¹⁸²Pt ε decay (2.67 min) 2007Ho20,1995Sa42

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015

Parent: ¹⁸²Pt: E=0; $J^{\pi}=0^+$; $T_{1/2}=2.67 \text{ min } 12$; $Q(\varepsilon)=2883 \ 25$; $\%\varepsilon+\%\beta^+$ decay=99.962 2

¹⁸²Pt-Q(ε): From 2012Wa38.

 $^{182}\text{Pt-}\%\varepsilon + \%\beta^+$ decay: $\%\alpha {=}0.038~2$ (from ^{182}Pt Adopted Levels).

2007Ho20: Measured E γ , I γ , ce, γ (ce) using a Si(Li) detector and an HPGe detector. The ce data were measured using a magnetic spectrometer and a Si(Li) detector. The source of ¹⁸²Pt obtained from successive decay of mass-separated ¹⁸²Hg isotope formed in Pb(p,X), 1 GeV protons, CERN-PS booster facility. 2000Ro41 from the same group report multipolarity assignments for 21 transitions from 17.8 to 123.4 keV, consistent with those in 2007Ho20.

1995Sa42: Measured Ey, Iy, $\gamma\gamma$, $\gamma\gamma$ (t) using a planar HPGe, x-ray detector and two coaxial HPGe detectors.

1999Sa40: Conversion electron measurements for four transitions.

2007Ho20, 1995Sa42 and 1999Sa40 are from the same group.

Others:

1975Ho03: measured β strength function; population of levels indicated from 800 keV to \approx 3 MeV.

1970FiZZ: measured E γ , I γ for four γ rays at 136.0, 146.0, 186.0 and 210.0. All are reported by 1995Sa42, except that 210 γ is very weak in 1995Sa42.

All data are from 2007Ho20, unless indicated otherwise.

¹⁸²Ir Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	3+	
8.1? 4		E(level): ordering of 8.1-374.1 cascade is not established.
25.85 [#] 17	$(5)^+$	About 20% of the total disintegration intensity populates this level.
71.06 ^{&} 16	$(5)^+$	
74.80 [#] 13	$(2)^{+}$	
87.39 [#] 13	$(1,2)^+$	J^{π} : (1) ⁺ from band assignment.
88.8 <mark>&</mark> 3	$(4)^+$	
95.07 [#] 16	$(4)^+$	
152.23 17	$(1,2)^{-}$	Configuration= $K^{\pi}=2^{-}, \pi 3/2[402] \otimes \nu 1/2[521].$
152.46 15	(4)-	Configuration= $K^{\pi}=4^{-}$, $\pi 1/2[541] \otimes \nu 9/2[624] + \pi 1/2[541] \otimes \nu 7/2[633]$.
174.49 18	(3)-	Configuration= $K^{\pi}=3^{-}, \pi 1/2[541] \otimes v7/2[633] + \pi 3/2[532] \otimes v9/2[624].$
190.39 ^{<i>a</i>} 19	$(3)^{+}$	
194.38 19	$(1,2)^+$	
199.8 4	$(0 \text{ to } 3)^{-}$	Configuration= $K^{\pi}=1^{-}, \pi 3/2[402] \otimes \nu 1/2[521], \text{ if } J^{\pi}=3^{-}.$
210.97 ^{^w} 15	1+	
255.1 4	$0^+, 1^+, 2^+$	
259.61 1/	(2)	
283.81 <i>18</i>	$(2)^+$	
320.94 17	(2)	Configuration= K^{n} =2, $\pi 5/2[402] \otimes v1/2[521]$.
341.67 ^{^w} 21	$(2,3,4)^+$	J^{π} : (3) ⁺ favored from band assignment.
345.69 19	$(2)^{-}$	$Configuration = K^{n} = 2^{-}, \pi 3/2 [532] \otimes \sqrt{7}/2 [633].$
377.07 22	$(2)^+$	Configuration= $K^{n} = 2^+, \pi 3/2[532] \otimes v//2[514].$
382.17 15	$(3)^+$	Configuration= K^{n} =5', $\pi 1/2$ [541] \otimes 15/2[512].
452.52 10	$(2)^{+}$	$Configuration = K^{n} = 2^{n}, \pi 1/2[341] \otimes v_3/2[512].$
436.31 23	(2,3,4)	
636 88 16	$(2,3)^+$	
662.76 14	$(1,2)^+$	Configuration = $\pi 3/2[532] \otimes \nu 5/2[512]$
782.9 3	$(1,2)^+$	<u>0</u>

¹⁸²Pt-T_{1/2}: From ¹⁸²Pt Adopted Levels.

¹⁸²Pt ε decay (2.67 min) 2007Ho20,1995Sa42 (continued)

¹⁸²Ir Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
852.78 <i>25</i> 904.1 <i>3</i>	$(3)^+$ $(1,2,3)^+$	922.7 <i>4</i> 1002.36 <i>14</i>	(0 ⁻ to 4 ⁻) 1 ⁺	1024.87 <i>16</i> 1135.67 <i>23</i> 1540 7 <i>4</i>	$(1)^+$ $(1,2)^+$ $(0^+$ to 4^+)

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

[#] Band(A): $K^{\pi} = 1^+$, $\pi 1/2[541] + \nu 1/2[521]$. Mainly K=1, but mixed with K=0 partner of p1/2[541] - \nu 1/2[521] and K=1 and K=2 members of configuration= $\pi 3/2[532] \otimes \nu 1/2[521]$.

^(a) Band(B): $K^{\pi}=0^+$, $\pi 1/2[541]-\nu 1/2[521]$. Mainly K=0, but mixed with K=1 partner of p1/2[541]- $\nu 1/2[521]$ and K=1 and K=2 members of configuration= $\pi 3/2[532] \otimes \nu 1/2[521]$.

& Band(C): $K^{\pi}=4^+$, $\pi 1/2[541]+\nu 7/2[514]$. Mainly K=4, but mixed with K=3 partner of p1/2[541]- $\nu 7/2[514]$ and weak admixture of configuration= $\pi 3/2[532] \otimes \nu 7/2[514]$.

^{*a*} Band(D): $K^{\pi}=3^+$, $\pi 1/2[541]-\nu7/2[514]$. Mainly K=3, but mixed with K=3 partner of p1/2[541]- $\nu7/2[514]$ and weak admixture of configuration= $\pi 3/2[532] \otimes \nu7/2[514]$.

E(decay)	E(level)	$\mathrm{I}\beta^+$ #	$\mathrm{I}\varepsilon^{\#}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger \#}$	Comments
$(1.34 \times 10^3 \ 3)$	1540.7		0.098 25	6.8 1	0.098 25	εK=0.8075 3; εL=0.14587 23; εM+=0.04643 9
$(1.75 \times 10^3 \ 3)$	1135.67	0.0063 15	1.5 3	5.9 1	1.5 3	av Eβ=345 11; εK=0.8079 3; εL=0.14262 21; εM+=0.04524 8
$(1.86 \times 10^3 \ 3)$	1024.87	0.018 4	2.5 5	5.7 1	2.5 5	av Eβ=393 11; εK=0.8062 6; εL=0.14168 23; εM+=0.04491 8
						I($\varepsilon + \beta^+$): deduced by the evaluators from intensity balance. 2007Ho20 give 2.4 8.
$(1.88 \times 10^3 \ 3)$	1002.36	0.055 13	6.9 14	5.3 1	7.0 14	av Eβ=403 11; εK=0.8058 6; εL=0.14148 23; εM+=0.04484 8
						I($\varepsilon + \beta^+$): deduced by the evaluators from intensity balance. 2007Ho20 give 6.9 22.
$(1.96 \times 10^3 \ 3)$	922.7	0.0016 6	0.15 5	7.0 2	0.15 5	av Eβ=438 11; εK=0.8038 8; εL=0.14074 25; εM+=0.04458 9
$(1.98 \times 10^3 \ 3)$	904.1	0.0023 7	0.20 6	6.9 2	0.20 6	av Eβ=446 11; εK=0.8033 8; εL=0.1406 3; εM+=0.04452 9
$(2.03 \times 10^3 @ 3)$	852.78	0.0050 12	0.35 8	6.6 1	0.36 [‡] 8	av Eβ=469 11; εK=0.8017 9; εL=0.1400 3; εM+=0.04434 9
$(2.22 \times 10^3 \ 3)$	662.76	0.007 4	0.28 14	6.8 2	0.29 14	av Eβ=552 11; εK=0.7934 14; εL=0.1378 4; εM+=0.04361 11
$(2.25 \times 10^3 \ 3)$	636.88	0.023 7	0.82 23	6.4 1	0.84 24	av Eβ=564 11; εK=0.7920 15; εL=0.1375 4; εM+=0.04350 11
$(2.42 \times 10^3 @ 3)$	458.31	0.0046 21	0.11 5	7.3 2	0.11 [‡] 5	av Eβ=642 11; εK=0.7805 19; εL=0.1349 4; εM+=0.04265 13
$(2.43 \times 10^3 @ 3)$	452.52	0.03 2	0.8 4	6.5 2	$0.8^{\ddagger} 4$	av Eβ=644 11; εK=0.7801 19; εL=0.1348 4; εM+=0.04262 13
$(2.51 \times 10^3 @ 3)$	377.07	0.03 2	0.6 3	6.6 2	0.6 [‡] 3	av E β =678 11; ε K=0.7741 21; ε L=0.1336 5; ε M+=0.04222 14
$(2.54 \times 10^3 @ 3)$	345.69	0.21 7	3.8 12	5.8 2	4.0 [‡] <i>13</i>	av Eβ=691 11; εK=0.7715 22; εL=0.1330 5; εM+=0.04205 15
$(2.60 \times 10^3 @ 3)$	283.81	0.031 13	0.49 20	6.7 2	0.52 [‡] 21	av Eβ=719 11; εK=0.7660 24; εL=0.1319 5; εM+=0.04169 15

ε, β^+ radiations

Continued on next page (footnotes at end of table)

2007Ho20,1995Sa42 (continued)

¹⁸²Pt ε decay (2.67 min)

					ϵ, β^+ radiation	s (continued)
E(decay)	E(level)	Ιβ ⁺ #	Iɛ#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
$(2.63 \times 10^3 \ 3)$	255.1	0.11 4	1.7 6	6.2 2	1.8 6	av E β =731 11; ε K=0.7633 25; ε L=0.1314 5; ε M+=0.04151 16
$(2.67 \times 10^3 \ 3)$	210.97	3.7 10	50 13	4.7 1	54 14	av Eβ=751 11; εK=0.759 3; εL=0.1306 5; εM+=0.04124 16
						I($\varepsilon + \beta^+$): deduced by the evaluators from intensity balance. 2007Ho20 give 54 22.
$(2.68 \times 10^3 \ 3)$	199.8	0.13 4	1.7 6	6.2 2	1.8 6	av E β =756 <i>11</i> ; ε K=0.758 <i>3</i> ; ε L=0.1303 <i>5</i> ; ε M+=0.04117 <i>16</i>
$(2.69 \times 10^3 \ 3)$	194.38	0.21 6	2.7 7	6.0 1	2.9 8	av Eβ=758 11; εK=0.757 3; εL=0.1302 5; εM+=0.04114 16
(2.71×10 ³ [@] 3)	174.49	0.5 3	64	5.6 3	7 [‡] 4	av Eβ=767 11; εK=0.755 3; εL=0.1298 5; εM+=0.04101 17

[†] Deduced by the evaluators from I γ +ce intensity balance. The 2007Ho20 list $\varepsilon + \beta^+$ feedings and associated log ft values only some of the levels. Comparison of the two sets shows small deviations, but the agreement is within the quoted uncertainties.

[‡] Too high to be realistic for ΔJ involved in β decay.

For absolute intensity per 100 decays, multiply by 1.00003.@ Existence of this branch is questionable.

 $\gamma(^{182}{\rm Ir})$

I γ normalization, I(γ +ce) normalization: From estimated total disintegration intensity of 611 *110* feeding the g.s. The normalization factor was 0.189 27 according to data presented in 1995Sa42 from estimated total disintegration intensity of 530 75 feeding the g.s., 8.1 and 25.7 levels.

All γ rays assigned in the level scheme were seen in $\gamma\gamma$ coin data of 1995Sa42.

When δ is given as approximate, 50% arbitrary uncertainty in this value is assumed by the evaluators in deducing total conversion coefficient.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\boldsymbol{b}}$	α^{c}	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
(8.1)		8.1?	0.0	3+				0.70 20	$I_{(\gamma+ce)}$: from intensity balance at 8.1 level, assuming no $\varepsilon+\beta^+$ feeding to this level.
(12.6)		87.39	74.80	$(2)^{+}$	[M1]		115.3		α (L)=4.09 6; α (M)=86.0 12
					0				α (N)=21.1 3; α (O)=3.74 6; α (P)=0.281 4
17.8 <i>3</i>		88.8	71.06	$(5)^+$	M1 [@]		173 10	16 3	L1/L2=15 <i>12</i>
									$\begin{array}{l} ce(L)/(\gamma+ce)=0.77/3; \ ce(M)/(\gamma+ce)=0.177/13\\ ce(N)/(\gamma+ce)=0.044/4; \ ce(O)/(\gamma+ce)=0.0077/6; \ ce(P)/(\gamma+ce)=0.00058\\ 5 \end{array}$
									α (L)=133 7; α (M)=30.8 17
									$\alpha(N)=7.64; \alpha(O)=1.348; \alpha(P)=0.1006$
									$I_{(\gamma+ce)}$: from intensity balance at 88.8 level deduced by the evaluators. 2007Ho20 give 34 7 implying $\varepsilon+\beta^+$ feeding which is not evaluated
									$\delta < 0.07$ from L1/L2
22.0 3	1.1 2	174.49	152.46	(4) ⁻	M1		92 4	107 18	$\alpha(L1)\exp=54$ 32; $\alpha(L3)\exp<2.5$; $\alpha(M1)\exp=15$ 4; $\alpha(M2)\exp=1.8$ 10; $\alpha(M3)\exp<0.42$
									$ce(L)/(\gamma+ce)=0.762\ 23;\ ce(M)/(\gamma+ce)=0.176\ 10$ $ce(N)/(\gamma+ce)=0.043\ 3;\ ce(O)/(\gamma+ce)=0.0077\ 5;\ ce(P)/(\gamma+ce)=0.00058$
									4
									$\alpha(L)=71$ 4; $\alpha(M)=16.4$ 8
									α (N)=4.03 18; α (O)=0.71 4; α (P)=0.0536 24
24.8 <i>3</i>		345.69	320.94	$(2)^{-}$	M1+E2	0.05 3	73 14	24 6	L1/L2=5.3 35
									$ce(L)/(\gamma+ce)=0.76 \ 10; \ ce(M)/(\gamma+ce)=0.18 \ 5$ $ce(N)/(\gamma+ce)=0.043 \ 11; \ ce(O)/(\gamma+ce)=0.0075 \ 19;$ $ce(P)/(\alpha+ce)=0.00051 \ 10$
									$\alpha(L) = 56 \ 10; \ \alpha(M) = 13 \ 3$
									$\alpha(N) = 3.2 6; \alpha(O) = 0.56 10; \alpha(P) = 0.0375 15$
25.7 3		25.85	0.0	3+	E2 [@]		2.83×10 ³ 18	112 18	L1/L2≤0.054; L3/L2=1.3 <i>3</i> ; M3/M2=1.4 7
									$ce(L)/(\gamma+ce)=0.76 \ 4; \ ce(M)/(\gamma+ce)=0.192 \ 15 ce(N)/(\gamma+ce)=0.046 \ 4; \ ce(O)/(\gamma+ce)=0.0070 \ 6; ce(P)/(\gamma+ce)=5.9\times10^{-6} \ 6$
									$\alpha(L)=2.14\times10^3$ 14; $\alpha(M)=5.4\times10^2$ 4
									$\alpha(N)=130 8; \alpha(O)=19.7 12; \alpha(P)=0.0167 11$
									$I_{(\gamma+ce)}$: from intensity balance at 25.88 level.

				¹⁸² Pt	ε decay (2.67 min)	2007Ho20	,1995Sa42 (continued)
						$\gamma(^{182}]$	(continue	<u>d)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^C	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
44.1 3	0.81 20	255.1	210.97 1+	M1		11.8 3	10.7 27	$\begin{aligned} &\alpha(L1)\exp=10\ 4;\ \alpha(L3)\exp<0.50;\ \alpha(M1)\exp=2.1\ 10\\ &ce(L)/(\gamma+ce)=0.710\ 12;\ ce(M)/(\gamma+ce)=0.164\ 5\\ &ce(N)/(\gamma+ce)=0.0402\ 14;\ ce(O)/(\gamma+ce)=0.00712\ 24;\\ &ce(P)/(\gamma+ce)=0.000536\ 18\\ &\alpha(L)=9.08\ 23;\ \alpha(M)=2.09\ 6 \end{aligned}$
45.3 2	7.4 11	71.06	25.85 (5)+	M1+E2	0.10 <i>3</i>	12.5 12	103 17	$\begin{aligned} \alpha(N) = 0.514 \ 13; \ \alpha(O) = 0.0911 \ 23; \ \alpha(P) = 0.00685 \ 17 \\ \alpha(L1) \exp = 7.0 \ 20; \ \alpha(L2) \exp = 1.3 \ 4; \ \alpha(M1) \exp = 1.6 \ 4; \ \alpha(M2) \exp = 0.3 \\ 1; \ \alpha(M3) \exp = 0.6 \ 2 \\ \exp(L)/(\gamma + ce) = 0.71 \ 5; \ ce(M)/(\gamma + ce) = 0.166 \ 19 \\ ce(N)/(\gamma + ce) = 0.041 \ 5; \ ce(O)/(\gamma + ce) = 0.0071 \ 9; \\ ce(P)/(\gamma + ce) = 0.0047 \ 4 \\ \alpha(L) = 9.6 \ 9; \ \alpha(M) = 2.24 \ 22 \\ \exp(N) = 0.55 \ 6; \ \alpha(Q) = 0.005 \ 8; \ \alpha(P) = 0.00628 \ 13 \end{aligned}$
47.6 3	1.0 2	199.8	152.23 (1,2)-	M1		9.41 22	11 3	$\begin{aligned} \alpha(L) = 0.55 & 0, \ \alpha(O) = 0.695 & 3, \ \alpha(1) = 0.00028 & 15 \\ \alpha(L1) \exp[=7.0 36; \ \alpha(L2) \exp[\le 1.7; \ \alpha(L3) \exp[\le 0.38] \\ \operatorname{ce}(L)/(\gamma + \operatorname{ce}) = 0.696 & 11; \ \operatorname{ce}(M)/(\gamma + \operatorname{ce}) = 0.161 & 5 \\ \operatorname{ce}(N)/(\gamma + \operatorname{ce}) = 0.000525 & 17; \\ \alpha(L) = 7.25 & 17; \ \alpha(M) = 1.67 & 4 \\ \alpha(N) = 0.411 & 10; \ \alpha(Q) = 0.0727 & 17; \ \alpha(P) = 0.00547 & 13 \end{aligned}$
57.3 2	5.8 9	152.46	95.07 (4)+	E1		0.353 6	7.9 12	$\begin{aligned} \alpha(L1) & \approx 10^{-5} \ \alpha(L3) & \approx 10^{-5} \ 11^{-7} \ \alpha(L2) & \approx 10^{-5} \ 11^{-7} \ 11$
^x 57.7 3	1.5 2			E1		0.346 7	2.0 3	$\begin{aligned} \alpha(L) &= 0.01315, \ \alpha(D) = 0.00242, \ \alpha(L) &= 0.0001012, \ 17 \\ \alpha(L1) &= xp \le 0.57; \ \alpha(L2) &= xp < 0.22; \ \alpha(L3) &= xp < 0.16 \\ ce(L)/(\gamma + ce) &= 0.103, \ 23; \ ce(O)/(\gamma + ce) &= 0.00176, \ 43; \\ ce(P)/(\gamma + ce) &= 7.40 \times 10^{-5}, \ 15 \\ \alpha(L) &= 0.267, \ 63; \ \alpha(M) &= 0.0621, \ 13 \\ \alpha(N) &= 0.0148, \ 33; \ \alpha(O) &= 0.00237, \ 53; \ \alpha(P) &= 9.96 \times 10^{-5}, \ 19 \\ coin, \ with, \ 136\gamma. \end{aligned}$
58.7 2	15.7 22	210.97	152.23 (1,2)-	E1		0.330 6	21 3	$\alpha(L1)\exp=0.10 \ 4; \ \alpha(L2)\exp=0.08 \ 5; \ \alpha(M1)\exp=0.036 \ 24 \\ ce(L)/(\gamma+ce)=0.191 \ 3; \ ce(M)/(\gamma+ce)=0.0445 \ 8 \\ ce(N)/(\gamma+ce)=0.01065 \ 19; \ ce(O)/(\gamma+ce)=0.00170 \ 3; \\ ce(P)/(\gamma+ce)=7.20\times10^{-5} \ 12 \\ \alpha(L)=0.254 \ 5; \ \alpha(M)=0.0592 \ 10 \\ \alpha(N)=0.01416 \ 24; \ \alpha(O)=0.00227 \ 4; \ \alpha(P)=9.58\times10^{-5} \ 16 \\ \end{array}$
64.9 <i>3</i>	≈0.7	152.23	87.39 (1,2)+	[E1]		0.251 5	≈0.9	α (L1)exp<3.1; α (L2)exp<1.0 ce(L)/(γ +ce)=0.154 3; ce(M)/(γ +ce)=0.0359 7 ce(N)/(γ +ce)=0.00860 17; ce(O)/(γ +ce)=0.00139 3;

S

					182	² Pt ε decay	(2.67 min)	2007Ho20,1995	Sa42 (continued)
							$\gamma(^{182}]$	r) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\boldsymbol{b}}$	α^{c}	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
									$\begin{array}{c} \text{ce(P)/(}\gamma + \text{ce)=} 6.08 \times 10^{-5} \ 11 \\ \alpha(\text{L}) = 0.193 \ 4; \ \alpha(\text{M}) = 0.0449 \ 9 \\ \alpha(\text{N}) = 0.01076 \ 21; \ \alpha(\text{O}) = 0.00173 \ 4; \ \alpha(\text{P}) = 7.61 \times 10^{-5} \ 14 \end{array}$
69.3 <i>3</i>	1.6 3	95.07	25.85	(5)+	M1+E2 [@]	≈0.2	≈3.85	8.0 16	L1/L2=4.1 36; α (L1)exp=2.1 9; α (L2)exp=0.5 3 ce(L)/(γ +ce) \approx 0.609; ce(M)/(γ +ce) \approx 0.144 ce(N)/(γ +ce) \approx 0.0352; ce(O)/(γ +ce) \approx 0.00602; ce(P)/(γ +ce) \approx 0.000362 α (L) \approx 2.95; α (M) \approx 0.698 α (N) \approx 0.171; α (O) \approx 0.0292; α (P) \approx 0.00176
70.3 3	2.3 5	452.52	382.17	(3)+	M1 ^{&}		3.00 6	9.5 19	$\begin{aligned} &\alpha(L1)\exp=2.1 \ 9; \ \alpha(L)\exp=1.4 \ 5; \ \alpha(M1)\exp=0.38 \ 23; \\ &\alpha(M2)\exp\leq0.074 \\ &\operatorname{ce}(L)/(\gamma+\operatorname{ce})=0.578 \ 7; \ \operatorname{ce}(M)/(\gamma+\operatorname{ce})=0.133 \ 3 \\ &\operatorname{ce}(N)/(\gamma+\operatorname{ce})=0.0327 \ 8; \ \operatorname{ce}(O)/(\gamma+\operatorname{ce})=0.00580 \ 14; \\ &\operatorname{ce}(P)/(\gamma+\operatorname{ce})=0.000436 \ 11 \\ &\alpha(L)=2.31 \ 5; \ \alpha(M)=0.533 \ 10 \\ &\alpha(N)=0.1310 \ 25; \ \alpha(Q)=0.0232 \ 5; \ \alpha(P)=0.00175 \ 4 \end{aligned}$
71.1 3	≈0.3	71.06	0.0	3+	[E2]		19.4 5	3.3 30	$ce(L)/(\gamma+ce)=0.716 \ 13; \ ce(M)/(\gamma+ce)=0.184 \ 6 \\ce(N)/(\gamma+ce)=0.0444 \ 15; \ ce(O)/(\gamma+ce)=0.00674 \ 23; \\ce(P)/(\gamma+ce)=1.09\times10^{-5} \ 4 \\\alpha(L)=14.6 \ 4; \ \alpha(M)=3.76 \ 10 \\\alpha(N)=0.907 \ 23; \ \alpha(O)=0.138 \ 4; \ \alpha(P)=0.000223 \ 5 \\I_{(\gamma+ce)}: \ 0.3 \ to \ 6.2 \ (2007Ho20).$
74.8 2	93 23	74.80	0.0	3+	M1+E2	0.27 5	3.4 4	4.2×10 ² 10	$\alpha(L1)\exp=1.4 2; \alpha(L2)\exp=0.55 14; \alpha(L3)\exp=0.38 8; \alpha(M1)\exp=0.34 12; \alpha(M2)\exp=0.13 7 \alpha(M3)\exp=0.10 3 ce(L)/(\gamma+ce)=0.59 4; ce(M)/(\gamma+ce)=0.141 16 ce(N)/(\gamma+ce)=0.034 5; ce(O)/(\gamma+ce)=0.0058 7; ce(P)/(\gamma+ce)=0.000314 25 \alpha(L)=2.58 25; \alpha(M)=0.61 7 \alpha(N)=0.150 16; \alpha(O)=0.0254 23; \alpha(P)=0.00137 4$
77.4 2	17.0 26	152.23	74.80	(2)+	E1		0.748	30 5	$\begin{aligned} &\alpha(L1)\exp\approx 0.11; \ \alpha(L2)\exp\approx 0.08; \ \alpha(L3)\exp\approx 0.04\\ &ce(K)/(\gamma+ce)=0.339 \ 4; \ ce(L)/(\gamma+ce)=0.0682 \ 11;\\ &ce(M)/(\gamma+ce)=0.00380 \ 7; \ ce(O)/(\gamma+ce)=0.000620 \ 11;\\ &ce(P)/(\gamma+ce)=2.89\times 10^{-5} \ 5\\ &\alpha(K)=0.593 \ 9; \ \alpha(L)=0.1193 \ 19; \ \alpha(M)=0.0277 \ 5\\ &\alpha(N)=0.00665 \ 11; \ \alpha(O)=0.001083 \ 17; \ \alpha(P)=5.06\times 10^{-5} \ 8 \end{aligned}$
81.5 2	37 6	152.46	71.06	(5)+	E1		0.666 11	62 9	$\begin{aligned} &\alpha(\text{K})\exp=0.7 \ 5; \ \alpha(\text{L1})\exp\leq0.074; \ \alpha(\text{L2})\exp\leq0.037; \\ &\alpha(\text{M1})\exp=0.013 \ 9; \ \alpha(\text{M2})\exp=0.011 \ 7 \\ &\alpha(\text{M3})\exp=0.009 \ 6 \\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.319 \ 4; \ \text{ce}(\text{L})/(\gamma+\text{ce})=0.0622 \ 10; \\ &\text{ce}(\text{M})/(\gamma+\text{ce})=0.01440 \ 24 \\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.00346 \ 6; \ \text{ce}(\text{O})/(\gamma+\text{ce})=0.000566 \ 10; \end{aligned}$

From ENSDF

					¹⁸² Pt ε	decay (2	2.67 min)	2007Ho20	,1995Sa42 (continued)
							$\gamma(^{182}]$	(r) (continue	<u>d)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	E_f	\mathbf{J}_f^π	Mult. [#]	$\delta^{\boldsymbol{b}}$	α^{c}	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
87.4 2	6.4 10	87.39	0.0	3+	E2		8.10 14	59 <i>9</i>	$\begin{array}{l} ce(P)/(\gamma+ce)=2.69\times10^{-5} \ 5\\ \alpha(K)=0.532 \ 8; \ \alpha(L)=0.1036 \ 16; \ \alpha(M)=0.0240 \ 4\\ \alpha(N)=0.00577 \ 9; \ \alpha(O)=0.000944 \ 15; \ \alpha(P)=4.48\times10^{-5} \ 7\\ \alpha(K)exp=1.1 \ 8; \ \alpha(L1)exp+\alpha(L2)exp=3.3 \ 16; \ \alpha(L3)exp=3.0 \ 12; \\ \alpha(M1)exp\leq0.093\\ \alpha(M2)exp=1.0 \ 5; \ \alpha(M3)exp=0.8 \ 4\\ ce(K)/(\gamma+ce)=0.0914 \ 18; \ ce(L)/(\gamma+ce)=0.601 \ 8; \end{array}$
95.1 <i>3</i>	0.58 <i>10</i>	95.07	0.0	3+	M1(+E2)	<1.1	6.7 4	4.8 10	$cc(M)/(\gamma+ce)=0.155 4$ $ce(N)/(\gamma+ce)=0.0374 9; ce(O)/(\gamma+ce)=0.00568 14; ce(P)/(\gamma+ce)=1.40\times10^{-5} 3$ $\alpha(K)=0.832 12; \alpha(L)=5.47 10; \alpha(M)=1.407 25$ $\alpha(N)=0.340 6; \alpha(O)=0.0517 10; \alpha(P)=0.0001273 20$ $\alpha(K)exp=6 3; \alpha(L1)exp=1.1 7$ $ce(K)/(\gamma+ce)=0.58 16; ce(L)/(\gamma+ce)=0.221 76; ce(M)/(\gamma+ce)=0.055 25$ $cs(N)/(\alpha+ce)=0.0133 62; ce(O)/(\alpha+ce)=0.00215 91;$
^x 96.9 <i>3</i>	0.32 15				(M1)		6.70 <i>12</i>	2.6 18	$ce(P)/(\gamma+ce)=0.0135 02, ce(O)/(\gamma+ce)=0.00215 71,ce(P)/(\gamma+ce)=7.2\times10^{-5} 23\alpha(K)=4.4 14; \alpha(L)=1.70 75; \alpha(M)=0.42 20\alpha(N)=0.102 48; \alpha(O)=0.0165 69; \alpha(P)=5.5\times10^{-4} 17Additional information 2.\alpha(K)exp≈5ce(K)/(\gamma+ce)=0.717 7; ce(L)/(\gamma+ce)=0.1181 25;ce(M)/(\gamma+ce)=0.0272 6\alpha(N)/(\gamma+ce)=0.00272 6$
101.6 <i>3</i>	2.2 3	190.39	88.8	(4)+	M1(+E2)	<0.5	5.70 18	16 <i>3</i>	$\begin{array}{l} ce(N)/(\gamma+ce)=0.00069\ I3,\ ce(O)/(\gamma+ce)=0.00118\ 3,\\ ce(P)/(\gamma+ce)=8.92\times10^{-5}\ 20\\ \alpha(K)=5.52\ I0;\ \alpha(L)=0.910\ I6;\ \alpha(M)=0.210\ 4\\ \alpha(N)=0.0516\ 9;\ \alpha(O)=0.00913\ I6;\ \alpha(P)=0.000687\ I2\\ \alpha(K)exp=6.6\ 20;\ \alpha(L1)exp=1.0\ 4;\ \alpha(M1)exp=0.32\ 20\\ ce(K)/(\gamma+ce)=0.66\ 3;\ ce(L)/(\gamma+ce)=0.147\ 25;\ ce(M)/(\gamma+ce)=0.035\ 8\\ ce(N)/(\gamma+ce)=0.0085\ I9;\ ce(O)/(\gamma+ce)=0.0015\ 3;\\ ce(P)/(\gamma+ce)=8.2\times10^{-5}\ 8\end{array}$
106.9 <i>3</i>	2.5 4	194.38	87.39	(1,2)+	M1(+E2) ^{&}	<0.5	4.90 18	16 <i>3</i>	$\alpha(K)=4.4 \ 5; \ \alpha(L)=0.98 \ 20; \ \alpha(M)=0.23 \ 6$ $\alpha(N)=0.057 \ 13; \ \alpha(O)=0.0097 \ 18; \ \alpha(P)=0.00055 \ 6$ Additional information 3. $\alpha(K)\exp=5.0 \ 15; \ \alpha(K)\exp=3.2 \ 7; \ \alpha(L)\exp=0.8 \ 5; \ \alpha(L)\exp=0.77 \ 20$ $ce(K)/(\gamma+ce)=0.647 \ 24; \ ce(L)/(\gamma+ce)=0.141 \ 22;$ $ce(M)/(\gamma+ce)=0.0082 \ 16; \ ce(O)/(\gamma+ce)=0.00139 \ 23;$ $ce(R)/(\alpha+ce)=0.98 \ 0 \times 10^{-5} \ 8$
110.1 <i>3</i>	0.81 12	320.94	210.97	1+	E1 ^{&}		0.312	1.1 2	$\alpha(K)=3.8 \ 4; \ \alpha(L)=0.83 \ 15; \ \alpha(M)=0.20 \ 4$ $\alpha(N)=0.048 \ 10; \ \alpha(O)=0.0082 \ 14; \ \alpha(P)=0.00047 \ 5$ Additional information 4. $\alpha(K)\exp<1; \ \alpha(L)\exp\leq0.18$

I

					182 Pt ε de	cay (2.6'	7 min)	2007Ho20,19	95Sa42 (continued)
							$\gamma(^{182}\mathrm{Ir})$	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^{<i>c</i>}	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
									$\frac{(ce(K))(\gamma+ce)=0.1929\ 25;\ ce(L))(\gamma+ce)=0.0348\ 6;}{(ce(M))(\gamma+ce)=0.00804\ 13}$ $ce(N)(\gamma+ce)=0.00194\ 4;\ ce(O)/(\gamma+ce)=0.000322\ 6;$ $ce(P)/(\gamma+ce)=1.68\times10^{-5}\ 3$ $\alpha(K)=0.253\ 4;\ \alpha(L)=0.0456\ 8;\ \alpha(M)=0.01054\ 17$ $(D) = 0.00255\ 4;\ \alpha(L)=0.00452\ 7=(D) = 2.2010^{-5}\ 4$
110.9 3	0.25 4	452.52	341.67	(2,3,4)+	M1(+E2)	<1	4.2 4	0.9 6	$\begin{aligned} &\alpha(N)=0.00255 \ 4; \ \alpha(O)=0.000423 \ 7; \ \alpha(P)=2.20\times10^{-5} \ 4\\ &\alpha(K)\exp\approx 4 \ 2\\ &ce(K)/(\gamma+ce)=0.58 \ 9; \ ce(L)/(\gamma+ce)=0.176 \ 48; \ ce(M)/(\gamma+ce)=0.043 \ 16\\ &ce(N)/(\gamma+ce)=0.0105 \ 38; \ ce(O)/(\gamma+ce)=0.00172 \ 55; \\ &ce(P)/(\gamma+ce)=7.1\times10^{-5} \ 20\\ &\alpha(K)=2.98 \ 78; \ \alpha(L)=0.91 \ 30; \ \alpha(M)=0.222 \ 80 \end{aligned}$
119.6 <i>3</i>	0.63 10	194.38	74.80	(2)+	M1,E2		3.0 7	3.0 9	$\alpha(N)=0.054 \ 20; \ \alpha(O)=0.0089 \ 28; \ \alpha(P)=3.67\times10^{-4} \ 99$ $I_{(\gamma+ce)}: \ 0.3 \ to \ 1.4 \ (2007Ho20).$ $\alpha(K)exp=3.9 \ 33$ $ce(K)/(\gamma+ce)=0.45 \ 21; \ ce(L)/(\gamma+ce)=0.223 \ 83; \ ce(M)/(\gamma+ce)=0.056 \ 28$ $ce(N)/(\gamma+ce)=0.0135 \ 68; \ ce(O)/(\gamma+ce)=0.00215 \ 98; \ ce(P)/(\gamma+ce)=5.5\times10^{-5} \ 41$ $\alpha(K)=1.8 \ 13; \ \alpha(L)=0.88 \ 39; \ \alpha(M)=0.22 \ 11$
123.6 2	10.0 <i>10</i>	210.97	87.39	(1,2)+	M1(+E2) ^{&}	<0.3	3.28 8	45 7	$\begin{aligned} \alpha(N) = 0.054 \ 26; \ \alpha(O) = 0.0085 \ 36; \ \alpha(P) = 2.2 \times 10^{-4} \ 16 \\ \text{Mult.: } 2007\text{Ho20 list M1, but their } \alpha(K) \text{exp value gives M1 or E2.} \\ \alpha(K) \text{exp} = 3.1 \ 5; \ \alpha(K) \text{exp} = 2.5 \ 5; \ \alpha(L) \text{exp} = 0.47 \ 13; \ \alpha(M) \text{exp} = 0.21 \ 6 \\ \text{ce}(K)/(\gamma + \text{ce}) = 0.621 \ 9; \ \text{ce}(L)/(\gamma + \text{ce}) = 0.112 \ 6; \\ \text{ce}(N)/(\gamma + \text{ce}) = 0.0064 \ 5; \ \text{ce}(O)/(\gamma + \text{ce}) = 0.00111 \ 7; \\ \text{ce}(P)/(\gamma + \text{ce}) = 7.7 \times 10^{-5} \ 4 \end{aligned}$
136.2 2	77 9	210.97	74.80	(2)+	M1(+E2)	<0.5	2.42 13	281 56	$\alpha(K)=2.66\ 10;\ \alpha(L)=0.48\ 3;\ \alpha(M)=0.111\ 8$ $\alpha(N)=0.0273\ 18;\ \alpha(O)=0.0048\ 3;\ \alpha(P)=0.000329\ 13$ Additional information 5. $\alpha(K)exp=2.1\ 3$ $ce(K)/(\gamma+ce)=0.563\ 22;\ ce(L)/(\gamma+ce)=0.111\ 11;$ $ce(M)/(\gamma+ce)=0.026\ 3$ $ce(N)/(\gamma+ce)=0.0064\ 8;\ ce(O)/(\gamma+ce)=0.00110\ 11;$
146.4 2	15.4 23	320.94	174.49	(3)-	M1		2.06	48 7	$\begin{aligned} &\alpha(K)=1.92 \ I7; \ \alpha(L)=0.38 \ 4; \ \alpha(M)=0.089 \ II \\ &\alpha(N)=0.0218 \ 25; \ \alpha(O)=0.0038 \ 4; \ \alpha(P)=0.000237 \ 22 \\ &\text{Additional information 6.} \\ &\alpha(K)\exp=2.0 \ 3 \\ &\text{ce}(K)/(\gamma+\text{ce})=0.556 \ 5; \ \text{ce}(L)/(\gamma+\text{ce})=0.0909 \ I5; \\ &\text{ce}(M)/(\gamma+\text{ce})=0.0209 \ 4 \\ &\text{ce}(N)/(\gamma+\text{ce})=0.00515 \ 9; \ \text{ce}(O)/(\gamma+\text{ce})=0.000911 \ I6; \end{aligned}$

 ∞

 $^{182}_{77}\mathrm{Ir}_{105}\text{--}8$

					182 Pt ε dec	ay (2.67	' min) 200	07Ho20,1995	Sa42 (continued)
							γ ⁽¹⁸² Ir) (co	ontinued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	E_f	J_f^π	Mult. [#]	δ ^{b}	α ^C	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
152.5 3	3.8 6	152.46	0.0	3+	[E1]		0.1357 21	4.3 6	$\begin{array}{l} {\rm ce(P)/(\gamma+ce)=}6.87{\times}10^{-5} \ 12\\ \alpha({\rm K}){=}1.702 \ 25; \ \alpha({\rm L}){=}0.278 \ 4; \ \alpha({\rm M}){=}0.0641 \ 10\\ \alpha({\rm N}){=}0.01577 \ 23; \ \alpha({\rm O}){=}0.00279 \ 4; \ \alpha({\rm P}){=}0.000210 \ 3\\ \alpha({\rm K}){\rm exp}{<}0.56\\ {\rm ce({\rm K})/(\gamma+ce)}{=}0.0978 \ 14; \ {\rm ce({\rm L})/(\gamma+ce)}{=}0.01673 \ 25; \\ {\rm ce({\rm M})/(\gamma+ce)}{=}0.00934 \ 14; \ {\rm ce({\rm O})/(\gamma+ce)}{=}0.0001574 \ 24; \end{array}$
157.0 <i>3</i>	0.22 3	615.21	458.31	(2,3,4)+	[M1,E2]		1.25 45	0.4 2	$\begin{array}{l} ce(P)/(\gamma+ce)=8.90\times10^{-6} \ 14\\ \alpha(K)=0.1111 \ 17; \ \alpha(L)=0.0190 \ 3; \ \alpha(M)=0.00438 \ 7\\ \alpha(N)=0.001061 \ 16; \ \alpha(O)=0.000179 \ 3; \ \alpha(P)=1.011\times10^{-5} \ 15\\ ce(K)/(\gamma+ce)=0.38 \ 15; \ ce(L)/(\gamma+ce)=0.134 \ 39; \\ ce(M)/(\gamma+ce)=0.0080 \ 28; \ ce(O)/(\gamma+ce)=0.00130 \ 39; \\ ce(P)/(\gamma+ce)=4.5\times10^{-5} \ 33\\ (H)=0.07555 \ (H)=0.07555 \ (H)=0.0754 \ 20\\ \end{array}$
168.8 <i>3</i>	0.65 10	320.94	152.23	(1,2)-	M1(+E2) ^{&}	<1.5	1.1 3	1.6 <i>4</i>	$\alpha(K)=0.85 55; \alpha(L)=0.30 8; \alpha(M)=0.074 22$ $\alpha(N)=0.0180 52; \alpha(O)=0.0029 7; \alpha(P)=1.02\times10^{-4} 71$ $I_{(\gamma+ce)}: 0.2 \text{ to } 0.6 (2007\text{Ho}20).$ $\alpha(K)\exp=1.2 8; \alpha(K)\exp=1.0 5$ $\operatorname{ce}(K)/(\gamma+ce)=0.39 9; \operatorname{ce}(L)/(\gamma+ce)=0.102 18;$ $\operatorname{ce}(M)/(\gamma+ce)=0.025 6$ $\operatorname{ce}(N)/(\gamma+ce)=0.0060 13; \operatorname{ce}(O)/(\gamma+ce)=0.00100 18;$
^x 170.4 3	0.52 8	345 60	174.40	(3)-	[D,E2] M1(+E2)&	<0.5	0.7 6	0.9 3	$ce(P)/(\gamma+ce)=4.8\times10^{-5} 20$ $\alpha(K)=0.83 31; \alpha(L)=0.22 3; \alpha(M)=0.052 10$ $\alpha(N)=0.0127 22; \alpha(O)=0.0021 3; \alpha(P)=1.01\times10^{-4} 40$ Additional information 7. coin with 473 γ . $\alpha(K)exp=1.4.7; \alpha(K)exp=1.0.4; \alpha(L)exp=0.18.4$
171.2 2	7.1 11	343.09	174.49	(3)	MI(+E2)**	<0.5	1.23 8	10.8 25	$\begin{aligned} &\alpha(\mathbf{K})\exp[-1.4^{-7}; \alpha(\mathbf{K})\exp[-1.0^{-7}; \alpha(\mathbf{L})\exp[-0.18^{-4}] \\ &ce(\mathbf{K})/(\gamma+ce)=0.448 \ 21; \ ce(\mathbf{L})/(\gamma+ce)=0.083 \ 5; \\ &ce(\mathbf{M})/(\gamma+ce)=0.0047 \ 3; \ ce(\mathbf{O})/(\gamma+ce)=0.00082 \ 5; \\ &ce(\mathbf{P})/(\gamma+ce)=5.5\times10^{-5} \ 6 \\ &\alpha(\mathbf{K})=1.01 \ 9; \ \alpha(\mathbf{L})=0.186 \ 9; \ \alpha(\mathbf{M})=0.044 \ 3 \\ &\alpha(\mathbf{N})=0.0107 \ 6; \ \alpha(\mathbf{O})=0.00186 \ 8; \ \alpha(\mathbf{P})=0.000124 \ 12 \end{aligned}$
172.3 3	0.68 10	259.61	87.39	(1,2)+	[M1,E2]		0.94 <i>37</i>	1.2 5	Additional information 8. ce(K)/(γ +ce)=0.34 <i>14</i> ; ce(L)/(γ +ce)=0.11 <i>3</i> ; ce(M)/(γ +ce)=0.0268 <i>77</i> ce(N)/(γ +ce)=0.0065 <i>19</i> ; ce(O)/(γ +ce)=0.0011 <i>3</i> ; ce(P)/(γ +ce)=4.1×10 ⁻⁵ <i>29</i> α (K)=0.66 <i>42</i> ; α (L)=0.21 <i>4</i> ; α (M)=0.052 <i>12</i> α (N)=0.013 <i>3</i> ; α (O)=0.0021 <i>4</i> ; α (P)=7.9×10 ⁻⁵ <i>54</i> L(\rightarrow): 0.7 to 1.6 (2007Ho20)
184.8 <i>3</i>	0.65 10	636.88	452.52	(2)+	M1(+E2) ^{&}	<1.2	0.89 19	1.2 4	K/L=7 5; α (K)exp=0.8 3; α (L)exp=0.11 6

						182 Pt ε	decay (2	.67 min)	2007Ho20	0,1995Sa42 (continued)
								γ (¹⁸² I	r) (continue	d)
	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^C	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
										$\begin{array}{l} \label{eq:ce(K)/(\gamma+ce)=0.36~7;~ce(L)/(\gamma+ce)=0.083~10;~ce(M)/(\gamma+ce)=0.020~3\\ \mbox{ce(N)/(\gamma+ce)=0.0048~7;~ce(O)/(\gamma+ce)=0.00082~10;\\ \mbox{ce(P)/(\gamma+ce)=4.4\times10^{-5}~15}\\ \mbox{\alpha(K)=0.68~20;~\alpha(L)=0.156~13;~\alpha(M)=0.037~5}\\ \mbox{\alpha(N)=0.0091~10;~\alpha(O)=0.00154~10;~\alpha(P)=8.3\times10^{-5}~26 \end{array}$
	184.9 <i>3</i>	4.9 7	259.61	74.80 ((2)+	M1(+E2)&	<1.5	0.86 22	9.4 23	K/L=4.2 <i>19</i> ; α (K)exp=0.8 <i>3</i> ; α (L)exp=0.18 <i>8</i> ce(K)/(γ +ce)=0.35 <i>9</i> ; ce(L)/(γ +ce)=0.085 <i>12</i> ; ce(M)/(γ +ce)=0.020 <i>4</i> ce(N)/(γ +ce)=0.0050 <i>9</i> ; ce(O)/(γ +ce)=0.00084 <i>12</i> ; ce(P)/(γ +ce)=4.2×10 ⁻⁵ <i>18</i> α (K)=0.65 <i>24</i> ; α (L)=0.158 <i>15</i> ; α (M)=0.038 <i>5</i> α (N)=0.0093 <i>12</i> ; α (O)=0.00155 <i>12</i> ; α (P)=7.8×10 ⁻⁵ <i>31</i>
	186.7 <i>3</i>	3.6 5	377.07	190.39 ((3)+	M1(+E2) ^{&}	<0.7	0.94 10	7.5 15	K/L=6.2 21; α (K)exp=0.9 4; α (L)exp=0.14 7 ce(K)/(γ +ce)=0.39 4; ce(L)/(γ +ce)=0.075 5; ce(M)/(γ +ce)=0.0177 15 ce(N)/(γ +ce)=0.0043 4; ce(O)/(γ +ce)=0.00075 5; ce(P)/(γ +ce)=4.7×10 ⁻⁵ 8 α (K)=0.75 11; α (L)=0.146 7; α (M)=0.0343 22 α (N)=0.0084 5; α (O)=0.00145 6; α (P)=9.2×10 ⁻⁵ 15 Additional information 9.
)	196.6 <i>3</i>	1.35 20	283.81	87.39 ((1,2)+	[E2]		0.366	2.1 9	$\begin{array}{l} {\rm ce}({\rm K})/(\gamma+{\rm ce})=0.1299 \ 17; \ {\rm ce}({\rm L})/(\gamma+{\rm ce})=0.1041 \ 15; \\ {\rm ce}({\rm M})/(\gamma+{\rm ce})=0.0264 \ 5 \\ {\rm ce}({\rm N})/(\gamma+{\rm ce})=0.00640 \ 11; \ {\rm ce}({\rm O})/(\gamma+{\rm ce})=0.000999 \ 16; \\ {\rm ce}({\rm P})/(\gamma+{\rm ce})=1.309\times10^{-5} \ 20 \\ \alpha({\rm K})=0.177 \ 3; \ \alpha({\rm L})=0.1422 \ 22; \ \alpha({\rm M})=0.0361 \ 6 \\ \alpha({\rm N})=0.00875 \ 14; \ \alpha({\rm O})=0.001364 \ 21; \ \alpha({\rm P})=1.79\times10^{-5} \ 3 \\ {\rm I}_{(\gamma+ce)}: \ 1.2 \ {\rm to} \ 3.0 \ (2007{\rm Ho}20). \end{array}$
	210.3 3	1.4 2	662.76	452.52 ((2)+	M1,E2&		0.52 23	2.0 6	$\begin{aligned} &\alpha(\text{K})\exp=0.7\ 6\\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.25\ 12;\ \text{ce}(\text{L})/(\gamma+\text{ce})=0.068\ 11;\ \text{ce}(\text{M})/(\gamma+\text{ce})=0.017\ 3\\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.0040\ 7;\ \text{ce}(\text{O})/(\gamma+\text{ce})=0.0067\ 11;\\ &\text{ce}(\text{P})/(\gamma+\text{ce})=3.0\times10^{-5}\ 21\\ &\alpha(\text{K})=0.38\ 24;\ \alpha(\text{L})=0.104\ 4;\ \alpha(\text{M})=0.0251\ 21\\ &\alpha(\text{N})=0.0061\ 5;\ \alpha(\text{O})=0.001018\ 20;\ \alpha(\text{P})=4.5\times10^{-5}\ 31\\ &\alpha(\text{K})\exp=0.10\ \text{to}\ 1.2\ (2007\text{Ho}20).\end{aligned}$
	229.8 3	0.46 <i>14</i>	382.17	152.46 ((4)-	E1&		0.0483	0.5 2	$\begin{aligned} &\alpha(K)\exp\approx 0.06 \\ &ce(K)/(\gamma+ce)=0.0380 \ 6; \ ce(L)/(\gamma+ce)=0.00620 \ 9; \\ &ce(M)/(\gamma+ce)=0.001425 \ 21 \\ &ce(N)/(\gamma+ce)=0.000346 \ 5; \ ce(O)/(\gamma+ce)=5.92\times 10^{-5} \ 9; \\ &ce(P)/(\gamma+ce)=3.65\times 10^{-6} \ 6 \\ &\alpha(K)=0.0398 \ 6; \ \alpha(L)=0.00650 \ 10; \ \alpha(M)=0.001493 \ 22 \end{aligned}$
	241.9 <i>3</i>	0.53 8	1024.87	782.9 ((1,2)+	M1(+E2)	<0.5	0.47 4	0.8 2	$\begin{array}{l} \alpha(\mathrm{N}) = 0.000363 \ 6; \ \alpha(\mathrm{O}) = 6.21 \times 10^{-5} \ 9; \ \alpha(\mathrm{P}) = 3.83 \times 10^{-6} \ 6 \\ \alpha(\mathrm{K}) \exp = 0.48 \ 13 \\ \mathrm{ce}(\mathrm{K})/(\gamma + \mathrm{ce}) = 0.263 \ 16; \ \mathrm{ce}(\mathrm{L})/(\gamma + \mathrm{ce}) = 0.0455 \ 13; \\ \mathrm{ce}(\mathrm{M})/(\gamma + \mathrm{ce}) = 0.0106 \ 3 \end{array}$

					182 Pt ε decay	(2.67 min)	2007Ho2	0,1995Sa42 (continued)
						$\gamma(^{182}$	Ir) (continue	ed)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	$\mathbf{E}_f = \mathbf{J}_j^r$. Mul	t. [#] δ ^b	α^{c}	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
								ce(N)/(γ +ce)=0.00260 7; ce(O)/(γ +ce)=0.000455 14; ce(P)/(γ +ce)=3.2×10 ⁻⁵ 3 α (K)=0.39 4; α (L)=0.0671 12; α (M)=0.01558 23 α (N)=0.00383 6; α (O)=0.000671 14; α (P)=4.7×10 ⁻⁵ 5 Additional information 23.
246.8 <i>3</i>	0.66 10	341.67	95.07 (4)	+			0.9 <i>3</i>	
262.3 3	1.5 2	452.52	190.39 (3)	+ M1(+H	E2) ^{&} <1.7	0.308 98	2.1 5	K/L=5 4; α(K)exp=0.32 17; α(L)exp=0.07 5 ce(K)/(γ+ce)=0.185 59; ce(L)/(γ+ce)=0.039 4; ce(M)/(γ+ce)=0.0091 8 ce(N)/(γ+ce)=0.00224 21; ce(O)/(γ+ce)=0.00038 5; ce(P)/(γ+ce)=2.23×10 ⁻⁵ 93 α(K)=0.242 94; α(L)=0.050 4; α(M)=0.0119 6 α(N)=0.00292 15; α(O)=0.00050 5; α(P)=2.9×10 ⁻⁵ 12 Additional information 11.
266.7 3	0.8 1	341.67	74.80 (2)	+ M1,E2	2	0.26 13	1.0 2	$\begin{aligned} &\alpha(\text{K}) \exp[=0.2 \ l] \\ &\text{ce}(\text{K})/(\gamma + \text{ce}) = 0.159 \ 80; \ \text{ce}(\text{L})/(\gamma + \text{ce}) = 0.037 \ 6; \ \text{ce}(\text{M})/(\gamma + \text{ce}) = 0.0088 \\ ≪ \\ &\text{ce}(\text{N})/(\gamma + \text{ce}) = 0.0022 \ 3; \ \text{ce}(\text{O})/(\gamma + \text{ce}) = 0.00036 \ 6; \\ &\text{ce}(\text{P})/(\gamma + \text{ce}) = 1.9 \times 10^{-5} \ l3 \\ &\alpha(\text{K}) = 0.20 \ l2; \ \alpha(\text{L}) = 0.047 \ 6; \ \alpha(\text{M}) = 0.0111 \ 8 \\ &\alpha(\text{N}) = 0.00272 \ 22; \ \alpha(\text{O}) = 0.00046 \ 6; \ \alpha(\text{P}) = 2.4 \times 10^{-5} \ l6 \end{aligned}$
278.1 3	1.2 2	452.52	174.49 (3)	- E1&		0.0303	1.2 2	$\begin{aligned} &\alpha(K) \exp < 0.06 \\ &ce(K)/(\gamma + ce) = 0.0243 \ 4; \ ce(L)/(\gamma + ce) = 0.00390 \ 6; \\ &ce(M)/(\gamma + ce) = 0.000895 \ 13 \\ &ce(N)/(\gamma + ce) = 0.000218 \ 4; \ ce(O)/(\gamma + ce) = 3.75 \times 10^{-5} \ 6; \\ &ce(P)/(\gamma + ce) = 2.39 \times 10^{-6} \ 4 \\ &\alpha(K) = 0.0251 \ 4; \ \alpha(L) = 0.00402 \ 6; \ \alpha(M) = 0.000922 \ 14 \\ &\alpha(K) = 0.00225 \ 4; \ \alpha(Q) = 3.86 \times 10^{-5} \ 6; \ \alpha(P) = 2.46 \times 10^{-6} \ 4 \end{aligned}$
283.9 <i>3</i>	1.8 3	283.81	0.0 3+	M1(+H	E2) <0.7	0.29 4	2.3 6	$\begin{aligned} \alpha(K) &= 0.00223 \ 4, \ \alpha(G) = 3.00 \times 10^{-6} \ 0, \ \alpha(T) = 2.40 \times 10^{-6} \ 4 \\ \alpha(K) &= 0.25 \ 5 \\ ce(K)/(\gamma + ce) &= 0.184 \ 21; \ ce(L)/(\gamma + ce) &= 0.0324 \ 17; \\ ce(M)/(\gamma + ce) &= 0.00185 \ 9; \ ce(O)/(\gamma + ce) &= 0.000323 \ 19; \\ ce(P)/(\gamma + ce) &= 0.20185 \ 9; \ ce(O)/(\gamma + ce) &= 0.000323 \ 19; \\ ce(P)/(\gamma + ce) &= 2.2 \times 10^{-5} \ 4 \\ \alpha(K) &= 0.24 \ 4; \ \alpha(L) &= 0.0418 \ 20; \ \alpha(M) &= 0.0097 \ 4 \\ \alpha(N) &= 0.00239 \ 9; \ \alpha(O) &= 0.000417 \ 22; \ \alpha(P) &= 2.9 \times 10^{-5} \ 5 \end{aligned}$
287.2 3	1.6 2	382.17	95.07 (4)	+ M1(+H	E2) ^{&} <0.6	0.29 3	2.1 5	$\begin{aligned} &\alpha(K) \exp[=0.26\ 5;\ \alpha(K) \exp[=0.40\ 19\ \\ &ce(K)/(\gamma + ce) = 0.183\ 17;\ ce(L)/(\gamma + ce) = 0.0316\ 14;\ \\ &ce(M)/(\gamma + ce) = 0.00180\ 7;\ ce(O)/(\gamma + ce) = 0.000316\ 15;\ \\ &ce(P)/(\gamma + ce) = 2.2 \times 10^{-5}\ 3\ \\ &\alpha(K) = 0.24\ 3;\ \alpha(L) = 0.0408\ 16;\ \alpha(M) = 0.0095\ 3\ \\ &\alpha(N) = 0.00232\ 8;\ \alpha(O) = 0.000407\ 18;\ \alpha(P) = 2.9 \times 10^{-5}\ 4\ \\ &Additional information\ 10. \end{aligned}$

					182 Pt ε d	ecay (2.	67 min) 20	007Ho20,19	95Sa42 (continued)
							$\gamma(^{182}\text{Ir})$ (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^{c}	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
x304.5 3	0.36 8				(M1+E2)	≈0.7	≈0.211	0.42 12	$\begin{split} &\alpha(K) \exp \approx 0.17 \\ &ce(K)/(\gamma + ce) \approx 0.1394; \ ce(L)/(\gamma + ce) \approx 0.0267; \\ &ce(M)/(\gamma + ce) \approx 0.00627 \\ &ce(N)/(\gamma + ce) \approx 0.001537; \ ce(O)/(\gamma + ce) \approx 0.000265; \\ &ce(P)/(\gamma + ce) \approx 1.682 \times 10^{-5} \\ &\alpha(K) \approx 0.1688; \ \alpha(L) \approx 0.0324; \ \alpha(M) \approx 0.00760 \\ &\alpha(N) \approx 0.00186; \ \alpha(O) \approx 0.000321; \ \alpha(P) \approx 2.04 \times 10^{-5} \end{split}$
307.2 3	1.7 3	382.17	74.80	(2) ⁺	M1(+E2) ^{&}	<0.7	0.23 3	2.2 5	K/L=3.0 25; $\alpha(K)\exp=0.23 6$; $\alpha(L)\exp=0.07 6$ ce(K)/(γ +ce)=0.155 19; ce(L)/(γ +ce)=0.0270 16; ce(M)/(γ +ce)=0.00154 9; ce(O)/(γ +ce)=0.000269 18; ce(P)/(γ +ce)=1.9×10 ⁻⁵ 3 $\alpha(K)=0.19 3$; $\alpha(L)=0.0333 19$; $\alpha(M)=0.0077 4$ $\alpha(N)=0.00190 10$; $\alpha(O)=0.000333 21$; $\alpha(P)=2.3\times10^{-5} 4$
339.8 <i>3</i>	0.76 11	1002.36	662.76	(1,2)+	M1(+E2)&	<1.5	0.154 47	0.9 2	$\begin{aligned} &\alpha(\text{K})\exp=0.16\ 8\\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.107\ 33;\ \text{ce}(\text{L})/(\gamma+\text{ce})=0.020\ 3;\\ &\text{ce}(\text{M})/(\gamma+\text{ce})=0.0047\ 7\\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.00116\ 16;\ \text{ce}(\text{O})/(\gamma+\text{ce})=0.00020\ 4;\\ &\text{ce}(\text{P})/(\gamma+\text{ce})=1.29\times10^{-5}\ 47\\ &\alpha(\text{K})=0.124\ 43;\ \alpha(\text{L})=0.023\ 4;\ \alpha(\text{M})=0.0054\ 7\\ &\alpha(\text{N})=0.00133\ 18;\ \alpha(\text{O})=0.00023\ 4;\ \alpha(\text{P})=1.49\times10^{-5}\ 54 \end{aligned}$
x348.5 3 353.3 3	0.47 <i>11</i> 0.4 <i>1</i>	636.88	283.81	(2) ⁺	[D,E2] (M1)		0.10 8 0.181	0.5 2 0.5 1	coin with 70 γ . $\alpha(K)\exp\approx0.2$ ce(K)/(γ +ce)=0.1266 <i>16</i> ; ce(L)/(γ +ce)=0.0204 <i>3</i> ; ce(M)/(γ +ce)=0.00468 <i>7</i> ce(N)/(γ +ce)=0.001150 <i>17</i> ; ce(O)/(γ +ce)=0.000204 <i>3</i> ; ce(P)/(γ +ce)=1.545×10 ⁻⁵ <i>23</i> $\alpha(K)=0.1495$ <i>22</i> ; $\alpha(L)=0.0240$ <i>4</i> ; $\alpha(M)=0.00552$ <i>8</i> $\alpha(N)=0.001358$ <i>20</i> ; $\alpha(O)=0.000241$ <i>4</i> ; $\alpha(P)=1.82\times10^{-5}$ <i>3</i>
362.2 3	1.5 2	1024.87	662.76	(1,2) ⁺	M1(+E2)&	<0.7	0.150 <i>19</i>	1.8 4	$\begin{aligned} &\alpha(K)\exp=0.12 \ 3; \ \alpha(K)\exp=0.16 \ 6\\ &ce(K)/(\gamma+ce)=0.107 \ 14; \ ce(L)/(\gamma+ce)=0.0182 \ 14; \\ &ce(M)/(\gamma+ce)=0.0042 \ 3\\ &ce(N)/(\gamma+ce)=0.00104 \ 8; \ ce(O)/(\gamma+ce)=0.000182 \ 15; \\ &ce(P)/(\gamma+ce)=1.30\times10^{-5} \ 19\\ &\alpha(K)=0.123 \ 17; \ \alpha(L)=0.0210 \ 16; \ \alpha(M)=0.0049 \ 4\\ &\alpha(N)=0.00119 \ 8; \ \alpha(O)=0.000209 \ 16; \ \alpha(P)=1.49\times10^{-5} \ 22\\ &Additional information \ 24. \end{aligned}$
365.6 3	2.1 3	1002.36	636.88	(1,2)+	M1(+E2) ^{&}	<0.6	0.150 <i>15</i>	2.5 5	$\begin{aligned} &\alpha(\text{K})\exp=0.14 \ 3; \ \alpha(\text{K})\exp=0.15 \ 4 \\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.107 \ 11; \ \text{ce}(\text{L})/(\gamma+\text{ce})=0.0180 \ 11; \\ &\text{ce}(\text{M})/(\gamma+\text{ce})=0.00416 \ 23 \\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.00102 \ 6; \ \text{ce}(\text{O})/(\gamma+\text{ce})=0.000180 \ 12; \\ &\text{ce}(\text{P})/(\gamma+\text{ce})=1.30\times10^{-5} \ 15 \end{aligned}$

l

				182 Pt ε d	ecay (2.67 min)	2007Ho	20,1995Sa42	2 (continued)
					$\gamma(^{18}$	² Ir) (continu	ued)	
${E_\gamma}^\dagger$	$I_{\gamma}^{\ddagger d}$	E _i (level)	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^c	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
374.1 3	0.61 9	382.17	8.1?	[D,E2]		0.09 7	0.7 2	$\alpha(K)=0.123 \ I4; \ \alpha(L)=0.0207 \ I3; \ \alpha(M)=0.0048 \ 3 \\ \alpha(N)=0.00118 \ 7; \ \alpha(O)=0.000207 \ I3; \ \alpha(P)=1.50\times10^{-5} \ I7 \\ Additional information 19. \\ \alpha(K)\exp\leq0.14 $
311.2 3	2.1 4	636.88	259.61 (2)+	MI(+E2)	<0.5	0.141 11	3.1 0	$\alpha(K)\exp=0.13 3; \alpha(K)\exp=0.20 9; \alpha(L1)\exp+\alpha(L2)\exp=0.020 5 ce(K)/(\gamma+ce)=0.102 8; ce(L)/(\gamma+ce)=0.0169 8; ce(M)/(\gamma+ce)=0.00390 17 ce(N)/(\gamma+ce)=0.00096 5; ce(O)/(\gamma+ce)=0.000169 9; ce(P)/(\gamma+ce)=1.24\times10^{-5} 11 \alpha(K)=0.116 10; \alpha(L)=0.0193 9; \alpha(M)=0.00445 19 \alpha(N)=0.00109 5; \alpha(O)=0.000193 10; \alpha(P)=1.41\times10^{-5} 12 Additional information 13.$
382.1 3	0.3 1	382.17	0.0 3+	M1+E2	1.4 5	0.081 22	0.3 1	$\begin{aligned} &\alpha(K) \exp[=0.063 \ 20] \\ &\alpha(K)(\gamma+ce)=0.053 \ 17; \ ce(L)/(\gamma+ce)=0.0128 \ 17; \\ &ce(M)/(\gamma+ce)=0.00015 \ 9; \ ce(O)/(\gamma+ce)=0.000127 \ 18; \\ &ce(P)/(\gamma+ce)=6.9\times10^{-6} \ 23 \\ &\alpha(K)=0.063 \ 19; \ \alpha(L)=0.0139 \ 19; \ \alpha(M)=0.0033 \ 4 \\ &\alpha(N)=0.00081 \ 10; \ \alpha(Q)=0.000137 \ 19; \ \alpha(P)=7 \ 4\times10^{-6} \ 24 \end{aligned}$
^x 386.5 ^a 3	0.3 ^{<i>a</i>} 1			M1+E2	1.3 +12-5	0.082 23	0.3 1	$\begin{aligned} &\alpha(K) \exp = 0.064 \ 20 \\ &\operatorname{ce}(K)/(\gamma + \operatorname{ce}) = 0.059 \ 18; \ \operatorname{ce}(L)/(\gamma + \operatorname{ce}) = 0.0126 \ 19; \\ &\operatorname{ce}(M)/(\gamma + \operatorname{ce}) = 0.00073 \ 10; \ \operatorname{ce}(O)/(\gamma + \operatorname{ce}) = 0.000125 \ 19; \\ &\operatorname{ce}(P)/(\gamma + \operatorname{ce}) = 7.0 \times 10^{-6} \ 24 \\ &\alpha(K) = 0.064 \ 21; \ \alpha(L) = 0.0137 \ 20; \ \alpha(M) = 0.0032 \ 5 \\ &\alpha(N) = 0.00079 \ 11; \ \alpha(O) = 0.000135 \ 21; \ \alpha(P) = 7.6 \times 10^{-6} \ 26 \end{aligned}$
387 ^{<i>a</i>} 1	0.7 ^{<i>a</i>} 1	1002.36	615.21 (2,3) ⁺	[M1,E2]		0.094 48	0.7 1	$\begin{array}{l} {\rm ce}({\rm K})/(\gamma+{\rm ce})=0.068\ 37;\ {\rm ce}({\rm L})/(\gamma+{\rm ce})=0.0134\ 38;\\ {\rm ce}({\rm M})/(\gamma+{\rm ce})=0.00316\ 80\\ {\rm ce}({\rm N})/(\gamma+{\rm ce})=7.7\times10^{-4}\ 20;\ {\rm ce}({\rm O})/(\gamma+{\rm ce})=1.33\times10^{-4}\ 40;\\ {\rm ce}({\rm P})/(\gamma+{\rm ce})=8.1\times10^{-6}\ 50\\ \alpha({\rm K})=0.075\ 43;\ \alpha({\rm L})=0.0147\ 42;\ \alpha({\rm M})=0.0035\ 9\\ \alpha({\rm N})=8.5\times10^{-4}\ 22;\ \alpha({\rm O})=1.46\times10^{-4}\ 43;\ \alpha({\rm P})=8.9\times10^{-6}\ 54\\ \end{array}$
388.1 ^{<i>a</i>} 3	1.0 ^{<i>a</i>} 2	1024.87	636.88 (1,2)+	M1(+E2)&	<0.8	0.122 <i>19</i>	1.1 2	$\alpha(K)\exp=0.14 \ 6$ $ce(K)/(\gamma+ce)=0.089 \ 14; \ ce(L)/(\gamma+ce)=0.0152 \ 15; \ ce(M)/(\gamma+ce)=0.0035 \ 3$ $ce(N)/(\gamma+ce)=0.00086 \ 8; \ ce(O)/(\gamma+ce)=0.000152 \ 16; \ ce(P)/(\gamma+ce)=1.08\times10^{-5} \ 19 \ \alpha(K)=0.100 \ 17; \ \alpha(L)=0.0171 \ 17; \ \alpha(M)=0.0040 \ 4 \ \alpha(N)=0.00097 \ 9; \ \alpha(O)=0.000170 \ 17; \ \alpha(P)=1.21\times10^{-5} \ 21 \ Additional information \ 25.$

From ENSDF

				¹⁸² Pt <i>e</i>	decay (2.67 min)	2007Ho20	1995Sa42 (continued)
						$\gamma(^{182}$ In	r) (continued	<u>1)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^C	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
x391.3 3	0.67 10			E1		0.01364	0.7 1	$\begin{aligned} &\alpha(\text{K})\exp \leq 0.017 \\ &\text{ce}(\text{K})/(\gamma + \text{ce}) = 0.01120 \ 16; \ \text{ce}(\text{L})/(\gamma + \text{ce}) = 0.001743 \ 25; \\ &\text{ce}(\text{M})/(\gamma + \text{ce}) = 0.000399 \ 6 \\ &\text{ce}(\text{N})/(\gamma + \text{ce}) = 9.73 \times 10^{-5} \ 14; \ \text{ce}(\text{O})/(\gamma + \text{ce}) = 1.687 \times 10^{-5} \ 24; \\ &\text{ce}(\text{P})/(\gamma + \text{ce}) = 1.136 \times 10^{-6} \ 16 \\ &\alpha(\text{K}) = 0.01135 \ 16; \ \alpha(\text{L}) = 0.001767 \ 25; \ \alpha(\text{M}) = 0.000404 \ 6 \\ &\alpha(\text{N}) = 9.86 \times 10^{-5} \ 14; \ \alpha(\text{O}) = 1.710 \times 10^{-5} \ 25; \ \alpha(\text{P}) = 1.151 \times 10^{-6} \ 17 \\ &\text{coin with } 87\gamma. \end{aligned}$
403.1 3	1.0 2	662.76	259.61 (2) ⁺	M1(+E2) ^{&}	<0.7	0.113 <i>15</i>	1.1 2	$\begin{aligned} &\alpha(K)\exp=0.13\ 5\\ &ce(K)/(\gamma+ce)=0.083\ 11;\ ce(L)/(\gamma+ce)=0.0140\ 12;\\ &ce(M)/(\gamma+ce)=0.00324\ 25\\ &ce(N)/(\gamma+ce)=0.00080\ 7;\ ce(O)/(\gamma+ce)=0.000140\ 12;\\ &ce(P)/(\gamma+ce)=1.01\times10^{-5}\ 15\\ &\alpha(K)=0.093\ 13;\ \alpha(L)=0.0156\ 13;\ \alpha(M)=0.0036\ 3\\ &\alpha(N)=0.00089\ 7;\ \alpha(O)=0.000156\ 14;\ \alpha(P)=1.12\times10^{-5}\ 16\\ &Additional information\ 15. \end{aligned}$
x413.2 3	0.58 11			(M1(+E2))	<1	0.099 21	0.62 14	$\begin{aligned} &\alpha(K) \exp = 0.085 \ 20 \\ &\alpha(K) \exp = 0.073 \ 15; \ ce(L)/(\gamma + ce) = 0.0127 \ 17; \\ &ce(M)/(\gamma + ce) = 0.0029 \ 4 \\ &ce(N)/(\gamma + ce) = 0.00072 \ 9; \ ce(O)/(\gamma + ce) = 0.000127 \ 18; \\ &ce(P)/(\gamma + ce) = 8.9 \times 10^{-6} \ 21 \\ &\alpha(K) = 0.081 \ 18; \ \alpha(L) = 0.0139 \ 19; \ \alpha(M) = 0.0032 \ 4 \\ &\alpha(N) = 0.00079 \ 10; \ \alpha(O) = 0.000139 \ 19; \ \alpha(P) = 9.7 \times 10^{-6} \ 23 \end{aligned}$
^x 417.5 3	0.45 9			MI ^{&}		0.1157	0.49 10	$\begin{aligned} &\alpha(\mathbf{K})\exp\approx0.13\\ &\operatorname{ce}(\mathbf{K})/(\gamma+\operatorname{ce})=0.0859\ 12;\ \operatorname{ce}(\mathbf{L})/(\gamma+\operatorname{ce})=0.01374\ 20;\\ &\operatorname{ce}(\mathbf{M})/(\gamma+\operatorname{ce})=0.00316\ 5\\ &\operatorname{ce}(\mathbf{N})/(\gamma+\operatorname{ce})=0.000776\ 11;\ \operatorname{ce}(\mathbf{O})/(\gamma+\operatorname{ce})=0.0001376\ 20;\\ &\operatorname{ce}(\mathbf{P})/(\gamma+\operatorname{ce})=1.044\times10^{-5}\ 15\\ &\alpha(\mathbf{K})=0.0958\ 14;\ \alpha(\mathbf{L})=0.01533\ 22;\ \alpha(\mathbf{M})=0.00352\ 5\\ &\alpha(\mathbf{N})=0\ 000866\ 13;\ \alpha(\mathbf{O})=0\ 0001535\ 22;\ \alpha(\mathbf{P})=1\ 165\times10^{-5}\ 17\end{aligned}$
x423.8 3	0.27 10			M1		0.1112	0.30 11	$\begin{aligned} \alpha(K) &= 0.05000 12; \ \alpha(O) = 0.0001252 22; \ \alpha(I) = 1.105 \times 10^{-1} I^{7} \\ \alpha(K) &= 0.017 8 \\ ce(K)/(\gamma + ce) &= 0.00304 5 \\ ce(M)/(\gamma + ce) &= 0.000748 11; \ ce(O)/(\gamma + ce) &= 0.0001327 19; \\ ce(P)/(\gamma + ce) &= 1.007 \times 10^{-5} 15 \\ \alpha(K) &= 0.0921 13; \ \alpha(L) &= 0.01472 21; \ \alpha(M) &= 0.00338 5 \\ \alpha(N) &= 0.000832 12; \ \alpha(O) &= 0.0001474 21; \ \alpha(P) &= 1.119 \times 10^{-5} 16 \end{aligned}$
^x 425.9 3	0.58 9			M1,E2		0.073 37	0.6 1	$\alpha(K)\exp=0.052 \ 36$ $ce(K)/(\gamma+ce)=0.054 \ 29; \ ce(L)/(\gamma+ce)=0.0104 \ 32; ce(M)/(\gamma+ce)=0.00243 \ 69 ce(N)/(\gamma+ce)=6.0\times10^{-4} \ 18; \ ce(O)/(\gamma+ce)=1.03\times10^{-4} \ 34;$

 $^{182}_{77}\mathrm{Ir}_{105}\text{-}14$

					182 Pt ε	decay (2.	67 min)	2007Ho20,19	095Sa42 (continued)
							$\gamma(^{182}\mathrm{Ir})$) (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger d}$	E_i (level)	E_f	J_f^π	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^C	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
									ce(P)/(γ+ce)=6.5×10 ⁻⁶ 39 α (K)=0.058 33; α (L)=0.0111 35; α (M)=0.00261 74 α (N)=6.4×10 ⁻⁴ 19; α (O)=1.10×10 ⁻⁴ 36; α (P)=7.0×10 ⁻⁶ 41 Mult.: 2007Ho20 give M1+E2, evaluators' analysis gives M1,E2 with δ >0.2. coin with 77γ.
$x^{x}450.8 \ 3$	0.26 <i>10</i> 0.44 9								
458.4 3	1.0 2	458.31	0.0	3+	M1(+E2)	<0.6	0.082 9	1.1 2	$\begin{aligned} &\alpha(K)\exp=0.089\ 28\\ &ce(K)/(\gamma+ce)=0.063\ 7;\ ce(L)/(\gamma+ce)=0.0103\ 8;\\ &ce(M)/(\gamma+ce)=0.00238\ 16\\ &ce(N)/(\gamma+ce)=0.00058\ 4;\ ce(O)/(\gamma+ce)=0.000103\ 8;\\ &ce(P)/(\gamma+ce)=7.6\times10^{-6}\ 9\\ &\alpha(K)=0.068\ 8;\ \alpha(L)=0.0112\ 8;\ \alpha(M)=0.00257\ 18\\ &\alpha(N)=0.00063\ 5;\ \alpha(O)=0.000112\ 9;\ \alpha(P)=8.2\times10^{-6}\ 9\end{aligned}$
468.3 <i>3</i>	0.65 12	662.76	194.38	(1,2)+	E2+M1	1.7 6	0.043 12	0.68 15	Additional information 12. $\alpha(K)\exp=0.033 \ 11$ $\operatorname{ce}(K)/(\gamma+\operatorname{ce})=0.0321 \ 92; \ \operatorname{ce}(L)/(\gamma+\operatorname{ce})=0.0068 \ 11;$ $\operatorname{ce}(M)/(\gamma+\operatorname{ce})=0.00162 \ 23$ $\operatorname{ce}(N)/(\gamma+\operatorname{ce})=0.00040 \ 6; \ \operatorname{ce}(O)/(\gamma+\operatorname{ce})=6.7\times10^{-5} \ 11;$ $\operatorname{ce}(P)/(\gamma+\operatorname{ce})=3.8\times10^{-6} \ 12$ $\alpha(K)=0.0334 \ 99; \ \alpha(L)=0.0071 \ 11; \ \alpha(M)=0.00169 \ 24$
x472.4 3	1.7 3				M1(+E2)	<0.5	0.078 6	1.8 3	$\begin{aligned} &\alpha(N)=0.00041 \ 6; \ \alpha(O)=7.0\times10^{-5} \ 12; \ \alpha(P)=3.9\times10^{-6} \ 13 \\ &\alpha(K)\exp=0.077 \ 20 \\ &ce(K)/(\gamma+ce)=0.060 \ 5; \ ce(L)/(\gamma+ce)=0.0097 \ 6; \\ &ce(M)/(\gamma+ce)=0.00224 \ 12 \\ &ce(N)/(\gamma+ce)=0.00055 \ 3; \ ce(O)/(\gamma+ce)=9.7\times10^{-5} \ 6; \\ &ce(P)/(\gamma+ce)=7.2\times10^{-6} \ 6 \\ &\alpha(K)=0.064 \ 5; \ \alpha(L)=0.0105 \ 6; \ \alpha(M)=0.00241 \ 13 \\ &\alpha(N)=0.00059 \ 3; \ \alpha(O)=0.000105 \ 6; \ \alpha(P)=7.8\times10^{-6} \ 7 \\ &Additional information \ 1. \end{aligned}$
^x 473.7 3	1.2 2				M1		0.0829	1.3 2	coin with 75 γ , 77 γ . $\alpha(K)\exp=0.081\ 20$ ce(K)/(γ +ce)=0.0634 9; ce(L)/(γ +ce)=0.01011\ 15; ce(M)/(γ +ce)=0.00232 4 ce(N)/(γ +ce)=0.000570 8; ce(O)/(γ +ce)=0.0001012\ 15; ce(P)/(γ +ce)=7.69 \times 10 ⁻⁶ 11 $\alpha(K)=0.0687\ 10;\ \alpha(L)=0.01094\ 16;\ \alpha(M)=0.00251\ 4$ $\alpha(N)=0.000618\ 9;\ \alpha(O)=0.0001095\ 16;\ \alpha(P)=8.33\times10^{-6}\ 12$ $\delta(E2/M1)<0.5.$ coin with 97 γ .
^x 520.2 3	0.85 13				M1(+E2)	<1	0.054 11	0.9 2	$\alpha(\text{K})\exp=0.053 \ 19$ ce(K)/(γ +ce)=0.042 9; ce(L)/(γ +ce)=0.0070 11;

L

1				¹⁸² Pt	ε decay	(2.67 min)	2007Ho20	,1995Sa42 (continued)
						γ (¹⁸² I	r) (continue	<u>d)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^C	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
523.2 3	0.92 14	782.9	259.61 (2)+	M1(+E2)	<0.3	0.0621 20	1.0 2	$ce(M)/(\gamma+ce)=0.00163 \ 24$ $ce(N)/(\gamma+ce)=0.0040 \ 6; \ ce(O)/(\gamma+ce)=7.0\times10^{-5} \ 11;$ $ce(P)/(\gamma+ce)=5.1\times10^{-6} \ 12$ $\alpha(K)=0.044 \ 10; \ \alpha(L)=0.0074 \ 12; \ \alpha(M)=0.00172 \ 25$ $\alpha(N)=0.00042 \ 6; \ \alpha(O)=7.4\times10^{-5} \ 12; \ \alpha(P)=5.3\times10^{-6} \ 12$ $\alpha(K)exp=0.071 \ 21$ $ce(K)/(\gamma+ce)=0.0484 \ 16; \ ce(L)/(\gamma+ce)=0.00775 \ 21;$ $ce(M)/(\gamma+ce)=0.00178 \ 5$ $(N)(\gamma+ce)=0.00178 \ 5$
527.2 3	0.76 11	904.1	377.07 (2) ⁺	M1(+E2)	<0.1	0.0624	0.8 2	$ce(N)/(\gamma+ce)=0.000438 \ 12; \ ce(O)/(\gamma+ce)=7.75\times10^{-5} \ 21; ce(P)/(\gamma+ce)=5.85\times10^{-6} \ 20 \alpha(K)=0.0514 \ 17; \ \alpha(L)=0.00823 \ 22; \ \alpha(M)=0.00189 \ 5 \alpha(N)=0.000465 \ 12; \ \alpha(O)=8.23\times10^{-5} \ 22; \ \alpha(P)=6.22\times10^{-6} \ 21 Additional information \ 16. \alpha(K)exp=0.074 \ 21 ce(K)/(\gamma+ce)=0.0487 \ 7; \ ce(L)/(\gamma+ce)=0.00774 \ 11; ce(M)/(\gamma+ce)=0.00178 \ 3 ce(N)/(\gamma+ce)=0.000437 \ 7; \ ce(O)/(\gamma+ce)=7.74\times10^{-5} \ 12; $
549.3 <i>3</i>	0.5 1	636.88	87.39 (1,2)	+ [M1,E2]		0.038 <i>19</i>	0.5 1	$ce(R)/(\gamma+ce)=5.89\times10^{-6} \ 9$ $\alpha(K)=0.0517 \ 8; \ \alpha(L)=0.00822 \ 12; \ \alpha(M)=0.00189 \ 3$ $\alpha(N)=0.000464 \ 7; \ \alpha(O)=8.23\times10^{-5} \ 12; \ \alpha(P)=6.26\times10^{-6} \ 9$ Additional information 18. $ce(K)/(\gamma+ce)=0.029 \ 16; \ ce(L)/(\gamma+ce)=0.0052 \ 19; ce(M)/(\gamma+ce)=0.00122 \ 42 ce(N)/(\gamma+ce)=3.0\times10^{-4} \ 11; \ ce(O)/(\gamma+ce)=5.2\times10^{-5} \ 20; ce(P)/(\gamma+ce)=3.5\times10^{-6} \ 20$
549.6 <i>3</i>	1.7 3	1002.36	452.52 (2) ⁺	M1(+E2)	<0.1	0.0560	1.8 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.031 \ 17; \ \alpha(\mathbf{L}) = 0.0054 \ 20; \ \alpha(\mathbf{M}) = 0.00127 \ 43 \\ &\alpha(\mathbf{N}) = 3.1 \times 10^{-4} \ 11; \ \alpha(\mathbf{O}) = 5.4 \times 10^{-5} \ 20; \ \alpha(\mathbf{P}) = 3.6 \times 10^{-6} \ 20 \\ &\alpha(\mathbf{K}) \exp = 0.060 \ 14 \\ &\operatorname{ce}(\mathbf{K})/(\gamma + \operatorname{ce}) = 0.0440 \ 6; \ \operatorname{ce}(\mathbf{L})/(\gamma + \operatorname{ce}) = 0.00698 \ 10; \\ &\operatorname{ce}(\mathbf{M})/(\gamma + \operatorname{ce}) = 0.001601 \ 23 \\ &\operatorname{ce}(\mathbf{N})/(\gamma + \operatorname{ce}) = 0.000394 \ 6; \ \operatorname{ce}(\mathbf{O})/(\gamma + \operatorname{ce}) = 6.98 \times 10^{-5} \ 10; \\ &\operatorname{ce}(\mathbf{P})/(\gamma + \operatorname{ce}) = 5.31 \times 10^{-6} \ 8 \\ &\alpha(\mathbf{K}) = 0.001601 \ 25 \end{aligned}$
561.9 <i>3</i>	3.2 4	636.88	74.80 (2) ⁺	M1(+E2)	<0.7	0.047 6	3.4 6	$\alpha(N)=0.000416 \ 6; \ \alpha(O)=7.37\times10^{-5} \ 11; \ \alpha(P)=5.61\times10^{-6} \ 9$ Additional information 20. $\alpha(K)\exp=0.047 \ 14$ $ce(K)/(\gamma+ce)=0.037 \ 5; \ ce(L)/(\gamma+ce)=0.0061 \ 6; ce(M)/(\gamma+ce)=0.00140 \ 13$ $ce(N)/(\gamma+ce)=0.00034 \ 4; \ ce(O)/(\gamma+ce)=6.1\times10^{-5} \ 6; ce(P)/(\gamma+ce)=4.5\times10^{-6} \ 6$ $\alpha(K)=0.039 \ 5; \ \alpha(L)=0.0064 \ 7; \ \alpha(M)=0.00147 \ 14 \alpha(N)=0.00036 \ 4; \ \alpha(O)=6.4\times10^{-5} \ 7; \ \alpha(P)=4.7\times10^{-6} \ 7$ Additional information 14.

¹⁸² Pt ε decay (2.67 min)					ε decay	(2.67 min)	2007Ho20,1995Sa42 (continued)			
						$\gamma(^{182})$	Ir) (continue	<u>d)</u>		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α^{c}	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments		
572.3 3	3.7 4	1024.87	452.52 (2)+	M1		0.0505	3.9 5	$\begin{aligned} &\alpha(\text{K})\exp=0.049 \ I2 \\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.0399 \ 6; \ &\text{ce}(\text{L})/(\gamma+\text{ce})=0.00632 \ 9; \\ &\text{ce}(\text{M})/(\gamma+\text{ce})=0.001451 \ 2I \\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.000357 \ 5; \ &\text{ce}(\text{O})/(\gamma+\text{ce})=6.33\times10^{-5} \ 9; \end{aligned}$		
x575.0 3 577.0 3	0.7 2 0.89 <i>13</i>	922.7	345.69 (2)-	E1,E2	~0.5	0.011 5	0.9 2	ce(P)/(γ +ce)=4.82×10 ⁻⁶ 7 α (K)=0.0419 6; α (L)=0.00664 10; α (M)=0.001524 22 α (N)=0.000375 6; α (O)=6.65×10 ⁻⁵ 10; α (P)=5.06×10 ⁻⁶ 8 δ (E2/M1)<0.5. coin with 146 γ , 171 γ . α (K)exp<0.01 α (K)exp<0.024		
- 383.7 3	0.6 2			MI+E2	≈0.5	≈0.0417	0.6 2	α(K)exp≈0.054 ce(K)/(γ+ce)≈0.0330; ce(L)/(γ+ce)≈0.00541; ce(M)/(γ+ce)≈0.001246 ce(N)/(γ+ce)≈0.000306; ce(O)/(γ+ce)≈5.40×10 ⁻⁵ ; ce(P)/(γ+ce)≈3.97×10 ⁻⁶ $α(K)≈0.0344; α(L)≈0.00563; α(M)≈0.001298$ (A))» 0.0002109		
588.0 <i>3</i>	≈0.7	662.76	74.80 (2)+	M1		0.0471	≈0.7	$\begin{aligned} \alpha(\text{K}) \approx 0.000519, \ \alpha(\text{C}) \approx 3.02 \times 10^{-7}, \ \alpha(\text{F}) \approx 4.13 \times 10^{-7} \\ \alpha(\text{K}) \exp \approx 0.054 \\ \text{ce}(\text{K})/(\gamma + \text{ce}) = 0.001355 \ 19 \\ \text{ce}(\text{M})/(\gamma + \text{ce}) = 0.001355 \ 19 \\ \text{ce}(\text{N})/(\gamma + \text{ce}) = 0.000333 \ 5; \ \text{ce}(\text{O})/(\gamma + \text{ce}) = 5.91 \times 10^{-5} \ 9; \\ \text{ce}(\text{P})/(\gamma + \text{ce}) = 4.51 \times 10^{-6} \ 7 \\ \alpha(\text{K}) = 0.0391 \ 6; \ \alpha(\text{L}) = 0.00619 \ 9; \ \alpha(\text{M}) = 0.001419 \ 20 \\ \alpha(\text{N}) = 0.000349 \ 5; \ \alpha(\text{O}) = 6.19 \times 10^{-5} \ 9; \ \alpha(\text{P}) = 4.72 \times 10^{-6} \ 7 \end{aligned}$		
593.6 <i>3</i>	0.95 14	852.78	259.61 (2)+	M1(+E2)	<0.5	0.043 3	1.0 2	$I_{\gamma}: ≈0.7 I.$ $\alpha(K)exp=0.047 I2$ $ce(K)/(γ+ce)=0.0341 25; ce(L)/(γ+ce)=0.0055 4;$ $ce(M)/(γ+ce)=0.00126 8$ $ce(N)/(γ+ce)=0.000309 I8; ce(O)/(γ+ce)=5.5×10^{-5} 4;$ $ce(P)/(γ+ce)=4.1×10^{-6} 4$ $\alpha(K)=0.036 3; \alpha(L)=0.0057 4; \alpha(M)=0.00131 8$ $\alpha(N)=0.000323 I9; \alpha(O)=5.7×10^{-5} 4; \alpha(P)=4.3×10^{-6} 4$ Additional information 17		
615.1 <i>3</i>	0.51 8	615.21	0.0 3+	M1+E2	≈0.8	≈0.0312	0.5 1	$\begin{aligned} &\alpha(K) \exp \approx 0.026 \\ &ce(K)/(\gamma + ce) \approx 0.0248; ce(L)/(\gamma + ce) \approx 0.00421; \\ &ce(M)/(\gamma + ce) \approx 0.000974 \\ &ce(N)/(\gamma + ce) \approx 0.000239; ce(O)/(\gamma + ce) \approx 4.19 \times 10^{-5}; \\ &ce(P)/(\gamma + ce) \approx 2.96 \times 10^{-6} \\ &\alpha(K) \approx 0.0256; \ \alpha(L) \approx 0.00434; \ \alpha(M) \approx 0.001004 \\ &\alpha(N) \approx 0.000246; \ \alpha(O) \approx 4.32 \times 10^{-5}; \ \alpha(P) \approx 3.06 \times 10^{-6} \end{aligned}$		
620.2 <i>3</i>	0.78 12	1002.36	382.17 (3)+	[E2]		0.01429	0.8 1	$\alpha(K)\exp \le 0.027$ ce(K)/(γ +ce)=0.01090 <i>16</i> ; ce(L)/(γ +ce)=0.00244 <i>4</i> ;		

From ENSDF

 $^{182}_{77}\mathrm{Ir}_{105}\text{--}17$

 $^{182}_{77}\mathrm{Ir}_{105}\text{--}17$

				182	Pt $arepsilon$ deca	y (2.67 min)	2007Ho2	0,1995Sa42 (continued)
						$\gamma(^{182}$	Ir) (continue	ed)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^C	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
625.1 <i>3</i>	1.5 2	1002.36	377.07 (2)+	M1(+E2)	<1.6	0.0308 95	1.5 2	$\frac{ce(M)/(\gamma+ce)=0.000581 \ 9}{ce(N)/(\gamma+ce)=0.0001419 \ 20; \ ce(O)/(\gamma+ce)=2.39\times10^{-5} \ 4; \\ ce(P)/(\gamma+ce)=1.241\times10^{-6} \ 18 \\ \alpha(K)=0.01106 \ 16; \ \alpha(L)=0.00247 \ 4; \ \alpha(M)=0.000589 \ 9 \\ \alpha(N)=0.0001439 \ 21; \ \alpha(O)=2.43\times10^{-5} \ 4; \ \alpha(P)=1.258\times10^{-6} \ 18 \\ \alpha(K)\exp=0.052 \ 35 \\ ce(K)/(\gamma+ce)=0.0245 \ 77; \ ce(L)/(\gamma+ce)=0.0041 \ 10; \\ ce(M)/(\gamma+ce)=0.00095 \ 23 \\ ce(N)/(\gamma+ce)=0.00095 \ 23 \\ ce(N)/(\gamma+ce)=0.00095 \ 23 \\ ce(N)/(\gamma+ce)=0.00095 \ 23 \\ ce(N)/(\gamma+ce)=0.00095 \ 4; \ ce(O)/(\gamma+ce)=4 \ 1\times10^{-5} \ 11; \\ ce(N)/(\gamma+ce)=0.00095 \ 23 \\ ce(N)/(\gamma+ce)=0.00095$
642.7 3	0.83 12	1024.87	382.17 (3)+	[E2]		0.01319	0.9 2	$ce(P)/(\gamma+ce)=2.93\times10^{-6} \ 98$ $\alpha(K)=0.0253 \ 81; \ \alpha(L)=0.0042 \ 11; \ \alpha(M)=0.00098 \ 23$ $\alpha(N)=0.00024 \ 6; \ \alpha(O)=4.2\times10^{-5} \ 11; \ \alpha(P)=3.0\times10^{-6} \ 10$ Additional information 21. $ce(K)/(\gamma+ce)=0.01013 \ 14; \ ce(L)/(\gamma+ce)=0.00221 \ 4; \ ce(M)/(\gamma+ce)=0.000526 \ 8$ $ce(N)/(\gamma+ce)=0.0001286 \ 18; \ ce(O)/(\gamma+ce)=2.17\times10^{-5} \ 3;$
647.8 <i>3</i>	1.3 2	1024.87	377.07 (2)+	M1(+E2)	<0.9	0.031 6	1.3 2	$ce(P)/(\gamma+ce)=1.153\times10^{-6} 17$ $\alpha(K)=0.01026 15; \ \alpha(L)=0.00224 4; \ \alpha(M)=0.000533 8$ $\alpha(N)=0.0001302 19; \ \alpha(O)=2.20\times10^{-5} 3; \ \alpha(P)=1.168\times10^{-6} 17$ $\alpha(K)exp=0.028 7$ $ce(K)/(\gamma+ce)=0.025 5; \ ce(L)/(\gamma+ce)=0.0041 6; ce(M)/(\gamma+ce)=0.00094 13ce(N)/(\gamma+ce)=0.00094 4; \ ce(O)/(\gamma+ce)=4 1\times10^{-5} 6;$
656.6 <i>3</i>	9.9 10	1002.36	345.69 (2)-	E1		0.00453	9.9 10	$\begin{array}{l} ce(P)/(\gamma+ce) = 3.0 \times 10^{-6} \ 6\\ \alpha(K) = 0.026 \ 5; \ \alpha(L) = 0.0042 \ 6; \ \alpha(M) = 0.00097 \ 13\\ \alpha(N) = 0.00024 \ 4; \ \alpha(O) = 4.2 \times 10^{-5} \ 6; \ \alpha(P) = 3.1 \times 10^{-6} \ 6\\ \alpha(K) exp = 0.0040 \ 10\\ ce(K)/(\gamma+ce) = 0.00378 \ 6; \ ce(L)/(\gamma+ce) = 0.000565 \ 8;\\ ce(M)/(\gamma+ce) = 0.0001288 \ 18\\ ce(N)/(\gamma+ce) = 3.15 \times 10^{-5} \ 5; \ ce(O)/(\gamma+ce) = 5.52 \times 10^{-6} \ 8; \end{array}$
679.3 <i>3</i>	2.3 3	1024.87	345.69 (2)-	[E1]		0.00424	2.3 3	$\begin{array}{l} \operatorname{ce}(\mathrm{P})/(\gamma+\mathrm{ce})=3.96\times10^{-7} \ 6\\ \alpha(\mathrm{K})=0.00380 \ 6; \ \alpha(\mathrm{L})=0.000568 \ 8; \ \alpha(\mathrm{M})=0.0001293 \ 19\\ \alpha(\mathrm{N})=3.16\times10^{-5} \ 5; \ \alpha(\mathrm{O})=5.54\times10^{-6} \ 8; \ \alpha(\mathrm{P})=3.98\times10^{-7} \ 6\\ \alpha(\mathrm{K})\exp\leq0.01\\ \operatorname{ce}(\mathrm{K})/(\gamma+\mathrm{ce})=0.00354 \ 5; \ \operatorname{ce}(\mathrm{L})/(\gamma+\mathrm{ce})=0.000528 \ 8;\\ \operatorname{ce}(\mathrm{M})/(\gamma+\mathrm{ce})=0.0001201 \ 17\\ \operatorname{ce}(\mathrm{N})/(\gamma+\mathrm{ce})=2.94\times10^{-5} \ 5; \ \operatorname{ce}(\mathrm{O})/(\gamma+\mathrm{ce})=5.15\times10^{-6} \ 8;\\ \operatorname{ce}(\mathrm{M})/(\gamma+\mathrm{ce})=2.94\times10^{-7} \ 6\end{array}$
681.4 <i>3</i>	18.0 <i>18</i>	1002.36	320.94 (2)-	E1		0.00421	18.1 <i>18</i>	$\alpha(K)=0.00355 \ 5; \ \alpha(L)=0.000530 \ 8; \ \alpha(M)=0.0001206 \ 17$ $\alpha(N)=2.95\times10^{-5} \ 5; \ \alpha(O)=5.17\times10^{-6} \ 8; \ \alpha(P)=3.72\times10^{-7} \ 6$ $\alpha(K)\exp=0.0040 \ 7$ $ce(K)/(\gamma+ce)=0.00351 \ 5; \ ce(L)/(\gamma+ce)=0.000524 \ 8;$ $ce(M)/(\gamma+ce)=0.0001193 \ 17$

					¹⁸² Pt a	e decay	(2.67 min)	2007Ho20,	1995Sa42 (continued)
							γ (¹⁸² I	r) (continued	<u>()</u>
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	E_f	J_f^π	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^c	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
									$ce(N)/(\gamma+ce)=2.92\times10^{-5} 4; ce(O)/(\gamma+ce)=5.12\times10^{-6} 8; ce(P)/(\gamma+ce)=3.69\times10^{-7} 6 \alpha(K)=0.00353 5; \alpha(L)=0.000526 8; \alpha(M)=0.0001198 17 \alpha(N)=2.93\times10^{-5} 5; \alpha(O)=5.14\times10^{-6} 8; \alpha(P)=3.70\times10^{-7} 6$
x684.2 3	≤0.7							≤0.7	coin with Ir x rays.
703 0 3	223	1024.87	320.04	$(2)^{-}$	F1		0.00305	233	I_{γ} : quoted by 2007Ho20 as $\leq 0.6 \ I$.
103.9 3	2.3 3	1024.07	320.94	(2)	EI		0.00393	2.3 3	$\begin{array}{l} ce(K)(\gamma + ce) = 0.007 \\ ce(K)/(\gamma + ce) = 0.00330 \ 5; \ ce(L)/(\gamma + ce) = 0.000491 \ 7; \\ ce(M)/(\gamma + ce) = 0.0001117 \ 16 \\ ce(N)/(\gamma + ce) = 2.73 \times 10^{-5} \ 4; \ ce(O)/(\gamma + ce) = 4.79 \times 10^{-6} \ 7; \\ ce(P)/(\gamma + ce) = 3.46 \times 10^{-7} \ 5 \end{array}$
713.5 3	0.38 6	904.1	190.39	(3)+	[M1,E2]		0.0195 <i>91</i>	0.4 1	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00331\ 5;\ \alpha(\mathbf{L}) = 0.000493\ 7;\ \alpha(\mathbf{M}) = 0.0001121\ 16\\ &\alpha(\mathbf{N}) = 2.74 \times 10^{-5}\ 4;\ \alpha(\mathbf{O}) = 4.81 \times 10^{-6}\ 7;\ \alpha(\mathbf{P}) = 3.48 \times 10^{-7}\ 5\\ &\alpha(\mathbf{K}) \exp < 0.05\\ &\operatorname{ce}(\mathbf{K})/(\gamma + \operatorname{ce}) = 0.0157\ 75;\ \operatorname{ce}(\mathbf{L})/(\gamma + \operatorname{ce}) = 0.0027\ 10;\\ &\operatorname{ce}(\mathbf{M})/(\gamma + \operatorname{ce}) = 6.2 \times 10^{-4}\ 23 \end{aligned}$
718.6 <i>3</i>	0.67 10	1002.36	283.81	(2)+	M1(+E2)	<0.6	0.0257 24	0.7 1	$\begin{aligned} & \operatorname{ce}(\mathbf{N})/(\gamma+\operatorname{ce})=1.51\times10^{-4} 56; \ \operatorname{ce}(\mathbf{O})/(\gamma+\operatorname{ce})=2.7\times10^{-5} 11; \\ & \operatorname{ce}(\mathbf{P})/(\gamma+\operatorname{ce})=1.86\times10^{-6} 94 \\ & \alpha(\mathbf{K})=0.0160 \ 78; \ \alpha(\mathbf{L})=0.0027 \ 11; \ \alpha(\mathbf{M})=6.3\times10^{-4} \ 23 \\ & \alpha(\mathbf{N})=1.54\times10^{-4} \ 57; \ \alpha(\mathbf{O})=2.7\times10^{-5} \ 11; \ \alpha(\mathbf{P})=1.90\times10^{-6} \ 96 \\ & \alpha(\mathbf{K})\exp=0.030 \ 11 \\ & \operatorname{ce}(\mathbf{K})/(\gamma+\operatorname{ce})=0.0208 \ 20; \ \operatorname{ce}(\mathbf{L})/(\gamma+\operatorname{ce})=0.0033 \ 3; \\ & \operatorname{ce}(\mathbf{M})/(\gamma+\operatorname{ce})=0.00076 \ 6 \\ & \operatorname{ce}(\mathbf{N})/(\gamma+\operatorname{ce})=0.000187 \ 15; \ \operatorname{ce}(\mathbf{O})/(\gamma+\operatorname{ce})=3.3\times10^{-5} \ 3; \end{aligned}$
742.7 3	0.44 7	1002.36	259.61	(2)+	M1(+E2)	<2	0.0193 65	0.5 1	$ce(P)/(\gamma+ce)=2.49\times10^{-6} 25$ $\alpha(K)=0.0213 21; \ \alpha(L)=0.0034 3; \ \alpha(M)=0.00078 6$ $\alpha(N)=0.000192 15; \ \alpha(O)=3.4\times10^{-5} 3; \ \alpha(P)=2.6\times10^{-6} 3$ Additional information 22. $\alpha(K)exp=0.020 10$ $ce(K)/(\gamma+ce)=0.0156 54; \ ce(L)/(\gamma+ce)=0.00258 72; ce(M)/(\gamma+ce)=6.0\times10^{-4} 17$ $ce(N)/(\gamma+ce)=1.46\times10^{-4} 40; \ ce(O)/(\gamma+ce)=2.57\times10^{-5} 73;$
790.0 <i>3</i>	≈3.4	1135.67	345.69	(2)-	E1		0.00316	≈3.4	$\begin{aligned} & \operatorname{ce}(\mathbf{P})/(\gamma + \operatorname{ce}) = 1.86 \times 10^{-6} \ 68 \\ & \alpha(\mathbf{K}) = 0.0159 \ 56; \ \alpha(\mathbf{L}) = 0.00263 \ 74; \ \alpha(\mathbf{M}) = 6.1 \times 10^{-4} \ 17 \\ & \alpha(\mathbf{N}) = 1.49 \times 10^{-4} \ 41; \ \alpha(\mathbf{O}) = 2.62 \times 10^{-5} \ 75; \ \alpha(\mathbf{P}) = 1.89 \times 10^{-6} \ 69 \\ & \alpha(\mathbf{K}) \exp = 0.0032 \ 15 \\ & \operatorname{ce}(\mathbf{K})/(\gamma + \operatorname{ce}) = 0.00264 \ 4; \ \operatorname{ce}(\mathbf{L})/(\gamma + \operatorname{ce}) = 0.000390 \ 6; \\ & \operatorname{ce}(\mathbf{M})/(\gamma + \operatorname{ce}) = 2.17 \times 10^{-5} \ 3; \ \operatorname{ce}(\mathbf{O})/(\gamma + \operatorname{ce}) = 3.81 \times 10^{-6} \ 6; \\ & \operatorname{ce}(\mathbf{P})/(\gamma + \operatorname{ce}) = 2.79 \times 10^{-7} \ 4 \\ & \alpha(\mathbf{K}) = 0.00265 \ 4; \ \alpha(\mathbf{L}) = 0.000391 \ 6; \ \alpha(\mathbf{M}) = 8.90 \times 10^{-5} \ 13 \end{aligned}$

From ENSDF

 $^{182}_{77}\mathrm{Ir}_{105}\text{--}19$

$\frac{\gamma(^{182}\text{Ir}) \text{ (continued)}}{(\text{continued})}$ $\frac{\text{E}_{\gamma}^{\dagger}}{\text{I}_{\gamma}^{\ddagger d}} = \frac{\text{E}_{i}(\text{level})}{\text{E}_{f}} = \frac{\text{J}_{f}^{\pi}}{\text{J}_{f}} = \frac{\text{Mult.}^{\#}}{\text{M}} = \frac{\delta^{b}}{\delta^{b}} = \frac{\alpha^{c}}{\text{I}_{(\gamma+ce)}^{\ddagger d}} = \frac{\text{Comments}}{\alpha(N)=2.18\times10^{-5} \ 3; \ \alpha(O)=3.83\times10^{-6} \ 6; \ \alpha(P)=2.79\times10^{-7} \ 4}{\text{I}_{\gamma}: \approx 3.4 \ 4, \text{ contaminated by a } \gamma \text{ ray from } ^{182}\text{Ir decay.} \\ \alpha(K)=2.001785 \ 25; \ ce(L)/(\gamma+ce)=0.00280 \ 4; \\ ce(M)/(\gamma+ce)=0.001785 \ 25; \ ce(D)/(\gamma+ce)=2.80\times10^{-5} \ 4; \\ ce(P)/(\gamma+ce)=2.14\times10^{-6} \ 3 \\ \alpha(K)=0.0182 \ 3; \ \alpha(L)=0.00286 \ 4; \ \alpha(M)=0.000655 \ 10 \\ \alpha(N)=0.0001610 \ 23; \ \alpha(Q)=2.86\times10^{-5} \ 4; \ \alpha(P)=2.19\times10^{-6} \ 3 \\ \alpha(K)=0.001610 \ 23; \ \alpha(Q)=2.86\times10^{-5} \ 4; \ \alpha(P)=2.19\times10^{-6} \ 3 \\ \alpha(K)=0.0028 \ 0.5 \ 1 \\ \alpha(K)=2.0001695 \ 24; \ ce(D)/(\gamma+ce)=0.00265 \ 4; \\ ce(N)/(\gamma+ce)=0.000688 \ 9 \\ ce(N)/(\gamma+ce)=0.0001695 \ 24; \ ce(D)/(\gamma+ce)=2.65\times10^{-5} \ 4; \\ ce(N)/(\gamma+ce)=0.0001495 \ 24; \ ce(D)/(\gamma+ce)=2.65\times10^{-5} \ 4; \\ e(N)/(\gamma+ce)=0.0001495 \ 24; \ ce(D)/(\gamma+ce)=2.65\times10^{-5} \ 4; \\ $	¹⁸² Pt ε decay (2.67 min) 2007Ho20,1995Sa42 (continued)											
$\frac{E_{\gamma}^{\dagger}}{P_{\gamma}^{\dagger}} = \frac{I_{\gamma}^{\ddagger d}}{I_{\gamma}^{\ddagger d}} = \frac{E_{i}(\text{level})}{E_{f}} = \frac{E_{f}}{P_{f}^{\dagger}} = \frac{J_{\pi}^{\pi}}{Mult.^{\ddagger}} = \frac{\delta^{b}}{\delta^{b}} = \frac{\alpha^{c}}{I_{(\gamma+ce)}^{\ddagger d}} = \frac{Comments}{\alpha(N)=2.18\times10^{-5} 3; \alpha(O)=3.83\times10^{-6} 6; \alpha(P)=2.79\times10^{-7} 4} \\ I_{\gamma}: \approx 3.4 4, \text{ contaminated by a } \gamma \text{ ray from }^{182}\text{ Ir decay.} \\ \alpha(K)\exp=0.031 7 \\ ce(K)/(\gamma+ce)=0.01785 25; ce(L)/(\gamma+ce)=0.00280 4; \\ ce(M)/(\gamma+ce)=0.0001576 23; ce(O)/(\gamma+ce)=2.80\times10^{-5} 4; \\ ce(P)/(\gamma+ce)=2.14\times10^{-6} 3 \\ \alpha(K)=0.0182 3; \alpha(L)=0.00286 4; \alpha(M)=0.000655 10 \\ \alpha(N)=0.0001610 23; \alpha(O)=2.86\times10^{-5} 4; \alpha(P)=2.19\times10^{-6} 3 \\ \alpha(K)\exp\approx0.023 \\ ce(M)/(\gamma+ce)=0.0106159 24; ce(L)/(\gamma+ce)=0.00265 4; \\ ce(M)/(\gamma+ce)=0.0001619 5 24; ce(L)/(\gamma+ce)=0.00265 4; \\ ce(M)/(\gamma+ce)=0.0001619 5 24; ce(D)/(\gamma+ce)=2.65\times10^{-5} 4; \\ ce($							$\gamma(^{182}$ Ir) (cor	ntinued)				
$\frac{E_{\gamma}^{\dagger}}{P_{\gamma}} = \frac{I_{\gamma}^{\ddagger d}}{I_{\gamma}} = \frac{E_{i}(\text{level})}{E_{f}} = \frac{E_{f}}{P_{f}} = \frac{J_{\pi}}{P_{f}} = \frac{Mult.^{\#}}{M} = \frac{\delta^{b}}{\delta^{b}} = \frac{\alpha^{c}}{\alpha^{c}} = \frac{I_{(\gamma+ce)}^{\ddagger d}}{I_{(\gamma+ce)}^{\ddagger d}} = \frac{C\text{ comments}}{\alpha(N)=2.18\times10^{-5} 3; \alpha(O)=3.83\times10^{-6} 6; \alpha(P)=2.79\times10^{-7} 4}{I_{\gamma}: \approx 3.4 4, \text{ contaminated by a } \gamma \text{ ray from }^{182}\text{ Ir decay.}}$ $791.4 \ 3 3.1 \ 4 1002.36 210.97 \ 1^{+} = M1 = 0.0219 3.1 \ 4 \alpha(N)=0.01785 \ 25; \text{ ce}(L)/(\gamma+ce)=0.00280 \ 4; \text{ ce}(M)/(\gamma+ce)=0.000641 \ 9 \text{ ce}(N)/(\gamma+ce)=0.0001576 \ 23; \alpha(O)=2.86\times10^{-5} \ 4; \text{ ce}(P)/(\gamma+ce)=2.14\times10^{-6} \ 3 \text{ a}(N)=0.0001610 \ 23; \alpha(O)=2.86\times10^{-5} \ 4; \alpha(N)=0.000655 \ 10 \text{ a}(N)=0.0001610 \ 23; \alpha(O)=2.86\times10^{-5} \ 4; \alpha(P)=2.19\times10^{-6} \ 3 \text{ a}(N)=0.000265 \ 4; \text{ ce}(N)/(\gamma+ce)=0.001695 \ 24; \text{ ce}(L)/(\gamma+ce)=0.00265 \ 4; \text{ ce}(N)/(\gamma+ce)=0.000265 \ 4; \text{ ce}(N)/(\gamma+ce)=0.000265 \ 4; \text{ ce}(N)/(\gamma+ce)=0.0001695 \ 24; \text{ ce}(L)/(\gamma+ce)=0.00265 \ 4; \text{ ce}(N)/(\gamma+ce)=0.0001695 \ 24; \text{ ce}(L)/(\gamma+ce)=0.00265 \ 4; \text{ ce}(N)/(\gamma+ce)=0.000265 \ 4; \text{ ce}(N$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E_i (level)	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#] δ^{b}	α ^{C}	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments				
791.4 33.1 41002.36210.97 1+M10.02193.1 4I (γ = γ								$\alpha(N)=2.18\times10^{-5}$ 3; $\alpha(O)=3.83\times10^{-6}$ 6; $\alpha(P)=2.79\times10^{-7}$ 4				
$\begin{array}{c} 791.4 \ 3 & 5.1 \ 4 & 1002.30 & 210.97 \ 1 & M1 & 0.0219 & 5.1 \ 4 & \alpha(R)eq=0.0517 \\ ce(K)/(\gamma+ce)=0.00185 \ 25; \ ce(L)/(\gamma+ce)=0.00280 \ 4; \\ ce(M)/(\gamma+ce)=0.0001576 \ 23; \ ce(O)/(\gamma+ce)=2.80\times10^{-5} \ 4; \\ ce(P)/(\gamma+ce)=2.14\times10^{-6} \ 3 \\ \alpha(K)=0.0182 \ 3; \ \alpha(L)=0.00286 \ 4; \ \alpha(M)=0.000655 \ 10 \\ \alpha(N)=0.0001610 \ 23; \ \alpha(O)=2.86\times10^{-5} \ 4; \ \alpha(P)=2.19\times10^{-6} \ 3 \\ \alpha(K)exp\approx0.023 \\ ce(K)/(\gamma+ce)=0.001695 \ 24; \ ce(L)/(\gamma+ce)=0.00265 \ 4; \\ ce(M)/(\gamma+ce)=0.000608 \ 9 \\ ce(N)/(\gamma+ce)=0.0001495 \ 21; \ ce(O)/(\gamma+ce)=2.65\times10^{-5} \ 4; \end{array}$	701 4 2	211	1002.36	210.07 1+	M1	0.0210	211	I_{γ} : $\approx 3.4.4$, contaminated by a γ ray from ¹⁸² Ir decay.				
$ \begin{array}{c} ce(M)/(\gamma+ce)=0.000641 \ 9 \\ ce(N)/(\gamma+ce)=0.0001576 \ 23; \ ce(O)/(\gamma+ce)=2.80\times10^{-5} \ 4; \\ ce(P)/(\gamma+ce)=2.14\times10^{-6} \ 3 \\ \alpha(K)=0.0182 \ 3; \ \alpha(L)=0.00286 \ 4; \ \alpha(M)=0.000655 \ 10 \\ \alpha(N)=0.0001610 \ 23; \ \alpha(O)=2.86\times10^{-5} \ 4; \ \alpha(P)=2.19\times10^{-6} \ 3 \\ \alpha(K)ep\approx0.023 \\ ce(K)/(\gamma+ce)=0.01695 \ 24; \ ce(L)/(\gamma+ce)=0.00265 \ 4; \\ ce(M)/(\gamma+ce)=0.000608 \ 9 \\ ce(N)/(\gamma+ce)=0.0001495 \ 21; \ ce(O)/(\gamma+ce)=2.65\times10^{-5} \ 4; \end{array} $	/91.4 5	5.1 4	1002.50	210.97 1	IVI I	0.0219	5.1 4	$\alpha(K)\exp(-0.0517)$ $ce(K)/(\gamma+ce)=0.01785\ 25;\ ce(L)/(\gamma+ce)=0.00280\ 4;$				
$\begin{array}{c} \operatorname{ce}(\mathrm{N})/(\gamma+\operatorname{ce})=0.0001576\ 23;\ \operatorname{ce}(\mathrm{O})/(\gamma+\operatorname{ce})=2.80\times10^{-5}\ 4;\\ \operatorname{ce}(\mathrm{P})/(\gamma+\operatorname{ce})=2.14\times10^{-6}\ 3\\ \alpha(\mathrm{K})=0.0182\ 3;\ \alpha(\mathrm{L})=0.00286\ 4;\ \alpha(\mathrm{M})=0.000655\ 10\\ \alpha(\mathrm{N})=0.0001610\ 23;\ \alpha(\mathrm{O})=2.86\times10^{-5}\ 4;\ \alpha(\mathrm{P})=2.19\times10^{-6}\ 3\\ \alpha(\mathrm{K})=0.0028\ 0.5\ 1\\ \begin{array}{c} \alpha(\mathrm{K})=0.0001610\ 23;\ \alpha(\mathrm{O})=2.86\times10^{-5}\ 4;\ \alpha(\mathrm{P})=2.19\times10^{-6}\ 3\\ \alpha(\mathrm{K})=0.0028\ 0.5\ 1\\ \begin{array}{c} \alpha(\mathrm{K})=0.0001610\ 23;\ \alpha(\mathrm{O})=2.86\times10^{-5}\ 4;\ \alpha(\mathrm{P})=2.19\times10^{-6}\ 3\\ \alpha(\mathrm{K})=0.00265\ 4;\ \mathrm{ce}(\mathrm{K})/(\gamma+\operatorname{ce})=0.00265\ 4;\\ \mathrm{ce}(\mathrm{K})/(\gamma+\operatorname{ce})=0.000608\ 9\\ \mathrm{ce}(\mathrm{N})/(\gamma+\operatorname{ce})=0.0001495\ 21;\ \operatorname{ce}(\mathrm{O})/(\gamma+\operatorname{ce})=2.65\times10^{-5}\ 4;\\ \end{array}$								$ce(M)/(\gamma+ce)=0.000641.9$				
$ \begin{array}{c} \alpha(K) = 0.0182 \ 3; \ \alpha(L) = 0.00286 \ 4; \ \alpha(M) = 0.000655 \ 10 \\ \alpha(N) = 0.0001610 \ 23; \ \alpha(O) = 2.86 \times 10^{-5} \ 4; \ \alpha(P) = 2.19 \times 10^{-6} \ 3 \\ \alpha(K) = 0.0001610 \ 23; \ \alpha(O) = 2.86 \times 10^{-5} \ 4; \ \alpha(P) = 2.19 \times 10^{-6} \ 3 \\ \alpha(K) = 0.0001610 \ 23; \ \alpha(O) = 2.86 \times 10^{-5} \ 4; \ \alpha(P) = 2.00265 \ 4; \\ \alpha(N) = 0.000608 \ 9 \\ ce(N)/(\gamma + ce) = 0.000608 \ 9 \\ ce(N)/(\gamma + ce) = 0.0001495 \ 21; \ ce(O)/(\gamma + ce) = 2.65 \times 10^{-5} \ 4; \end{array} $								$ce(N)/(\gamma+ce)=0.0001576\ 23;\ ce(O)/(\gamma+ce)=2.80\times10^{-5}\ 4;$				
808.0 3 0.46 7 1002.36 194.38 (1,2) ⁺ (M1) 0.0208 0.5 1 $\alpha(N)=0.0001610 23; \alpha(O)=2.86\times10^{-5} 4; \alpha(P)=2.19\times10^{-6} 3$ $\alpha(K)exp\approx0.023$ $ce(K)/(\gamma+ce)=0.01695 24; ce(L)/(\gamma+ce)=0.00265 4;$ $ce(M)/(\gamma+ce)=0.000608 9$ $ce(N)/(\gamma+ce)=0.0001495 21; ce(O)/(\gamma+ce)=2.65\times10^{-5} 4;$								$\alpha(K)=0.0182 \ 3; \ \alpha(L)=0.00286 \ 4; \ \alpha(M)=0.000655 \ 10$				
808.0 3 0.46 7 1002.36 194.38 (1,2) ⁺ (M1) 0.0208 0.5 1 α (K)exp \approx 0.023 ce(K)/(γ +ce)=0.01695 24; ce(L)/(γ +ce)=0.00265 4; ce(M)/(γ +ce)=0.000608 9 ce(N)/(γ +ce)=0.0001495 21; ce(O)/(γ +ce)=2.65×10 ⁻⁵ 4;								α (N)=0.0001610 23; α (O)=2.86×10 ⁻⁵ 4; α (P)=2.19×10 ⁻⁶ 3				
$\frac{ce(M)}{(\gamma+ce)=0.000608 \ 9}$ $ce(N)/(\gamma+ce)=0.0001495 \ 21; \ ce(O)/(\gamma+ce)=2.65\times10^{-5} \ 4;$	808.0 <i>3</i>	0.46 7	1002.36	194.38 (1,2)+	(M1)	0.0208	0.5 1	$\alpha(K)\exp \approx 0.023$				
$ce(N)/(\gamma+ce)=0.0001495 \ 21; \ ce(O)/(\gamma+ce)=2.65\times10^{-5} \ 4;$								$ce(M)/(\gamma+ce)=0.000608 \ 9$				
								$ce(N)/(\gamma+ce)=0.0001495\ 21;\ ce(O)/(\gamma+ce)=2.65\times10^{-5}\ 4;$				
$\frac{ce(P)}{(\gamma+ce)=2.03\times10^{-6} 3}$								$ce(P)/(\gamma+ce)=2.03\times10^{-6} 3$ $\alpha(K)=0.01730 25; \alpha(L)=0.00271 4; \alpha(M)=0.000621.9$				
$\alpha(R)=0.001750\ 25,\ \alpha(E)=0.00271\ 4,\ \alpha(R)=0.000021\ 9$ $\alpha(R)=0.0001526\ 22;\ \alpha(O)=2.71\times10^{-5}\ 4;\ \alpha(P)=2.07\times10^{-6}\ 3$								$\alpha(R)=0.00150623; \alpha(R)=0.002714; \alpha(R)=0.0000219$ $\alpha(R)=0.000152622; \alpha(O)=2.71\times10^{-5}4; \alpha(P)=2.07\times10^{-6}3$				
812.2 3 0.67 10 1002.36 190.39 (3) ⁺ [E2] 0.00796 0.7 1 $ce(K)/(\gamma+ce)=0.00631 9$; $ce(L)/(\gamma+ce)=0.001215 17$;	812.2 3	0.67 10	1002.36	190.39 (3)+	[E2]	0.00796	0.7 1	$ce(K)/(\gamma+ce)=0.00631$ 9; $ce(L)/(\gamma+ce)=0.001215$ 17;				
$ce(M)/(\gamma+ce) = 0.000285 4$ $ce(N)/(\gamma+ce) = 6.08 \times 10^{-5} 10^{\circ} ce(O)/(\gamma+ce) = 1.107 \times 10^{-5} 17^{\circ}$								$ce(M)/(\gamma+ce)=0.000285 4$ $ce(M)/(\gamma+ce)=6.08\times10^{-5} 10; ce(M)/(\gamma+ce)=1.107\times10^{-5} 17;$				
$ce(1)/(\gamma+ce)=0.98\times10^{-10}, ce(0)/(\gamma+ce)=1.197\times10^{-17}, ce(P)/(\gamma+ce)=7.19\times10^{-7}$								$ce(P)/(\gamma+ce)=0.38\times10^{-7} 10$ $ce(P)/(\gamma+ce)=7.19\times10^{-7} 10$				
$\alpha(K)=0.00636\ 9;\ \alpha(L)=0.001225\ 18;\ \alpha(M)=0.000288\ 4$								$\alpha(K)=0.00636~9; \ \alpha(L)=0.001225~18; \ \alpha(M)=0.000288~4$				
$\alpha(N)=7.04\times10^{-5}$ 10; $\alpha(O)=1.207\times10^{-5}$ 17; $\alpha(P)=7.24\times10^{-7}$ 11 814.8.3 5.1.6 1135.67 320.04 (2) ⁻ E1 0.00207 5.1.6 $\alpha(K)=200.0044$ 15	81483	516	1135 67	$320.04(2)^{-1}$	F1	0.00207	516	$\alpha(N)=7.04\times10^{-5}$ 10; $\alpha(O)=1.207\times10^{-5}$ 17; $\alpha(P)=7.24\times10^{-7}$ 11 $\alpha(K)=0.0044$ 15				
$a(\mathbf{K})exp=0.004415$ $ce(\mathbf{K})/(\gamma+ce)=0.003676;$	014.0 5	5.1 0	1155.07	320.94 (2)	EI	0.00297	5.1 0	$ce(K)/(\gamma+ce)=0.00249 4; ce(L)/(\gamma+ce)=0.000367 6;$				
$ce(M)/(\gamma+ce)=8.35\times10^{-5}$ 12								$ce(M)/(\gamma+ce)=8.35\times10^{-5}$ 12				
$ce(N)/(\gamma+ce)=2.04\times10^{-5} \ 3; \ ce(O)/(\gamma+ce)=3.59\times10^{-6} \ 5;$								$ce(N)/(\gamma+ce) = 2.04 \times 10^{-5} 3; ce(O)/(\gamma+ce) = 3.59 \times 10^{-6} 5;$				
$ce(P)/(\gamma+ce)=2.63\times10^{-7} 4$ $\alpha(K)=0.00250 4: \alpha(L)=0.000368 6: \alpha(M)=8.37\times10^{-5} 12$								$ce(P)/(\gamma+ce)=2.63\times10^{-7} 4$ $\alpha(K)=0.00250 4$; $\alpha(L)=0.000368 6$; $\alpha(M)=8.37\times10^{-5} 12$				
$\alpha(N) = 2.05 \times 10^{-5} 3; \alpha(O) = 3.60 \times 10^{-6} 5; \alpha(P) = 2.64 \times 10^{-7} 4$								$\alpha(N) = 2.05 \times 10^{-5} \ 3; \ \alpha(O) = 3.60 \times 10^{-6} \ 5; \ \alpha(P) = 2.64 \times 10^{-7} \ 4$				
826.5 3 1.2 2 852.78 25.85 (5) ⁺ (E2) 0.00767 1.2 2 α (K)exp \approx 0.008 (K)/(α + α) 0.001164 17	826.5 <i>3</i>	1.2 2	852.78	25.85 (5)+	(E2)	0.00767	1.2 2	$\alpha(K) \exp \approx 0.008$				
$\frac{ce(K)}{(\gamma+ce)} = 0.00610 \ 9; \ ce(L)/(\gamma+ce) = 0.001164 \ 1/; \\ ce(M)/(\gamma+ce) = 0.000273 \ 4$								$ce(K)/(\gamma+ce)=0.00610 \ 9; \ ce(L)/(\gamma+ce)=0.001164 \ 1/; \ ce(M)/(\gamma+ce)=0.000273 \ 4$				
$ce(N)/(\gamma+ce)=6.69\times10^{-5} 10; ce(O)/(\gamma+ce)=1.148\times10^{-5} 17;$								$ce(N)/(\gamma+ce)=6.69\times10^{-5} 10; ce(O)/(\gamma+ce)=1.148\times10^{-5} 17;$				
$\frac{ce(P)}{(\gamma+ce)=6.94\times10^{-7}} \frac{10}{10}$								$\frac{ce(P)}{(\gamma+ce)=6.94\times10^{-7}} \frac{10}{10}$				
$\alpha(\mathbf{K}) = 0.00014 \ 9; \ \alpha(\mathbf{L}) = 0.001173 \ 17; \ \alpha(\mathbf{M}) = 0.000275 \ 4$ $\alpha(\mathbf{N}) = 6.74 \times 10^{-5} \ 10; \ \alpha(\mathbf{O}) = 1.157 \times 10^{-5} \ 17; \ \alpha(\mathbf{P}) = 7.00 \times 10^{-7} \ 10$								$\alpha(\mathbf{N})=0.00014 \ 9; \ \alpha(\mathbf{L})=0.001173 \ 17; \ \alpha(\mathbf{M})=0.000275 \ 4$ $\alpha(\mathbf{N})=6.74\times10^{-5} \ 70; \ \alpha(\mathbf{O})=1.157\times10^{-5} \ 77; \ \alpha(\mathbf{P})=7.00\times10^{-7} \ 10$				
$\alpha(K) = 0$, $\alpha(G) = 10$, $\alpha(G)$								$\alpha(K)$ exp gives E2+M1 with $\delta \approx 2$, ΔJ^{π} suggests E2.				
834.3 3 0.78 12 1024.87 190.39 (3) ⁺ [E2] 0.00752 0.8 1 $ce(K)/(\gamma+ce)=0.00599 9; ce(L)/(\gamma+ce)=0.001138 16;$	834.3 <i>3</i>	0.78 12	1024.87	190.39 $(3)^+$	[E2]	0.00752	0.8 1	$ce(K)/(\gamma+ce)=0.00599 \ 9; \ ce(L)/(\gamma+ce)=0.001138 \ 16;$				
$ce(N)/(\gamma+ce)=0.000207/4$ $ce(N)/(\gamma+ce)=6.53\times10^{-5}/10$: $ce(O)/(\gamma+ce)=1.122\times10^{-5}/16$:								$ce(N)/(\gamma+ce)=0.0002074$ $ce(N)/(\gamma+ce)=6.53\times10^{-5}10; ce(O)/(\gamma+ce)=1.122\times10^{-5}16;$				

From ENSDF

I

				¹⁸² Pt ε	¹⁸² Pt ε decay (2.67 min)			995Sa42 (continued)
						$\gamma(^{182}\mathrm{Ir})$) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\boldsymbol{b}}$	α ^C	$I_{(\gamma+ce)}$ [‡] <i>d</i>	Comments
914.9.3	1.1 2	1002.36	87.39 (1.2)+				1.1 2	$\begin{array}{c} ce(P)/(\gamma+ce)=6.82\times10^{-7} \ 10\\ \alpha(K)=0.00603 \ 9; \ \alpha(L)=0.001147 \ 16; \ \alpha(M)=0.000269 \ 4\\ \alpha(N)=6.58\times10^{-5} \ 10; \ \alpha(O)=1.131\times10^{-5} \ 16; \ \alpha(P)=6.87\times10^{-7} \ 10 \end{array}$
924.6 3	0.66 10	1135.67	210.97 1+	M1(+E2)	<0.6	0.0136 12	0.7 1	$\begin{aligned} &\alpha(\text{K})\exp=0.017\ 7\\ &\text{ce}(\text{K})/(\gamma+\text{ce})=0.0112\ 10;\ \text{ce}(\text{L})/(\gamma+\text{ce})=0.00176\ 14;\\ &\text{ce}(\text{M})/(\gamma+\text{ce})=0.00040\ 3\\ &\text{ce}(\text{N})/(\gamma+\text{ce})=9.9\times10^{-5}\ 8;\ \text{ce}(\text{O})/(\gamma+\text{ce})=1.76\times10^{-5}\ 14;\\ &\text{ce}(\text{P})/(\gamma+\text{ce})=1.33\times10^{-6}\ 12\\ &\alpha(\text{K})=0.0113\ 10;\ \alpha(\text{L})=0.00178\ 14;\ \alpha(\text{M})=0.00041\ 3\\ &\alpha(\text{N})=0.000100\ 8;\ \alpha(\text{O})=1.78\times10^{-5}\ 14;\ \alpha(\text{P})=1.35\times10^{-6}\ 13\\ &\text{Additional information}\ 26. \end{aligned}$
1281.1 <i>3</i>	0.6 1	1540.7	259.61 (2) ⁺				0.6 1	

[†] $\Delta(E\gamma)$ assigned as 0.2 keV for I γ >5 and E γ >500; and 0.3 keV or 1 keV for others, based on a general statement by 1995Sa42. 1995Sa42 state that weak γ rays (I γ <0.5) that were observed only in coin with Ir x rays were not listed in their paper, but several weak (I γ <0.5) γ rays are given by 2007Ho20.

 \ddagger Intensities quoted by 2007Ho20 are divided by a factor of 10.

[#] From ce data. Unless otherwise noted, the K conversion coefficients above 185 keV are from γ and Si(Li) ce singles spectra. The conversion coefficients below 185 keV are from γ and singles ce spectra with a spectrograph. The subshell ratios are from γ and spectrograph ce singles spectra. The γ ray and ce intensities were normalized to well-known stretched E2 transitions in ¹⁸²Ir.

[@] Subshell ratios are from singles electron spectra.

& The conversion coefficients are based on (ce) γ and $\gamma\gamma$ coincidence spectra.

^a 386.5, 387 and 388.1 are unresolved, divided intensity given.

^b Deduced by the evaluators from ce data of 2007Ho20. For many transitions 2007Ho20 give pure M1 multipolarity, the evaluators deduce upper limits of mixing ratios in such cases.

^c Theoretical values from BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" approximation. If no value of $\delta(\text{E2/M1})$ given it was as 1.00.

 d For absolute intensity per 100 decays, multiply by 0.16 3.

 $x \gamma$ ray not placed in level scheme.

21

 $^{182}_{77}\mathrm{Ir}_{105}\text{--}21$

 $^{182}_{77}$ Ir $_{105}$

 $^{182}_{77}\mathrm{Ir}_{105}$

¹⁸²Pt ε decay (2.67 min) 2007Ho20,1995Sa42

