¹⁸⁶Au α decay (10.7 min) 1990Ak04

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	NDS 130, 21 (2015)	15-Jul-2015					

Parent: ¹⁸⁶Au: E=0; J^{π}=3⁻; T_{1/2}=10.7 min 5; Q(α)=4912 *14*; % α decay=0.0008 2

¹⁸⁶Au-E, J^{π} , $T_{1/2}$: From Adopted Levels of ¹⁸⁶Au in the ENSDF database.

¹⁸⁶Au-Q(α): From 2012Wa38 evaluation, which is based on input measured E α =4653 *15* (1990Ak04) and suggestion by 1995Sa42 from configuration assignments to the parent and daughter levels that the α transition feeds a 152.3, 3⁻ level. In a recent ¹⁸²Pt decay study by 2007Ho20 (same group as 1995Sa42), the 152.3 level is assigned J^{π} =1⁻,2⁻ and another 152.5 level is assigned 4⁻. The evaluators treat this placement as uncertain since no γ rays were seen by 1990Ak04.

¹⁸⁶Au-% α decay: % α =0.0008 2 (1990Ak04,1995Bi01).

1990Ak04 (also 1995Bi01): Measured E α , I α , deduced hindrance factor.

¹⁸²Ir Levels

E(level)	J^{π}
0	3 ⁺
152.3?	(1,2) ⁻

α radiations

Eα	E(level)	$I\alpha^{\dagger}$	HF	Comments	
4653 [‡] 15	152.3?	100	2	HF: from 1995Bi01.	

[†] For absolute intensity per 100 decays, multiply by 8×10^{-6} 2.

[‡] Existence of this branch is questionable.