i>4</i>	1.3 ⁰ 5	1589.1	(6^{+})	794.3	6^{+}			
795.3 4	1.3 ^b 5	5986.3	(24 ⁺)	5191.0	(22^{+})	- 0		
834.9 4	2.9 4	2113.1	8 ⁺	1278.1	8 ⁺	$(D)^{\boldsymbol{\alpha}}$		$A_2 = +0.22$ 6; $A_4 = +0.03$ 6 $A_4 = +0.08$ 2; $A_4 = +0.01$ 4 for 860 1 + 860 2
860 2 4	5.5 20 1 8 11	2072.4 1654 7	12' 5-	1812.2 794 3	10 ⁻ 6 ⁺	(Q)		$A_2 = +0.05$, $A_4 = +0.01$ 4 for 860 1+860 2
891.2 4	2.3 3	891.0	2^{+}	0.0	0^{+}	(O)		$A_2 = +0.31 \ 9; \ A_4 = -0.02 \ 10$
912.6 2	3.7 4	1039.7	3+	127.06	2^{+}			$A_2 = +0.045; A_4 = +0.065$
945.5 4	1.3 3	3291.6	14+	2346.2	12+	Q		$A_2 = +0.24 \ 13; A_4 = -0.17 \ 15$
962.7 4	2.0 3	1757.1	6-	794.3	6+	(D) ^{<i>u</i>}		$A_2 = +0.15 9; A_4 = +0.13 10$

S

From ENSDF

 $^{182}_{76}\mathrm{Os}_{106}\text{--}5$

L

						170	⁰ Er(¹⁶ Ο,4n γ)	1982Fa01 (continued)			
	γ ⁽¹⁸² Os) (continued)										
Ε _γ @	Iγ	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&	α ^e	Comments			
991.3 4	1.1 2	2803.6	12^{+}	1812.2	10^{+}	(Q)		$A_2 = +0.26 8; A_4 = -0.07 9$			
999.5 2	3.4 4	1400.0	5+	400.50	4+	D+Q		$A_2 = -0.065; A_4 = +0.146$			
1059.1 4	1.5 3	1853.5	7+	794.3	6+	D+Q		$A_2 = -0.38 6; A_4 = +0.26 7$			
1063.8 4	2.3 3	1190.8	4+	127.06	2^{+}			$A_2 = +0.03 6; A_4 = +0.01 7$			
1072.6 4	0.5 2	1472.4	3-	400.50	4+	(D)		$A_2 = -0.30\ 23;\ A_4 = +0.12\ 26$			
1085.4 4	0.6 3	1879.4	7-	794.3	6+	D		$A_2 = -0.31 \ 15; \ A_4 = +0.03 \ 17$			
1097.7 4	2.4 3	2375.3	10^{+}	1278.1	8+	(Q)		$A_2 = +0.34 8; A_4 = -0.02 9$			
1101.7 4	1.4 3	1896.1	$5^{(-)}$	794.3	6+	(D)		$A_2 = -0.17 \ I3; A_4 = +0.02 \ I6$			
1188.3 4	0.9 [#] 3	1589.1	(6^{+})	400.50	4+						
1223.7 2	≤6.4 [#]	2017.9	(7)	794.3	6+						
1254.2 2	5.7 6	1654.7	5-	400.50	4+	(E1)	1.34×10^{-3}	$A_2 = -0.11 4$; $A_4 = +0.00 4$ α (K)exp<0.0038			
1334.6 <i>4</i>	0.8 4	1735.2	(5)	400.50	4+	(D)		α (K)=0.001096 <i>16</i> ; α (L)=0.0001564 <i>22</i> ; α (M)=3.53×10 ⁻⁵ <i>5</i> α (N)=8.59×10 ⁻⁶ <i>12</i> ; α (O)=1.482×10 ⁻⁶ <i>21</i> ; α (P)=1.108×10 ⁻⁷ <i>16</i> ; α (IPF)=3.87×10 ⁻⁵ <i>6</i> A ₂ =-0.26 <i>14</i> ; A ₄ =-0.09 <i>15</i>			

[†] A_2 and A_4 are uncertain due to low intensity, contamination or background correction problems. [‡] Corrected for contamination from ¹⁸³Os or¹⁸¹Os.

[#] Estimated from coincidence data; contaminated in singles data.

^(a) $\Delta(E\gamma)$ assigned as 0.2 keV for Iy>3 and 0.4 keV for Iy<3, based on a general statement by 1982Fa01 that it ranges from 0.15 keV for strong lines to 0.4 keV for weaker lines.

[&] From $\gamma(\theta)$, mult=Q corresponds to $\Delta J=2$, stretched quadrupole (most likely E2) transition, mult=D or D+Q corresponds to $\Delta J=1$, dipole or D+Q (most likely M1+E2) transition.

^{*a*} $\Delta J=0$, dipole transition.

6

^b Combined intensities for 416.9+417.2; 794.7+795.3.

^c In other in-beam studies, a 94.0 γ is placed from 1896 level.

^d 1982Fa01 obtained intensity from $\gamma\gamma$ coin data. In other studies 94.0 γ , 705.3 γ and 1101.7 γ deexcite the same level at 1896 keV. Comparison of branching ratios in other studies suggests that I γ =2.5 quoted by 1982Fa01 seems to represent I γ +ce, assuming M1 for 94 γ for which α =6.7.

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Multiply placed with undivided intensity.

^{*g*} Multiply placed with intensity suitably divided.

^{*h*} Placement of transition in the level scheme is uncertain.

 $^{182}_{76}\mathrm{Os}_{106}\text{--}6$

Level Scheme (continued)

Intensities: Relative I_{γ}	Legend
& Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided	$\begin{array}{c c} & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

 $^{182}_{76}\mathrm{Os}_{106}$

Level Scheme (continued)

Level Scheme (continued)

¹⁸²₇₆Os₁₀₆

 $^{^{182}}_{76}\mathrm{Os}_{106}$

¹⁷⁰Er(¹⁶O,4nγ) 1982Fa01 (continued)

¹⁸²₇₆Os₁₀₆